CN115400577A - Steel slag mixed with clay and limestone pulping desulfurization method and mixed desulfurizer - Google Patents
Steel slag mixed with clay and limestone pulping desulfurization method and mixed desulfurizer Download PDFInfo
- Publication number
- CN115400577A CN115400577A CN202211069360.8A CN202211069360A CN115400577A CN 115400577 A CN115400577 A CN 115400577A CN 202211069360 A CN202211069360 A CN 202211069360A CN 115400577 A CN115400577 A CN 115400577A
- Authority
- CN
- China
- Prior art keywords
- clay
- desulfurization
- mixed
- steel slag
- flue gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 100
- 230000023556 desulfurization Effects 0.000 title claims abstract description 100
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 59
- 239000002893 slag Substances 0.000 title claims abstract description 59
- 239000010959 steel Substances 0.000 title claims abstract description 59
- 239000004927 clay Substances 0.000 title claims abstract description 50
- 235000019738 Limestone Nutrition 0.000 title claims abstract description 44
- 239000006028 limestone Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004537 pulping Methods 0.000 title claims abstract 3
- 239000003546 flue gas Substances 0.000 claims abstract description 70
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000002699 waste material Substances 0.000 claims abstract description 59
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000011593 sulfur Substances 0.000 claims abstract description 43
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 43
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000004566 building material Substances 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 61
- 239000002002 slurry Substances 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 229960000892 attapulgite Drugs 0.000 claims description 8
- 229910052625 palygorskite Inorganic materials 0.000 claims description 8
- 230000003009 desulfurizing effect Effects 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000004568 cement Substances 0.000 abstract description 9
- 239000002994 raw material Substances 0.000 abstract description 8
- 239000006227 byproduct Substances 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 9
- 239000011449 brick Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910001341 Crude steel Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- BVJRIMBTLVPCFB-UHFFFAOYSA-N [Fe+2].[O-2].[Ca+2].[O-2] Chemical compound [Fe+2].[O-2].[Ca+2].[O-2] BVJRIMBTLVPCFB-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- -1 construction Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
- B01D53/502—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/507—Sulfur oxides by treating the gases with other liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/80—Semi-solid phase processes, i.e. by using slurries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
技术领域technical field
本申请涉及一种烟气脱硫方法,特别涉及一种钢渣与黏土、石灰石混合制浆脱硫方法以及混合脱硫剂,属于环境保护技术领域。The application relates to a flue gas desulfurization method, in particular to a desulfurization method for mixing steel slag with clay and limestone and a mixed desulfurizer, which belongs to the technical field of environmental protection.
背景技术Background technique
2020年我国粗钢产量超过10亿吨,而相应产出的钢渣占粗钢产量的10%~15%,即,钢渣产量超过1亿吨。然而,目前钢渣综合利用率不高,只有约30%,因此每年都有大量的钢渣产生且无法利用,逐年堆放占用大量的土地面积,更严重的是造成环境污染。目前钢渣大总量、高附加值利用的有效途径是生产钢渣粉,应用于建材、建筑、混凝土、道路等,但是当前利用钢渣生产钢渣粉的技术存在生产过程中难以粉磨、电耗高以及生产出的钢渣粉早期强度低等突出问题,严重制约其大规模生产和工程应用。In 2020, my country's crude steel output will exceed 1 billion tons, and the corresponding steel slag will account for 10% to 15% of the crude steel output, that is, the steel slag output will exceed 100 million tons. However, the comprehensive utilization rate of steel slag is not high at present, only about 30%. Therefore, a large amount of steel slag is produced every year and cannot be used, and it takes up a large amount of land area to be piled up year by year, and what is more serious is to cause environmental pollution. At present, the effective way to utilize large amounts of steel slag and high added value is to produce steel slag powder, which can be used in building materials, construction, concrete, roads, etc. The produced steel slag powder has outstanding problems such as low early strength, which seriously restricts its large-scale production and engineering application.
另一方面,近年来我国二氧化硫的年排放量都在2000万吨上下。由于氮氧化物、硫氧化物对我国造成的损失每年在百亿元以上,这些污染物重点来自燃煤锅炉、冶炼、烧结等行业排放的烟气。为降低环境污染,一般需要将这些烟气中的二氧化硫等污染物脱除后才可以排放到大气中。目前大型电力、冶金企业建成投入运行的脱硫设施基本上采用的是Ca系的湿法、干法、半干法脱硫技术,产生的脱硫副产物主要化学成分是CaSO4、CaSO3、CaCO3及CaO。对于这些副产物,目前尚没有很好的处置方式,而是以堆放和填埋为主,既占用工业用地,而且处理不妥还会对水源、土壤及大气造成二次污染。On the other hand, in recent years, the annual emission of sulfur dioxide in my country has been around 20 million tons. Since the losses caused by nitrogen oxides and sulfur oxides to my country are more than 10 billion yuan per year, these pollutants mainly come from the flue gas emitted by coal-fired boilers, smelting, sintering and other industries. In order to reduce environmental pollution, it is generally necessary to remove sulfur dioxide and other pollutants in these flue gases before they can be discharged into the atmosphere. At present, the desulfurization facilities built and put into operation by large electric power and metallurgical enterprises basically adopt Ca-based wet, dry, and semi-dry desulfurization technologies, and the main chemical components of desulfurization by-products are CaSO 4 , CaSO 3 , CaCO 3 and CaO. For these by-products, there is no good disposal method at present, but stacking and landfilling are the main methods, which not only occupy industrial land, but also cause secondary pollution to water sources, soil and air if not handled properly.
