CN115389938A - Method, system, electronic device and medium for predicting battery remaining capacity - Google Patents
Method, system, electronic device and medium for predicting battery remaining capacity Download PDFInfo
- Publication number
- CN115389938A CN115389938A CN202211144216.6A CN202211144216A CN115389938A CN 115389938 A CN115389938 A CN 115389938A CN 202211144216 A CN202211144216 A CN 202211144216A CN 115389938 A CN115389938 A CN 115389938A
- Authority
- CN
- China
- Prior art keywords
- battery
- value
- theoretical
- capacity value
- residual capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本公开涉及电池剩余容量预测领域,尤其涉及一种电池剩余容量的预测方法、系统、电子设备和介质。The present disclosure relates to the field of prediction of battery remaining capacity, and in particular to a method, system, electronic device and medium for predicting battery remaining capacity.
背景技术Background technique
电池作为当今生活中不可或缺的产品,其应用场景非常广泛,对于电池而言其电池剩余容量的预测是重要的技术难点,例如在电脑办公时,电池剩余容量若预测有误,往往会导致用户无法准确安排工作进程,导致不可估量的损失。在电池剩余容量的预测这个领域中,传统方式的数据库拟合方程的数据量有限,仅针对实验室数据和有限的实际测试数据进行拟合,实际中个体的特征、体质、环境、工况均存在差异,而传统的统一的算法无法针对特定的电池个体进行针对性数据处理,也无法做到算法的自我匹配迭代,运行过程中容易出现剩余容量预测不准确问题、因电量计算不准确导致的电量数据显示值跌落问题。As an indispensable product in today's life, batteries have a wide range of application scenarios. For batteries, the prediction of their remaining battery capacity is an important technical difficulty. Users cannot accurately arrange the work process, resulting in immeasurable losses. In the field of prediction of battery remaining capacity, the data volume of the traditional database fitting equation is limited, and it only fits the laboratory data and limited actual test data. In practice, the characteristics, constitution, environment, and working conditions of the individual There are differences, and the traditional unified algorithm cannot perform targeted data processing for a specific battery individual, nor can it achieve self-matching iterations of the algorithm. The power data display value drops.
发明内容Contents of the invention
本公开要解决的技术问题是为了克服现有技术中无法针对电池个体的实际剩余容量的预测方法进行调整的缺陷,提供一种电池剩余容量的预测方法、系统、电子设备和介质。The technical problem to be solved in the present disclosure is to provide a method, system, electronic device and medium for predicting the remaining capacity of a battery in order to overcome the defect that the method for predicting the actual remaining capacity of an individual battery cannot be adjusted in the prior art.
本公开是通过下述技术方案来解决上述技术问题:The present disclosure solves the above-mentioned technical problems through the following technical solutions:
第一方面,提供一种电池剩余容量的预测方法,所述预测方法包括以下步骤:In a first aspect, a method for predicting the remaining capacity of a battery is provided, and the method for predicting includes the following steps:
预设电池的理论剩余容量值和理论衰减值的第一对应关系;Preset the first corresponding relationship between the theoretical remaining capacity value of the battery and the theoretical attenuation value;
根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前工作阶段的理论剩余容量值;Predicting the theoretical remaining capacity value of the current working stage according to the current first corresponding relationship, the theoretical remaining capacity value of the previous working stage, and the theoretical attenuation value of the current working stage;
获取当前工作阶段的所述电池的实际剩余容量值;Obtain the actual remaining capacity value of the battery in the current working stage;
根据所述实际剩余容量值和所述理论剩余容量值的比较结果更新所述第一对应关系;updating the first corresponding relationship according to a comparison result between the actual remaining capacity value and the theoretical remaining capacity value;
基于更新后的所述第一对应关系重新预测电池的理论剩余容量值。Re-predicting the theoretical remaining capacity value of the battery based on the updated first correspondence relationship.
较佳地,所述获取当前工作阶段的所述电池的实际剩余容量值具体包括以下步骤:Preferably, the obtaining the actual remaining capacity value of the battery in the current working stage specifically includes the following steps:
根据所述电池的材料,预设所述电池的电池荷电状态与电压之间的第二对应关系;According to the material of the battery, preset a second corresponding relationship between the state of charge of the battery and the voltage of the battery;
获取所述电池的当前电压;obtaining the current voltage of the battery;
根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值;Acquiring the change value of the battery state of charge of the battery in the current working stage according to the second corresponding relationship and the change value of the battery voltage within the battery use start and end interval;
根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值。The actual remaining capacity value of the battery is obtained according to the ratio of the theoretical consumption value of the battery capacity and the change value of the battery state of charge of the battery during the battery use start and end intervals of the battery.
较佳地,所述根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值之后还包括以下步骤:Preferably, after obtaining the change value of the battery state of charge of the battery in the current working stage according to the second corresponding relationship and the change value of the battery voltage within the battery use start and end interval, the following steps are further included:
判断所述电池的电池荷电状态的变化值是否大于预设阈值;judging whether the change value of the battery state of charge of the battery is greater than a preset threshold;
若大于则继续执行所述根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值的步骤。If it is greater than that, continue to execute the step of deriving the actual remaining capacity of the battery according to the ratio between the theoretical consumption value of the battery capacity and the change value of the battery state of charge of the battery within the battery use interval.
较佳地,所述第一对应关系为修正系数k,所述修正系数k由电池当前的工作阶段的持续时间和至少一种影响参数决定;所述更新所述第一对应关系具体包括以下步骤:Preferably, the first correspondence is a correction coefficient k, and the correction coefficient k is determined by the duration of the current working phase of the battery and at least one influencing parameter; the updating of the first correspondence specifically includes the following steps :
获取电池当前工作阶段的至少一种影响参数;Obtain at least one influencing parameter of the current working stage of the battery;
基于所述影响参数和第一公式更新所述第一对应关系。The first corresponding relationship is updated based on the influencing parameter and a first formula.
较佳地,所述影响参数包括环境温度、电池温度、充电功率、放电功率。Preferably, the influencing parameters include ambient temperature, battery temperature, charging power, and discharging power.
较佳地,所述基于更新后的所述第一对应关系更新后的所述第一对应关系重新预测电池的理论剩余容量值的步骤之后还包括:Preferably, after the step of re-predicting the theoretical remaining capacity of the battery based on the updated first correspondence based on the updated first correspondence, the step further includes:
监控所述电池的工作阶段;monitoring the operating phase of said battery;
当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系预测当前工作阶段的理论剩余容量值的步骤开始下一轮的预测。When the working stage of the battery changes, return to the step of predicting the theoretical remaining capacity value of the current working stage according to the current first corresponding relationship to start the next round of prediction.
较佳地,所述工作阶段包括充电阶段、存储阶段、放电阶段。Preferably, the working phase includes a charging phase, a storage phase, and a discharging phase.
较佳地,当同时获取全部影响参数时,所述第一公式为:Preferably, when all influencing parameters are obtained at the same time, the first formula is:
其中,t0为当前工作阶段的起始时间,t1为当前工作阶段的结束时间,Pa为充电功率,Pb为放电功率;Ta为电池温度;Tb为环境温度;Among them, t 0 is the start time of the current working stage, t 1 is the end time of the current working stage, Pa is the charging power, P b is the discharging power; T a is the battery temperature; T b is the ambient temperature;
分别为对应工作阶段下的拟合函数; are the fitting functions in the corresponding working stages;
pa,pb,ta,tb为预设基准参数;p a , p b , t a , t b are preset reference parameters;
ja,jb,jc,jd为预设权重修正系数;j a , j b , j c , j d are preset weight correction coefficients;
和/或,and / or,
所述根据所述实际剩余容量值和所述理论剩余容量值的比较结果更新所述第一对应关系步骤之后还包括:After the step of updating the first correspondence according to the comparison result between the actual remaining capacity value and the theoretical remaining capacity value, the step further includes:
若所述实际剩余容量值和所述理论剩余容量值的比值未超出预设区间,则执行当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前时刻当前工作阶段的理论剩余容量值的步骤开始下一轮的预测的步骤。If the ratio of the actual remaining capacity value to the theoretical remaining capacity value does not exceed the preset interval, when the working stage of the battery changes, return to the first corresponding relationship based on the current, previous The theoretical remaining capacity value of the working stage and the theoretical decay value of the current working stage The step of predicting the theoretical remaining capacity value of the current working stage at the current moment starts the step of predicting the next round.
较佳地,所述基于更新后的所述第一对应关系更新后的所述第一对应关系重新预测电池的理论剩余容量值步骤之后还包括:Preferably, after the step of re-predicting the theoretical remaining capacity of the battery based on the updated first correspondence based on the updated first correspondence, the step further includes:
更新所述理论剩余容量值;updating the theoretical remaining capacity value;
判断电池的理论剩余容量值是否小于预设阈值;Judging whether the theoretical remaining capacity value of the battery is less than a preset threshold;
若小于则发出警示;If less than, a warning is issued;
和/或,and / or,
所述更新所述第一对应关系步骤之后还包括:After the step of updating the first correspondence, it also includes:
保存更新前的所述第一对应关系。The first corresponding relationship before updating is saved.