如何实现对废弃钢渣更为高效的利用以及对烟气脱硫副产物的有效处置,已经成为业界亟待解决的难题。How to realize more efficient utilization of waste steel slag and effective disposal of flue gas desulfurization by-products has become an urgent problem to be solved in the industry.
发明内容Contents of the invention
本申请的主要目的在于提供一种钢渣与黏土、石灰石混合制浆脱硫方法以及混合脱硫剂,以克服现有技术中的不足。The main purpose of this application is to provide a desulfurization method for mixing steel slag with clay and limestone and a mixed desulfurizer to overcome the deficiencies in the prior art.
为实现前述发明目的,本申请采用的技术方案包括:In order to realize the aforementioned object of the invention, the technical solutions adopted in this application include:
本申请的一个方面提供了一种混合脱硫剂,其包括45wt%-55wt%废弃钢渣、25wt%-35wt%黏土及15wt%-25wt%石灰石。One aspect of the present application provides a mixed desulfurizer, which includes 45wt%-55wt% waste steel slag, 25wt%-35wt% clay and 15wt%-25wt% limestone.
在一个实施例中,所述废弃钢渣、黏土、石灰石均为颗粒状,且粒径为100目以下,例如100目-200目。In one embodiment, the waste steel slag, clay, and limestone are all in granular form, and the particle size is below 100 mesh, such as 100 mesh to 200 mesh.
在一个实施例中,所述黏土包括凹凸棒石黏土。In one embodiment, the clay comprises attapulgite clay.
本申请的另一个方面提供了一种脱硫浆液,其包括所述的混合脱硫剂以及水,且所述脱硫浆液的固含量为10wt%-15wt%、pH值在8.5以上。Another aspect of the present application provides a desulfurization slurry, which includes the mixed desulfurizer and water, and the solid content of the desulfurization slurry is 10wt%-15wt%, and the pH value is above 8.5.
在本申请中,所述废弃钢渣是炼钢过程中排出的废渣,化学成分主要为硅、钙、镁、铁等的氧化物,主要物相组成为硅酸三钙、硅酸二钙、铁酸钙、氧化铁等。In this application, the waste steel slag is the waste slag discharged during the steelmaking process, the chemical composition is mainly oxides of silicon, calcium, magnesium, iron, etc., and the main phase composition is tricalcium silicate, dicalcium silicate, iron calcium oxide, iron oxide, etc.
在本申请中,所述黏土一般由硅铝酸盐矿物在地球表面风化后形成,但是有些成岩作用也会产生黏土。优选的,所述黏土选用凹凸棒石黏土,其简称凹土,为土块状结构,颜色为灰白、青灰、浅黄和浅绿。油脂光泽,比重轻,摩氏硬度2~3级,潮湿时呈粘性和可塑性,干燥收缩小,且不产生龟裂,吸水性强,可达到150%以上,pH值8.5左右。In this application, the clays are generally formed from aluminosilicate minerals after the weathering of the earth's surface, but some diagenesis also produces clays. Preferably, the clay is attapulgite clay, which is called attapulgite for short, and has a block-like structure, and the color is off-white, blue-gray, light yellow and light green. Greasy luster, light specific gravity, Mohs hardness 2-3, viscous and plastic when wet, small drying shrinkage, no cracks, strong water absorption, which can reach more than 150%, and pH value of about 8.5.
在本申请中,所述石灰石作为一种天然材料,其主要成分为CaCO3,在一定条件下可与二氧化硫气体进行反应,从而达到脱硫的目的。In this application, the limestone is a natural material whose main component is CaCO 3 , which can react with sulfur dioxide gas under certain conditions, so as to achieve the purpose of desulfurization.
本申请的混合脱硫剂中,钢渣、黏土、石灰石等主要组分均储量巨大,且均能与烟气中的二氧化硫发生反应,从而实现脱硫。特别是,本申请通过将钢渣、黏土及石灰石按照一定比例混合制取脱硫浆液,其中含有大量碱性物质,这些物质可以与SO2发生反应。本申请通过采用钢渣、黏土及石灰石的均匀混合物作为脱硫剂,既可以降低脱硫成本,又能使钢渣得到综合利用,达到“以废治废”的目的。In the mixed desulfurizer of the present application, steel slag, clay, limestone and other main components have huge reserves, and all of them can react with sulfur dioxide in flue gas, thereby realizing desulfurization. In particular, this application prepares desulfurization slurry by mixing steel slag, clay and limestone in a certain proportion, which contains a large amount of alkaline substances, which can react with SO 2 . This application adopts a uniform mixture of steel slag, clay and limestone as a desulfurizing agent, which can not only reduce the cost of desulfurization, but also enable comprehensive utilization of steel slag, so as to achieve the purpose of "treating waste with waste".