第二方面,提供一种电池剩余容量的预测系统,包括:In the second aspect, a prediction system for remaining battery capacity is provided, including:
预设模块,用于预设电池的理论剩余容量值和理论衰减值的第一对应关系;The preset module is used to preset the first corresponding relationship between the theoretical remaining capacity value and the theoretical attenuation value of the battery;
预测模块,用于根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前工作阶段的理论剩余容量值;A prediction module, configured to predict the theoretical remaining capacity value of the current working stage according to the current first corresponding relationship, the theoretical remaining capacity value of the previous working stage, and the theoretical attenuation value of the current working stage;
获取模块,用于获取当前工作阶段的所述电池的实际剩余容量值;An acquisition module, configured to acquire the actual remaining capacity value of the battery in the current working stage;
更新模块,用于根据所述实际剩余容量值和所述理论剩余容量值的比较结果更新所述第一对应关系;An updating module, configured to update the first corresponding relationship according to a comparison result between the actual remaining capacity value and the theoretical remaining capacity value;
所述预测模块还用于基于更新后的所述第一对应关系重新预测电池的理论剩余容量值。The prediction module is further configured to re-predict the theoretical remaining capacity value of the battery based on the updated first correspondence.
较佳地,所述获取模块包括:Preferably, the acquisition module includes:
预设单元,用于根据所述电池的材料,预设所述电池的电池荷电状态与电压之间的第二对应关系;a preset unit, configured to preset a second corresponding relationship between the battery state of charge and the voltage of the battery according to the material of the battery;
电压获取单元,用于获取所述电池的当前电压;a voltage acquisition unit, configured to acquire the current voltage of the battery;
荷电获取单元,用于根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值;The charge acquisition unit is configured to acquire the change value of the battery state of charge of the battery in the current working stage according to the second corresponding relationship and the change value of the voltage in the battery use start and end interval of the battery;
容量推算单元,用于根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值。The capacity estimation unit is used to calculate the actual remaining capacity of the battery according to the ratio between the theoretical consumption value of the battery capacity and the change value of the battery state of charge of the battery within the battery usage interval of the battery.
较佳地,所述荷电获取单元包括:Preferably, the charge acquisition unit includes:
判断子单元,用于判断所述电池的电池荷电状态的变化值是否大于预设阈值;A judging subunit, configured to judge whether the change value of the battery state of charge of the battery is greater than a preset threshold;
执行子单元,用于当所述电池的电池荷电状态的变化值大于预设阈值时继续执行所述根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值获取当前的所述电池的电压的步骤。The execution subunit is used to continue to execute the battery charge based on the theoretical consumption value of the battery capacity in the battery use start and stop interval of the battery and the battery charge of the battery when the change value of the battery state of charge of the battery is greater than a preset threshold value. The step of obtaining the current voltage of the battery is obtained from the ratio of the change value of the electric state to obtain the actual remaining capacity value of the battery.
较佳地,所述第一对应关系为修正系数k,所述修正系数k由电池当前的工作阶段的持续时间和至少一种影响参数决定;所述更新模块包括:Preferably, the first corresponding relationship is a correction coefficient k, and the correction coefficient k is determined by the duration of the current working phase of the battery and at least one influencing parameter; the update module includes:
参数获取单元,用于获取电池当前时刻当前工作阶段的至少一种影响参数;A parameter acquisition unit, configured to acquire at least one influencing parameter of the current working stage of the battery at the current moment;
更新单元,用于基于所述影响参数和第一公式更新所述第一对应关系。An updating unit, configured to update the first correspondence based on the influencing parameter and the first formula.
较佳地,所述影响参数包括环境温度、电池温度、充电功率、放电功率。Preferably, the influencing parameters include ambient temperature, battery temperature, charging power, and discharging power.
较佳地,所述预测系统还包括:Preferably, the forecasting system also includes:
监控模块,用于监控所述电池的工作阶段;a monitoring module, configured to monitor the working phase of the battery;
跳转模块,用于当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前时刻当前工作阶段的理论剩余容量值的步骤开始下一轮的预测。A jump module, configured to return to predicting the current moment based on the current first correspondence, the theoretical remaining capacity value of the previous working stage, and the theoretical attenuation value of the current working stage when the working stage of the battery changes. The next round of forecasting starts with the step of the theoretical remaining capacity value of the current working phase.
较佳地,所述工作阶段包括充电阶段、存储阶段、放电阶段。Preferably, the working phase includes a charging phase, a storage phase, and a discharging phase.
较佳地,当同时获取全部影响参数时,所述第一公式为:Preferably, when all influencing parameters are obtained at the same time, the first formula is:
其中,t0为当前工作阶段的起始时间,t1为当前工作阶段的结束时间,Pa为充电功率,Pb为放电功率;Ta为电池温度;Tb为环境温度;Among them, t 0 is the start time of the current working stage, t 1 is the end time of the current working stage, Pa is the charging power, P b is the discharging power; T a is the battery temperature; T b is the ambient temperature;
分别为对应工作阶段下的拟合函数; are the fitting functions in the corresponding working stages;
pa,pb,ta,tb为预设基准参数;p a , p b , t a , t b are preset reference parameters;
ja,jb,jc,jd为预设权重修正系数;j a , j b , j c , j d are preset weight correction coefficients;
和/或,and / or,
所述预测系统还包括:The predictive system also includes:
返回模块,用于当所述实际剩余容量值和所述理论剩余容量值的比值未超出预设区间时,执行当所述电池的工作阶段发生改变时,返回所述预测模块开始下一轮的预测的步骤。A return module, configured to return to the prediction module to start the next round when the working stage of the battery changes when the ratio of the actual remaining capacity value to the theoretical remaining capacity value does not exceed a preset interval Predicted steps.
较佳地,所述预测系统还包括:Preferably, the forecasting system also includes:
容量更新模块,用于更新所述理论剩余容量值;a capacity update module, configured to update the theoretical remaining capacity value;
判断模块,用于判断电池的理论剩余容量值是否小于预设阈值;A judging module, configured to judge whether the theoretical remaining capacity of the battery is less than a preset threshold;
警示模块,用于当电池的理论剩余容量值小于预设阈值时发出警示;A warning module, configured to send a warning when the theoretical remaining capacity of the battery is less than a preset threshold;
和/或,and / or,
所述预测系统还包括:The predictive system also includes:
保存模块,用于保存更新前的所述第一对应关系。A saving module, configured to save the first correspondence before updating.
第三方面,提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电池剩余容量的预测方法。In a third aspect, an electronic device is provided, including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the above-mentioned method for predicting the remaining battery capacity is implemented when the processor executes the computer program .
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的电池剩余容量的预测方法。In a fourth aspect, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the above method for predicting the remaining capacity of a battery is implemented.
本公开的积极进步效果在于:能够针对电池个体的实际剩余容量的预测方法进行调整,做到预测方法的自我更新迭代,使得运行过程中减少剩余容量预测不准确情形,避免因电量计算不准确导致的电量数据显示值跌落问题,提供给电池个体相对应的准确的实际剩余容量的预测结果。The positive progress effect of the present disclosure is that it can adjust the prediction method of the actual remaining capacity of the individual battery, and realize the self-updating iteration of the prediction method, so that the situation of inaccurate prediction of the remaining capacity can be reduced during the operation process, and the situation caused by inaccurate power calculation can be avoided. The power data display value drop problem provides accurate prediction results of actual remaining capacity corresponding to individual batteries.
附图说明Description of drawings
图1为本公开实施例1提供的一种电池剩余容量的预测方法的第一流程示意图。FIG. 1 is a schematic flow chart of a first method for predicting the remaining capacity of a battery provided in Embodiment 1 of the present disclosure.
图2为本公开实施例1提供的一种电池剩余寿命与单次循环容量衰减值的关系示意图。FIG. 2 is a schematic diagram of the relationship between the remaining battery life and the capacity fading value of a single cycle provided by Embodiment 1 of the present disclosure.
图3为本公开实施例1提供的一种磷酸铁锂电池容量SOC与电压的关系示意图。3 is a schematic diagram of the relationship between the capacity SOC and the voltage of a lithium iron phosphate battery provided in Example 1 of the present disclosure.
图4为本公开实施例1提供的充电阶段的四个影响参数的拟合函数示意图。FIG. 4 is a schematic diagram of fitting functions of four influencing parameters of the charging stage provided by Embodiment 1 of the present disclosure.
图5为本公开实施例1提供的放电阶段的四个影响参数的拟合函数示意图。FIG. 5 is a schematic diagram of the fitting function of the four influencing parameters of the discharge stage provided by Embodiment 1 of the present disclosure.
图6为本公开实施例1提供的存储阶段的四个影响参数的拟合函数示意图。FIG. 6 is a schematic diagram of fitting functions of four influencing parameters of the storage stage provided by Embodiment 1 of the present disclosure.
图7本公开实施例2提供的一种电池剩余容量的预测系统的模块示意图。FIG. 7 is a block diagram of a system for predicting the remaining battery capacity provided by Embodiment 2 of the present disclosure.
图8为本公开实施例3提供的一种电子设备的模块示意图。FIG. 8 is a schematic diagram of modules of an electronic device provided by Embodiment 3 of the present disclosure.
具体实施方式Detailed ways
下面通过实施例的方式进一步说明本公开,但并不因此将本公开限制在所述的实施例范围之中。The present disclosure is further illustrated below by means of examples, but the present disclosure is not limited to the scope of the examples.