本申请的另一个方面提供了一种钢渣与黏土、石灰石混合制浆脱硫方法,其包括:Another aspect of the present application provides a desulfurization method for mixing steel slag with clay and limestone, which includes:
(1)对废弃钢渣、黏土及石灰石进行除杂、粉碎处理后,再均匀混合,制得所述的混合脱硫剂;(1) After the waste steel slag, clay and limestone are removed and pulverized, they are evenly mixed to obtain the mixed desulfurizer;
(2)将步骤(1)制得的混合脱硫剂与水均匀混合,制成所述的脱硫浆液;(2) uniformly mixing the mixed desulfurizing agent prepared in step (1) with water to make the desulfurization slurry;
(3)使含硫烟气与步骤(2)制得的脱硫浆液充分接触,实现对含硫烟气的脱硫处理。(3) Fully contacting the sulfur-containing flue gas with the desulfurization slurry prepared in step (2) to realize the desulfurization treatment of the sulfur-containing flue gas.
在一个实施例中,所述的脱硫方法具体包括:In one embodiment, the desulfurization method specifically includes:
(1)对废弃钢渣、黏土、石灰石进行除杂处理,之后依次进行烘干、粉碎处理,再将获得的废弃钢渣颗粒、黏土颗粒、石灰石颗粒均匀混合,制得混合脱硫剂;(1) Carry out impurity removal treatment on waste steel slag, clay, and limestone, and then perform drying and crushing treatment in sequence, and then uniformly mix the obtained waste steel slag particles, clay particles, and limestone particles to prepare a mixed desulfurizer;
(2)将所述混合脱硫剂与水在反应塔内均匀混合,制成所述脱硫浆液;(2) uniformly mixing the mixed desulfurizer and water in the reaction tower to make the desulfurization slurry;
(3)将含硫烟气自反应塔下部输入所述反应塔,使含硫烟气与脱硫浆液在所述反应塔内充分接触并反应,从而至少将所述含硫烟气中的部分含硫组分脱除,然后将经脱硫处理后的烟气从反应塔的烟气排放口排出;(3) The sulfur-containing flue gas is input into the reaction tower from the lower part of the reaction tower, so that the sulfur-containing flue gas and the desulfurization slurry are fully contacted and reacted in the reaction tower, so that at least part of the sulfur-containing flue gas contains The sulfur component is removed, and then the flue gas after desulfurization treatment is discharged from the flue gas discharge port of the reaction tower;
其中,所述含硫组分包括二氧化硫。Wherein, the sulfur-containing component includes sulfur dioxide.
在一个实施例中,所述反应塔为多个,并且所述步骤(3)还包括:使含硫烟气从多个反应塔中依次通过,且在每一反应塔内均与脱硫浆液充分接触并反应,直至使烟气的组成达到排放标准后,将烟气从最后一个反应塔的烟气排放口排放至大气中。In one embodiment, there are a plurality of reaction towers, and the step (3) further includes: allowing the sulfur-containing flue gas to pass through the plurality of reaction towers sequentially, and fully mix with the desulfurization slurry in each reaction tower Contact and react until the composition of the flue gas reaches the emission standard, then discharge the flue gas into the atmosphere from the flue gas outlet of the last reaction tower.
在一个实施例中,步骤(3)还包括:当所述反应塔内脱硫浆液的pH值降低至4~5时,则将所述脱硫浆液作为废液排至废液池,并重新在所述反应塔内置入pH值在8.5以上的脱硫浆液。In one embodiment, step (3) further includes: when the pH value of the desulfurization slurry in the reaction tower is reduced to 4-5, then discharging the desulfurization slurry as a waste liquid to a waste liquid pool, and re-discharging the desulfurization slurry in the reaction tower. The desulfurization slurry with a pH value above 8.5 is put into the reaction tower.
在一个实施例中,步骤(3)还包括:在所述反应塔中设置搅拌器,以充分搅拌反应塔内的脱硫浆液。In one embodiment, step (3) further includes: setting a stirrer in the reaction tower to fully stir the desulfurization slurry in the reaction tower.
在一个实施例中,所述脱硫方法还包括:将所述废液中的固相物分离出,之后进行烘干处理,然后应用于制备建筑材料。In one embodiment, the desulfurization method further includes: separating the solid phase in the waste liquid, followed by drying, and then applying to prepare building materials.