实施例1Example 1
第一方面,提供一种电池剩余容量的预测方法,如图1所示,所述预测方法包括以下步骤:In a first aspect, a method for predicting the remaining capacity of a battery is provided, as shown in FIG. 1 , the method for predicting includes the following steps:
步骤101、预设电池的理论剩余容量值和理论衰减值的第一对应关系;
步骤102、根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前工作阶段的理论剩余容量值;Step 102. Predict the theoretical remaining capacity value of the current working stage according to the first corresponding relationship, the theoretical remaining capacity value of the previous working stage, and the theoretical attenuation value of the current working stage;
步骤103、获取当前工作阶段的所述电池的实际剩余容量值;Step 103, acquiring the actual remaining capacity value of the battery in the current working stage;
步骤104、根据所述实际剩余容量值和所述理论剩余容量值的比较结果更新所述第一对应关系;
步骤105、基于更新后的所述第一对应关系重新预测电池的理论剩余容量值。Step 105: Re-predict the theoretical remaining capacity value of the battery based on the updated first correspondence relationship.
在此对步骤101和步骤102进行阐述,在具体实施时,此处需要引入电池寿命的概念,单次循环消耗的电池容量值越大,电池剩余寿命越少,因而同样可以通过计算电池剩余容量值来预测电池的剩余寿命;此处通过理论衰减值C衰减计算理论剩余容量值C理论,单个工作阶段完成后,根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前工作阶段的理论剩余容量值,理论容量值的计算公式为:Cn+1=Cn-kC衰减;此处的k即第一对应关系,即后文中提及的修正系数。Step 101 and step 102 are described here. In the actual implementation, the concept of battery life needs to be introduced here. The larger the battery capacity value consumed in a single cycle, the less the remaining battery life. Therefore, the remaining battery capacity can also be calculated by value to predict the remaining life of the battery; here, the theoretical remaining capacity value C theory is calculated by the theoretical attenuation value C attenuation . After a single working stage is completed, according to the current first corresponding relationship, the theoretical remaining capacity value and The theoretical attenuation value of the current working stage predicts the theoretical remaining capacity value of the current working stage. The calculation formula of the theoretical capacity value is: C n+1 =C n -kC attenuation ; here k is the first corresponding relationship, that is, the And the correction factor.
需要注意的是通过实验可以得出关于理论衰减值和电池剩余寿命的拟合函数,理论衰减值随着电池剩余寿命的减小而增大,电池剩余寿命是根据预测时电池充满状态下可用的最大容量值和电池出厂状态下的最大容量值的比值进行推断,比值越大则说明电池剩余寿命越长,电池损耗小,电池越健康。It should be noted that the fitting function about the theoretical attenuation value and the remaining battery life can be obtained through experiments. The theoretical attenuation value increases with the decrease of the remaining battery life. The ratio between the maximum capacity value and the maximum capacity value in the factory state of the battery is inferred. The larger the ratio, the longer the remaining battery life, the smaller the battery loss, and the healthier the battery.
例如,如图2所示为实验得出的一组电池剩余寿命与单次循环容量衰减值C衰减之间的关系,每次预测当前工作阶段的理论剩余容量值之前需要获取当前工作阶段的理论衰减值。For example, as shown in Figure 2, the relationship between the remaining life of a group of batteries obtained from experiments and the decay value C of the single-cycle capacity decay is shown. Before predicting the theoretical remaining capacity value of the current working stage, it is necessary to obtain the theoretical value of the current working stage decay value.
在此对步骤104进行阐述,此处的原理在于,并不是每次实际剩余容量值和所述理论剩余容量值的比值发生变化时都要对第一对应关系进行更新,若所述实际剩余容量值和所述理论剩余容量值的比值超出预设区间,则更新所述第一对应关系,在此设定预设区间为的就是避免不必要的算法修正加大了运算量;例如,设定预设区间如下:Step 104 is described here. The principle here is that the first corresponding relationship does not have to be updated every time the ratio of the actual remaining capacity value to the theoretical remaining capacity value changes. If the actual remaining capacity Value and the ratio of the theoretical remaining capacity value exceeds the preset range, then update the first corresponding relationship, the purpose of setting the preset range here is to avoid unnecessary algorithm correction and increase the amount of calculation; for example, setting The preset intervals are as follows:
若比值落于该区间范围里,则不进行算法修正,即不更新第一对应关系,而是将最近一个工作阶段(见后文阐述)与下一工作阶段合并处理;若维持m个工作阶段里比值都落于该区间范围内,说明电池容量损耗变化可以忽略不计,直到之后某一工作阶段的该比值超出范围时,即直到C理论和C实际的误差值超过0.5%,参照下述公式关系进行计算:If the ratio falls within the range, the algorithm will not be corrected, that is, the first corresponding relationship will not be updated, but the latest working stage (described later) will be merged with the next working stage; if m working stages are maintained All ratios fall within this range, indicating that the change in battery capacity loss is negligible until the ratio exceeds the range in a certain working stage, that is, until the error between C theory and C actual exceeds 0.5%, refer to the following formula The relationship is calculated:
Cn+m=Cn-kC衰减 C n+m = C n -kC decay
在可选的一种实施方式中,步骤103具体包括以下步骤:In an optional implementation manner, step 103 specifically includes the following steps:
根据所述电池的材料,预设所述电池的电池荷电状态与电压之间的第二对应关系;According to the material of the battery, preset a second corresponding relationship between the state of charge of the battery and the voltage of the battery;
获取所述电池的当前电压;obtaining the current voltage of the battery;
根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值;Acquiring the change value of the battery state of charge of the battery in the current working stage according to the second corresponding relationship and the change value of the battery voltage within the battery use start and end interval;
根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值。The actual remaining capacity value of the battery is obtained according to the ratio of the theoretical consumption value of the battery capacity and the change value of the battery state of charge of the battery during the battery use start and end intervals of the battery.
在一个具体的例子中,本领域公知电池容量的耗能的一般公式为ΔC=ΣIUΔt;如图3所示,此坐标关系图展示的是通过实验获得的磷酸铁锂电池容量SOC(电池荷电状态)与电压的关系,即在电压处于3.65V时,当前容量为100%,电压处于约2.75V时,容量为0。但在实际中,很少遇到容量从全部充满或全部用完的情况,参考图3,我们可以通过测量电池使用起止区间内电压的变化值ΔV来推算SOC变化值ΔSOC,再结合容量的计量值ΔC=ΣIUΔt来计算电池的实际容量,实际容量为以下公式:In a specific example, the general formula of the energy consumption of battery capacity known in the art is ΔC=ΣIUΔt; state) and the voltage, that is, when the voltage is 3.65V, the current capacity is 100%, and when the voltage is about 2.75V, the capacity is 0. But in practice, it is rare to encounter the situation that the capacity is fully charged or completely used up. Referring to Figure 3, we can calculate the SOC change value ΔSOC by measuring the voltage change value ΔV between the start and end of battery use, and then combine the measurement of capacity Value ΔC=ΣIUΔt to calculate the actual capacity of the battery, the actual capacity is the following formula:
在可选的一种实施方式中,所述根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值之后还包括以下步骤:In an optional implementation manner, after the change value of the battery state of charge of the battery in the current working stage is obtained according to the second corresponding relationship and the change value of the voltage of the battery in the battery use start and end interval, Also includes the following steps:
判断所述电池的电池荷电状态的变化值是否大于预设阈值;judging whether the change value of the battery state of charge of the battery is greater than a preset threshold;
若大于则继续执行所述根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值的步骤。If it is greater than that, continue to execute the step of deriving the actual remaining capacity of the battery according to the ratio of the theoretical consumption value of the battery capacity and the change value of the battery state of charge of the battery within the battery use start and end interval.
结合上述的例子,此处引入预设阈值的原理在于结合图3可观察到,数值变化区间越大,计算结果越精确,因此,在ΔSOC达到预设阈值后,如设定ΔSOC≥20%,再进行容量校准计算更为合理。Combining the above example, the principle of introducing the preset threshold here is that it can be observed in conjunction with Figure 3 that the larger the range of numerical changes, the more accurate the calculation result. Therefore, after ΔSOC reaches the preset threshold, if ΔSOC≥20%, It is more reasonable to perform volume calibration calculations.
在可选的一种实施方式中,所述第一对应关系为修正系数k,所述修正系数k由电池当前的工作阶段的持续时间和至少一种影响参数决定;所述步骤104具体包括以下步骤:In an optional implementation manner, the first corresponding relationship is a correction coefficient k, and the correction coefficient k is determined by the duration of the current working phase of the battery and at least one influencing parameter; the
获取电池当前工作阶段的至少一种影响参数;Obtain at least one influencing parameter of the current working stage of the battery;
基于所述影响参数和第一公式更新所述第一对应关系。The first corresponding relationship is updated based on the influencing parameter and a first formula.
在可选的一种实施方式中,所述影响参数包括环境温度、电池温度、充电功率、放电功率。In an optional implementation manner, the influencing parameters include ambient temperature, battery temperature, charging power, and discharging power.
在可选的一种实施方式中,所述步骤105之后还包括:In an optional implementation manner, after the
监控所述电池的工作阶段;monitoring the operating phase of said battery;
当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系预测当前工作阶段的理论剩余容量值的步骤开始下一轮的预测。When the working stage of the battery changes, return to the step of predicting the theoretical remaining capacity value of the current working stage according to the current first corresponding relationship to start the next round of prediction.
在可选的一种实施方式中,所述工作阶段包括充电阶段、存储阶段、放电阶段。In an optional implementation manner, the working phase includes a charging phase, a storage phase, and a discharging phase.