本申请的另一个方面提供了一种脱硫系统,包括:Another aspect of the present application provides a desulfurization system, comprising:
混合脱硫剂生产单元,包括:Mixed desulfurizer production unit, including:
第一烘干机,用于对废弃钢渣、黏土及石灰石进行干燥处理,The first dryer is used to dry waste steel slag, clay and limestone,
颗粒粉碎机,用于对经干燥处理后的废弃钢渣、黏土及石灰石进行粉碎处理,Particle pulverizer, used for pulverizing waste steel slag, clay and limestone after drying treatment,
投料机,用于将混合脱硫剂输入反应塔,所述混合脱硫剂主要由经粉碎处理后的废弃钢渣、黏土及石灰石均匀混合形成;Feeder, used to input the mixed desulfurizer into the reaction tower, the mixed desulfurizer is mainly formed by uniform mixing of crushed waste steel slag, clay and limestone;
至少一个反应塔,所述反应塔上部设有投料口及进水口,上部或中部设有烟气排放口,下部设有烟气入口和排液口,其中所述投料口、进水口、烟气入口分别与投料机、输水管路、含硫烟气发生源连接,并分别用于向反应塔内腔中输入混合脱硫剂、水、含硫烟气,所述烟气排放口用于将经脱硫处理后的烟气排出反应塔,所述排液口用于将废液排出反应塔,所述废液是由脱硫浆液与含硫烟气充分接触并反应后生成,且所述废液的pH值为4~5,所述脱硫浆液主要由混合脱硫剂与水混合形成。At least one reaction tower, the upper part of the reaction tower is provided with a feeding port and a water inlet, the upper or middle part is provided with a flue gas discharge port, and the lower part is provided with a flue gas inlet and a liquid discharge port, wherein the feeding port, water inlet, flue gas The inlets are respectively connected with the feeding machine, the water delivery pipeline, and the source of sulfur-containing flue gas, and are respectively used to input mixed desulfurizer, water, and sulfur-containing flue gas into the inner cavity of the reaction tower. The desulfurized flue gas is discharged from the reaction tower, and the liquid outlet is used to discharge the waste liquid from the reaction tower. The waste liquid is generated after the desulfurization slurry and the sulfur-containing flue gas fully contact and react, and the waste liquid The pH value is 4-5, and the desulfurization slurry is mainly formed by mixing a mixed desulfurization agent and water.
在一个实施例中,所述投料机可以采用履带式投料机或其它投料装置,且不限于此。In one embodiment, the feeder may be a crawler feeder or other feeding device, and is not limited thereto.
在一个实施例中,所述含硫烟气发生源包括烧结炉、火电厂、工业锅炉、煤化厂、炼钢厂等,且不限于此。In one embodiment, the sources of sulfur-containing flue gas include sintering furnaces, thermal power plants, industrial boilers, coal chemical plants, steel mills, etc., but are not limited thereto.
在一个实施例中,所述脱硫系统包括串联设置的多个反应塔。具体来说,其中上级反应塔的烟气排放口与下级反应塔的烟气入口连接。在这种情况下,上级反应塔即相当于下级反应塔的含硫烟气发生源。In one embodiment, the desulfurization system includes multiple reaction towers arranged in series. Specifically, the flue gas outlet of the upper reaction tower is connected with the flue gas inlet of the lower reaction tower. In this case, the upper reaction tower is equivalent to the sulfur-containing flue gas generation source of the lower reaction tower.
在一个实施例中,所述反应塔内还设置有搅拌器,所述搅拌器用于充分搅拌反应塔内的脱硫浆液。In one embodiment, a stirrer is also provided in the reaction tower, and the stirrer is used to fully stir the desulfurization slurry in the reaction tower.
在一个实施例中,所述脱硫系统还可以包括废液池,用于容纳所述反应塔排出的废液。In one embodiment, the desulfurization system may further include a waste liquid pool for containing the waste liquid discharged from the reaction tower.
在一个实施例中,所述脱硫系统还可以包括其它配套设备,例如用于从废液池内的废液中分离出固形物的装置、用于对所述固形物进行干燥及后续加工处理的装置等。In one embodiment, the desulfurization system may also include other supporting equipment, such as a device for separating solids from the waste liquid in the waste liquid pool, a device for drying and subsequent processing of the solids Wait.
此外,所述脱硫系统还可以包括与反应塔配套设置的各类温度检测设备、湿度检测设备、压力检测设备、pH值检测设备、烟气成分分析设备等,以及与输水管路、烟气输送管路配套设置的各类阀门及流量计等设备,这些设备均可以采用本领域已知的设备,并按照本领域已知的方式在所述脱硫系统中设置,故而此处不再赘述。In addition, the desulfurization system may also include various temperature detection equipment, humidity detection equipment, pressure detection equipment, pH value detection equipment, flue gas composition analysis equipment, etc. All kinds of valves, flow meters and other equipments that are matched with the pipelines can be installed in the desulfurization system according to the known equipments in the art, so the details will not be repeated here.
与现有技术相比,本申请技术方案的优点至少在于:Compared with the prior art, the advantages of the technical solution of the present application are at least:
(1)通过采用废弃钢渣混合黏土、石灰石等制成混合脱硫剂,不仅原料来源广泛、成本低廉,而且可以实现对废弃钢渣的有效利用,且所述混合脱硫剂可以高效率、低成本地脱除含硫烟气中的二氧化硫等含硫成分,达到了“以废治废”的目的。(1) By using waste steel slag mixed with clay, limestone, etc. to make a mixed desulfurizer, not only the source of raw materials is extensive and the cost is low, but also the effective utilization of waste steel slag can be realized, and the mixed desulfurizer can desulfurize with high efficiency and low cost. By removing sulfur dioxide and other sulfur-containing components in sulfur-containing flue gas, the purpose of "treating waste with waste" is achieved.
(2)采用所述混合脱硫剂对含硫烟气脱硫后的副产物具有颗粒小、便于加工等优点,可以作为水泥厂、建筑行业的原材料利用,例如可以用于生产水泥、砖瓦等产品,不会产生二次污染,并实现了资源的综合利用。(2) Using the mixed desulfurizer to desulfurize the by-products of sulfur-containing flue gas has the advantages of small particles and easy processing, and can be used as raw materials in cement plants and construction industries, such as for the production of cement, bricks and tiles, etc. , will not produce secondary pollution, and realize the comprehensive utilization of resources.
附图说明Description of drawings
图1是本申请一实施例中一种脱硫系统的结构示意图;Fig. 1 is a schematic structural view of a desulfurization system in an embodiment of the present application;
附图标记说明:1-含硫烟气发生源;2-控制阀;3-反应塔;4-废液池;5-流量泵;6-搅拌器;7-烟气分析仪;8-履带投料机;9-颗粒粉碎机;10-净烟气排放口;11-第一烘干机;12-第二烘干机;13-水泥厂;14-砖瓦厂。Explanation of reference signs: 1-source of sulfur-containing flue gas; 2-control valve; 3-reaction tower; 4-waste liquid pool; 5-flow pump; 6-stirrer; 7-flue gas analyzer; 8-track Feeding machine; 9-particle pulverizer; 10-clean flue gas discharge port; 11-first dryer; 12-second dryer; 13-cement factory; 14-brick and tile factory.
具体实施方式Detailed ways
以下将结合若干实施例对本申请的技术方案作更为详尽地解释说明,但这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不是用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。The technical solutions of the present application will be explained in more detail below in conjunction with several embodiments, but these specific descriptions are only used to teach those skilled in the art how to implement the present application, rather than exhaustively enumerating all possible ways of the present application , and are not intended to limit the scope of this application.
实施例1Example 1
本实施例提供了一种钢渣与黏土、石灰石混合制浆脱硫方法,其工艺过程主要为:首先对废弃转炉钢渣、凹凸棒石黏土及石灰石进行除杂、粉粹处理,之后按比例均匀混合,制得混合脱硫剂,然后将该混合脱硫剂与水均匀混合制成脱硫浆液;而后使含硫烟气与该脱硫浆液充分接触,从而实现对含硫烟气的脱硫处理。This embodiment provides a desulfurization method for mixing steel slag with clay and limestone. The process is mainly as follows: first, remove impurities and pulverize waste converter steel slag, attapulgite clay and limestone, and then mix them uniformly in proportion. Prepare a mixed desulfurizing agent, then uniformly mix the mixed desulfurizing agent with water to form a desulfurization slurry; then fully contact the sulfur-containing flue gas with the desulfurization slurry, thereby realizing the desulfurization treatment of the sulfur-containing flue gas.
在本实施例中,该脱硫方法主要是基于图1所示的脱硫系统实施的,该脱硫系统主要包括反应塔3、废液池4、搅拌器6、履带投料机8、颗粒粉碎机9、第一烘干机11等。反应塔3可以为两个以上,并分多级串联设置。In this embodiment, the desulfurization method is mainly implemented based on the desulfurization system shown in FIG. The
进一步的,该脱硫方法具体包括如下步骤:Further, the desulfurization method specifically includes the following steps:
S1、按照常规方式对废弃钢渣、黏土、石灰石分别进行除杂处理,之后以第一烘干机11分别对废弃钢渣、凹凸棒石黏土、石灰石进行烘干处理,以去除钢渣与黏土、石灰石中的水分,防止其进入粉碎机时成为泥浆状,保证可以实现更好的粉碎处理。S1. Perform impurity removal treatment on waste steel slag, clay, and limestone in a conventional manner, and then dry waste steel slag, attapulgite clay, and limestone with the
S2、将经过步骤S1处理过的废弃钢渣、黏土、石灰石分别以颗粒粉碎机9粉碎至颗粒直径小于100目,如此可以显著提高这些混合脱硫剂组分的比表面积,不仅使其更容易充分混合,而且可以在脱硫工序中提高脱硫效率。之后将颗粒状的废弃钢渣、黏土、石灰石按照约5∶3∶2的质量比例均匀混合,制成混合脱硫剂。S2. The waste steel slag, clay, and limestone treated in step S1 are respectively pulverized with a
S3、通过履带投料机8将步骤S2制得的混合脱硫剂从每一反应塔3顶部的投料口输入送入反应塔3,同时以输水管路将水从每一反应塔3顶部的进水口输入反应塔3。该输水管路上设有流量泵5,用于根据进入所述反应塔的混合脱硫剂的量进行配比,以供给合适体积的水,以使进入所述反应塔的混合脱硫剂与水混合配置成固含量约10wt%、pH值在8.5以上的脱硫浆液。为防止脱硫浆液中废弃钢渣与黏土、石灰石出现沉淀,并确保三者充分反应均匀混合,优选在反应塔中设置搅拌器6进行充分搅拌。S3. Input the mixed desulfurizer prepared in step S2 from the feeding port at the top of each