此处监控电池的工作阶段的原理在于,在不同的工作阶段下的工况数据是不同的,因而对应的拟合函数(即后文公式中的)是不同的,如图4、图5、图6所示,通过实验,可以提前获得上述四个影响参数分别在三种不同工作状态下的拟合函数,需要注意的是图4、图5和图6中的t1、t2、t3仅起区分作用,三者含义皆为所述当前工作状态的结束时间;当工作阶段改变时,例如从充电阶段变为放电阶段时,就需要选择放电阶段相对应的拟合函数代入算法公式(例如后文的第一公式)进行新一轮的剩余容量的预测。The principle of monitoring the working stage of the battery here is that the working condition data in different working stages are different, so the corresponding fitting function (that is, the ) are different, as shown in Figure 4, Figure 5, and Figure 6. Through experiments, the fitting functions of the above four influencing parameters under three different working conditions can be obtained in advance. It should be noted that Figure 4, Figure 5 and t 1 , t 2 , and t 3 in Fig. 6 are only used to distinguish, and the meanings of all three are the end time of the current working state; when the working stage changes, for example, from the charging stage to the discharging stage, it is necessary to A fitting function corresponding to the discharge stage is selected and substituted into an algorithm formula (such as the first formula below) to predict the remaining capacity of a new round.
在可选的一种实施方式中,当同时获取全部影响参数时,所述第一公式为:In an optional implementation manner, when all influencing parameters are acquired at the same time, the first formula is:
其中,t0为当前工作阶段的起始时间,t1为当前工作阶段的结束时间,Pa为充电功率,Pb为放电功率;Ta为电池温度;Tb为环境温度;Among them, t 0 is the start time of the current working stage, t 1 is the end time of the current working stage, Pa is the charging power, P b is the discharging power; T a is the battery temperature; T b is the ambient temperature;
分别为对应工作阶段下的拟合函数; are the fitting functions in the corresponding working stages;
pa,pb,ta,tb为预设基准参数;p a , p b , t a , t b are preset reference parameters;
ja,jb,jc,jd为预设权重修正系数;j a , j b , j c , j d are preset weight correction coefficients;
需要注明的是,上述算法公式只是针对此处列举的最常见的四个影响参数都考虑在内的情形,在实际应用中,可以根据个人的需求设计算法,影响参数可以大于四个,或,小于四个;基于影响参数的数量对应的更改上述算法,例如在一个具体的例子中,只涉及Pa(充电功率)、Pb(放电功率)、Ta(电池温度)这三个影响参数,此时算法公式调整为(其中的参数含义和第一公式中的相同,此处仅用以举例说明):It should be noted that the above algorithm formula is only for the case where the four most common influencing parameters listed here are considered. In practical applications, the algorithm can be designed according to individual needs, and the influencing parameters can be greater than four, or , less than four; change the above algorithm based on the number of influencing parameters, for example, in a specific example, only three influences of P a (charging power), P b (discharging power), and T a (battery temperature) are involved parameters, at this time the algorithm formula is adjusted to (the meaning of the parameters is the same as that in the first formula, which is only used as an example here):
在可选的一种实施方式中,所述步骤104之后还包括:In an optional implementation manner, after the
若所述实际剩余容量值和所述理论剩余容量值的比值未超出预设区间,则执行当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前时刻当前工作阶段的理论剩余容量值的步骤开始下一轮的预测的步骤。If the ratio of the actual remaining capacity value to the theoretical remaining capacity value does not exceed the preset interval, when the working stage of the battery changes, return to the first corresponding relationship based on the current, previous The theoretical remaining capacity value of the working stage and the theoretical decay value of the current working stage The step of predicting the theoretical remaining capacity value of the current working stage at the current moment starts the step of predicting the next round.
在可选的一种实施方式中,所述步骤105之后还包括:In an optional implementation manner, after the
更新所述理论剩余容量值;updating the theoretical remaining capacity value;
判断电池的理论剩余容量值是否小于预设阈值;Judging whether the theoretical remaining capacity value of the battery is less than a preset threshold;
若小于则发出警示;If less than, a warning is issued;
在具体实施时,由于电池损耗到一定阶段会导致计算曲线发生不可估量的变化,因此通常对电池的理论剩余容量值进行阈值的判断。此外,还可以更直观的通过理论剩余容量值的计算方程算出充满电状态下此时电池的最大可用容量,如果此时电池的最大可用容量和电池出厂状态下的最大容量值的比值低于预设阈值,例如80%,此时就发出警示告知用户需要更换新的电池,原电池寿命即为0,为了用户体验,并不会设定当比值为0%时才算电池寿命为0。In actual implementation, since the calculation curve will change immeasurably when the battery is depleted to a certain stage, the theoretical remaining capacity value of the battery is usually judged on the threshold. In addition, the maximum available capacity of the battery at this time in the fully charged state can be calculated more intuitively through the calculation equation of the theoretical remaining capacity value. Set a threshold, such as 80%, at this time, a warning will be issued to inform the user that a new battery needs to be replaced, and the life of the original battery is 0. For the user experience, it is not set that the battery life is 0 when the ratio is 0%.