S4、以含硫烟气发生源1提供含硫烟气,含硫烟气经过带有控制阀门2的烟气输送管路后,从反应塔3侧面下部设置的烟气入口进入反应塔,并与其中的脱硫浆液接触充分反应,使含硫烟气中的二氧化硫等组分被至少部分脱除,脱硫后的烟气在反应塔内向上流动,并从位于反应塔中上部的烟气排放口排出。为防止一道脱硫过程未达到所需的脱硫效果,优选设置第二个反应塔或更多个反应塔再次脱硫,如图1所示,即,使从第一个反应塔排出的脱硫后的烟气进入第二个反应塔的烟气入口,并再次与脱硫浆液充分接触,以此类推,直至烟气从最后一个反应塔的烟气排放口排出。该最后一个反应塔的烟气排放口可以被定义为净烟气排放口10,该净烟气排放口10处可以设置烟分析仪7,用于检测经最后一个反应塔脱硫处理后烟气的化学成分,以确定其是否达到排放要求,达到排放标准的脱硫后烟气通过净烟气排放口10排放进入大气中。S4. Provide sulfur-containing flue gas with sulfur-containing flue
在该步骤中,当任一反应塔内的脱硫浆液在充分吸烟气中的二氧化硫等成分,且pH值达到4~5时,其脱硫效果下降,不可继续进行吸收使用,成为废液。该废液可以通过设置在反应塔3下部的排液口和与之配合的控制阀排入废液池4。In this step, when the desulfurization slurry in any reaction tower has sufficient components such as sulfur dioxide in the flue gas, and the pH value reaches 4-5, its desulfurization effect will decrease, and it cannot be continuously absorbed and used, and it will become waste liquid. The waste liquid can be discharged into the
进一步的,该脱硫系统还可以包括第二烘干机12、水泥厂13、砖瓦厂14等设施。而该脱硫方法还可以包括:Further, the desulfurization system may also include facilities such as a
对进入废液池4的废液进行充分沉淀处理,使其中的固形物(主要是废弃钢渣、黏土及石灰与烟气中的二氧化硫等的反应产物,即脱硫产物)沉淀到废液池底部,将上层清澈的水排出,将下层的沉淀物送入第二烘干机12进行处理,处理后的产物是一种很好的建筑行业的原材料,具有颗粒小,便于加工等优点,可以送至水泥厂13、砖瓦厂14等处作为生产原料利用,并可进一步加工为水泥制品、砖瓦等。Fully settle the waste liquid entering the
采用硫酸钡重量法(GB/T176-1996)测定脱硫产物中的硫含量,可以发现,本实施例的混合脱硫剂的固硫效率η可以达到81%左右。η=S1×M1/(S0×M0)×100%。M0、M1分别为试样煅烧前和煅烧后的质量,单位为g。S0、S1分别为试样煅烧前和煅烧后的硫含量(换算为三氧化硫的质量百分数)。The barium sulfate gravimetric method (GB/T176-1996) was used to measure the sulfur content in the desulfurized product. It can be found that the sulfur fixation efficiency η of the mixed desulfurizer in this embodiment can reach about 81%. η=S 1 ×M 1 /(S 0 ×M 0 )×100%. M 0 and M 1 are the mass of the sample before and after calcination, respectively, in g. S 0 and S 1 are the sulfur content of the sample before and after calcination (converted to the mass percentage of sulfur trioxide), respectively.
对比例1Comparative example 1
本对比例提供的脱硫系统的结构与实施例1基本相同,所采用的脱硫方法也与实施例相似,区别仅在于:仅采用粉碎后的废弃钢渣颗粒作为脱硫剂。本对比例的脱硫剂的固硫效率约为10%左右。The structure of the desulfurization system provided in this comparative example is basically the same as that of Example 1, and the desulfurization method adopted is also similar to that of Example 1, the only difference being that only crushed waste steel slag particles are used as desulfurizer. The sulfur fixation efficiency of the desulfurizer in this comparative example is about 10%.
对比例2Comparative example 2
本对比例提供的脱硫系统的结构与实施例1基本相同,所采用的脱硫方法也与实施例相似,区别仅在于:仅采用粉碎后的石灰石及凹凸棒石黏土混合作为脱硫剂。本对比例的脱硫剂的固硫效率约为53%左右。The structure of the desulfurization system provided in this comparative example is basically the same as that of Example 1, and the desulfurization method adopted is also similar to that of Example 1, the only difference being that only pulverized limestone and attapulgite clay are mixed as the desulfurizer. The sulfur fixation efficiency of the desulfurizer in this comparative example is about 53%.
对比例3Comparative example 3
本对比例提供的脱硫系统的结构与实施例1基本相同,所采用的脱硫方法也与实施例相似,区别仅在于:仅采用粉碎后的废弃钢渣与石灰石混合作为脱硫剂。本对比例的脱硫剂的固硫效率约为42%左右。The structure of the desulfurization system provided in this comparative example is basically the same as that of Example 1, and the desulfurization method adopted is also similar to that of Example 1, the only difference being that only pulverized waste steel slag is mixed with limestone as a desulfurizer. The sulfur fixation efficiency of the desulfurizer in this comparative example is about 42%.