在可选的一种实施方式中,所述步骤104之后还包括:In an optional implementation manner, after the
保存更新前的所述第一对应关系。The first corresponding relationship before updating is saved.
在具体实施时,在原先的算法优化后,在用户侧对优化后的工况会继续进行计算和预测,原先的计算数据不会更新覆盖。原先的计算数据留存以供上传至后台,便于用户或设计者分析算法的准确度和算法自我优化的过程,同时用户或设计者在控制侧后台不断优化补偿算法的精确度,定期对整套预测方法进行维护更新。In the specific implementation, after the original algorithm is optimized, the optimized working conditions will continue to be calculated and predicted on the user side, and the original calculation data will not be updated and covered. The original calculation data is saved for uploading to the background, which is convenient for users or designers to analyze the accuracy of the algorithm and the self-optimization process of the algorithm. At the same time, the user or designer continuously optimizes the accuracy of the compensation algorithm in the control side background, and regularly checks the entire set of prediction methods. Perform maintenance updates.
在上述内容之外,在实际应用中,往往电池不会以个体出现,多个模组BMS组合出现的情形比较常见,由于本公开是可以针对每一个单独电池进行预测方法的更新迭代,所以一旦监控对象数量较大时,对算力的要求也会提高,基于此本公开还考虑到整套预测方法算法的存储位置对于算力的要求会有不同影响,如果该算法设计在本地,后台完成优化过程,通信频率较低,算力要求较高;如果算法设计和优化过程都在后台进行,则通信频率较高,本地算力要求较低;针对不同的场景可以按需选择上述设计。In addition to the above content, in practical applications, often the battery does not appear as an individual, and the combination of multiple module BMSs is more common. Since this disclosure can update and iterate the prediction method for each individual battery, once When the number of monitored objects is large, the requirements for computing power will also increase. Based on this, this disclosure also considers that the storage location of the entire set of prediction method algorithms will have different impacts on the computing power requirements. If the algorithm is designed locally, the optimization will be completed in the background In the process, the communication frequency is low and the computing power requirement is high; if the algorithm design and optimization process are carried out in the background, the communication frequency is high and the local computing power requirement is low; the above design can be selected according to different scenarios.
本实施例中,通过针对一个电池的不同的工作阶段下不同工况的采集,设计一套能够完成自我更新迭代的电池剩余容量的预测方法,使得运行过程中减少剩余容量预测不准确情形,避免因电量计算不准确导致的电量数据显示值跌落问题,提供给电池个体相对应的准确的实际剩余容量的预测结果。In this embodiment, through the collection of different working conditions in different working stages of a battery, a set of battery remaining capacity prediction methods that can complete self-renewal iterations are designed, so that the inaccurate prediction of remaining capacity can be reduced during operation and avoid The power data display value drop problem caused by inaccurate power calculation provides accurate prediction results of the actual remaining capacity corresponding to the individual battery.
实施例2Example 2
本实施例提供一种电池剩余容量的预测系统10,所述预测系统10实现实施例1中的预测方法,如图7所示,包括:This embodiment provides a
预设模块11,用于预设电池的理论剩余容量值和理论衰减值的第一对应关系;The
预测模块12,用于根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前工作阶段的理论剩余容量值;A
获取模块13,用于获取当前工作阶段的所述电池的实际剩余容量值;An acquisition module 13, configured to acquire the actual remaining capacity value of the battery in the current working stage;
更新模块14,用于根据所述实际剩余容量值和所述理论剩余容量值的比较结果更新所述第一对应关系;An update module 14, configured to update the first corresponding relationship according to a comparison result between the actual remaining capacity value and the theoretical remaining capacity value;
所述预测模块12还用于基于更新后的所述第一对应关系重新预测电池的理论剩余容量值。The
在可选的一种实施方式中,所述获取模块13包括以下:In an optional implementation manner, the acquisition module 13 includes the following:
预设单元131,用于根据所述电池的材料,预设所述电池的电池荷电状态与电压之间的第二对应关系;The
电压获取单元132,用于获取所述电池的当前电压;a
荷电获取单元133,用于根据所述第二对应关系和所述电池的电池使用起止区间内电压的变化值获取当前工作阶段的所述电池的电池荷电状态的变化值;The
容量推算单元134,用于根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值。The
在可选的一种实施方式中,所述荷电获取单元133包括以下:In an optional implementation manner, the
判断子单元1331,用于判断所述电池的电池荷电状态的变化值是否大于预设阈值;A judging
执行子单元1332,用于当所述电池的电池荷电状态的变化值大于预设阈值时继续执行所述根据所述电池的电池使用起止区间内电池容量的理论消耗值和所述电池的电池荷电状态的变化值的比值得出所述电池的实际剩余容量值获取当前的所述电池的电压的步骤。Executing
在可选的一种实施方式中,所述第一对应关系为修正系数k,所述修正系数k由电池当前的工作阶段的持续时间和至少一种