对比例4Comparative example 4
本对比例提供的脱硫系统的结构与实施例1基本相同,所采用的脱硫方法也与实施例相似,区别仅在于:仅采用粉碎后的废弃钢渣颗粒与凹凸棒石黏土混合作为脱硫剂。本对比例的脱硫剂的固硫效率约为25%左右。The structure of the desulfurization system provided in this comparative example is basically the same as that of Example 1, and the desulfurization method adopted is also similar to that of Example 1, the only difference being that only pulverized waste steel slag particles are mixed with attapulgite clay as a desulfurizer. The sulfur fixation efficiency of the desulfurizer in this comparative example is about 25%.
实施例2本实施例的脱硫方法与实施例1基本相同,区别在于:混合脱硫剂中废弃钢渣、黏土、石灰石的质量比为11∶5∶4。本实施例的混合脱硫剂的固硫效率约为78%左右。Example 2 The desulfurization method of this example is basically the same as that of Example 1, except that the mass ratio of waste steel slag, clay and limestone in the mixed desulfurizer is 11:5:4. The sulfur fixation efficiency of the mixed desulfurizer in this embodiment is about 78%.
实施例3本实施例的脱硫方法与实施例1基本相同,区别在于:混合脱硫剂中废弃钢渣、黏土、石灰石的质量比为9∶6∶5。本实施例的混合脱硫剂的固硫效率约为80%左右。Example 3 The desulfurization method of this example is basically the same as that of Example 1, except that the mass ratio of waste steel slag, clay and limestone in the mixed desulfurizer is 9:6:5. The sulfur fixation efficiency of the mixed desulfurizer in this embodiment is about 80%.
另外,利用实施例1-3的脱硫产物制得的水泥制品、砖瓦的硬度、抗压强度等比普通水泥制品、砖瓦高出20%以上。In addition, the hardness and compressive strength of cement products and bricks and tiles prepared by using the desulfurization products of Examples 1-3 are more than 20% higher than those of ordinary cement products and bricks and tiles.
本申请通过以钢渣、黏土及石灰石为原材料,将其进行烘干、粉碎后按比例混合,再与水混合制得脱硫浆液,之后利用脱硫浆液作为吸收剂,实现了湿法烟气脱硫,其可以应用于火电厂、工业燃煤锅炉及其他含二氧化硫的烟道气的二氧化硫吸收处理。该脱硫浆液可以达到完全吸收烟气中二氧化硫等成分的目的,避免大量钢渣堆存造成环境的污染,提高了环保效果,同时还有效节约了资源。吸收烟气中含硫成分后的脱硫浆液经过沉淀等处理,可以分离出其中的脱硫产物,这些产物可以作为建筑原材料使用,具有价格低、强度高等优点。In this application, steel slag, clay and limestone are used as raw materials, dried, pulverized, mixed in proportion, and then mixed with water to obtain a desulfurization slurry, and then the desulfurization slurry is used as an absorbent to realize wet flue gas desulfurization. It can be applied to the sulfur dioxide absorption treatment of thermal power plants, industrial coal-fired boilers and other flue gases containing sulfur dioxide. The desulfurization slurry can achieve the purpose of completely absorbing sulfur dioxide and other components in the flue gas, avoiding environmental pollution caused by a large amount of steel slag piled up, improving the environmental protection effect, and effectively saving resources at the same time. After absorbing the sulfur components in the flue gas, the desulfurization slurry can be subjected to precipitation and other treatments to separate the desulfurization products in it. These products can be used as building raw materials and have the advantages of low price and high strength.
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。It should be understood that the above-mentioned embodiments are only to illustrate the technical concept and features of the present application. The purpose is to enable those familiar with this technology to understand the content of the present application and implement it accordingly, and not to limit the protection scope of the present application. All equivalent changes or modifications made according to the spirit of the present application shall fall within the protection scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211069360.8A CN115400577B (en) | 2022-09-01 | 2022-09-01 | Desulfurization method of mixed slag, clay and limestone slurry and mixed desulfurizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211069360.8A CN115400577B (en) | 2022-09-01 | 2022-09-01 | Desulfurization method of mixed slag, clay and limestone slurry and mixed desulfurizer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115400577A true CN115400577A (en) | 2022-11-29 |
CN115400577B CN115400577B (en) | 2024-04-12 |
Family
ID=84164664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211069360.8A Active CN115400577B (en) | 2022-09-01 | 2022-09-01 | Desulfurization method of mixed slag, clay and limestone slurry and mixed desulfurizer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115400577B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87205243U (en) * | 1987-11-19 | 1988-11-16 | 张祥麟 | High efficiency sulfur adsorbent for coal stove |
CN1058353A (en) * | 1991-07-16 | 1992-02-05 | 密歇根州州立大学托管委员会 | Be used for removing the composite clay materials of sulfur oxide from air-flow |
CN102114379A (en) * | 2009-12-30 | 2011-07-06 | 中国环境科学研究院 | Desulfurizing agent and preparation and application thereof |
US20110260103A1 (en) * | 2008-12-30 | 2011-10-27 | Beijing Sanju Environmental Protection and New Material Co., Ltd. | Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same |
KR20120033073A (en) * | 2010-09-29 | 2012-04-06 | 현대제철 주식회사 | Desulphurizing agent made from by-product of lime cacination and manufacturing method thereof and method for desulphurizing flue gas using it |
CN105664705A (en) * | 2016-01-12 | 2016-06-15 | 宁夏宁东诚鑫环保新材料科技有限公司 | Limestone and attapulgite mixed desulfurizing agent |
CN106474893A (en) * | 2016-12-15 | 2017-03-08 | 中国科学院过程工程研究所 | The flue gas desulfurization and denitration technique that a kind of ozone oxidization combination slag absorbs |
CN109092042A (en) * | 2018-08-30 | 2018-12-28 | 华电电力科学研究院有限公司 | It is a kind of that SO in flue gas is removed using steel slag2With SO3System and its working method |
CN111701437A (en) * | 2020-06-16 | 2020-09-25 | 太原市晶磊科技有限公司 | Flue gas desulfurizing agent |
-
2022
- 2022-09-01 CN CN202211069360.8A patent/CN115400577B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87205243U (en) * | 1987-11-19 | 1988-11-16 | 张祥麟 | High efficiency sulfur adsorbent for coal stove |
CN1058353A (en) * | 1991-07-16 | 1992-02-05 | 密歇根州州立大学托管委员会 | Be used for removing the composite clay materials of sulfur oxide from air-flow |
US20110260103A1 (en) * | 2008-12-30 | 2011-10-27 | Beijing Sanju Environmental Protection and New Material Co., Ltd. | Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same |
CN102114379A (en) * | 2009-12-30 | 2011-07-06 | 中国环境科学研究院 | Desulfurizing agent and preparation and application thereof |
KR20120033073A (en) * | 2010-09-29 | 2012-04-06 | 현대제철 주식회사 | Desulphurizing agent made from by-product of lime cacination and manufacturing method thereof and method for desulphurizing flue gas using it |
CN105664705A (en) * | 2016-01-12 | 2016-06-15 | 宁夏宁东诚鑫环保新材料科技有限公司 | Limestone and attapulgite mixed desulfurizing agent |
CN106474893A (en) * | 2016-12-15 | 2017-03-08 | 中国科学院过程工程研究所 | The flue gas desulfurization and denitration technique that a kind of ozone oxidization combination slag absorbs |
CN109092042A (en) * | 2018-08-30 | 2018-12-28 | 华电电力科学研究院有限公司 | It is a kind of that SO in flue gas is removed using steel slag2With SO3System and its working method |
CN111701437A (en) * | 2020-06-16 | 2020-09-25 | 太原市晶磊科技有限公司 | Flue gas desulfurizing agent |
Non-Patent Citations (1)
Title |
---|
史跃展等: "钢铁冶金渣用于烧结机烟气脱硫述评", 冶金设备, no. 244, pages 53 - 57 * |
Also Published As
Publication number | Publication date |
---|---|
CN115400577B (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Research on red mud-limestone modified desulfurization mechanism and engineering application | |
RU2474762C2 (en) | Method (versions) and system of air pollution reduction | |
CN102755827B (en) | Flue gas desulfurization process and device adopting acetylene sludge-gypsum method | |
CN106904924A (en) | The system and method for 3D printing material is built using municipal waste and Industrial Solid Waste | |
CN105498514A (en) | Cement kiln flue gas desulfurization system and method | |
CN106746802A (en) | The system and method for sulphate aluminium cement is prepared using municipal waste and Industrial Solid Waste | |
CN101623592A (en) | Process for comprehensive treatment of waste acid and desulfurization ash | |
Han et al. | Comprehensive utilization of carbide slag | |
CN108525508A (en) | The method for carrying out flue gas desulfurization using cement slurry | |
CN106810094A (en) | The system and method for cement joint production sulphur is prepared using municipal waste and Industrial Solid Waste | |
CN110981231A (en) | Equipment and method for cooperatively treating electrolytic manganese slag on basis of dry-process rotary kiln cement production line | |
CN1884048A (en) | Process for reductive decomposition of phosphogypsum by sulfur coal | |
CN112125537A (en) | Industrial preparation technology of calcium hydroxide | |
CN104402271B (en) | A kind of mud is used for the ridge grain seeding method of dry-process rotary kiln | |
CN101185830A (en) | A limestone-gypsum flue gas desulfurization process without slurry preparation system | |
CN106396440A (en) | Method for comprehensive utilization of waste gases and waste residues | |
CN115400577B (en) | Desulfurization method of mixed slag, clay and limestone slurry and mixed desulfurizer | |
CN106215678B (en) | A cement kiln semi-dry desulfurization system | |
CN101215113A (en) | Method for producing cement retarder by carbide slag desulfurization | |
CN217555963U (en) | A comprehensive treatment device for ammonia-alkali process alkali residue waste liquid | |
LU502474B1 (en) | Device and method for recycling flue gas byproducts in glass or glass fiber industry | |
CN202751947U (en) | Flue gas desulfurization (FGD) device using carbide slag-gypsum method | |
CN213012311U (en) | Desulfurization waste water mud innocent treatment device | |
CN107583419A (en) | The method that flue gas desulfurization and denitrification manufactures binder materials | |
CN110606493A (en) | A method for preparing silicon-calcium powder for construction by using urban sludge and the product and application of the prepared silicon-calcium powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |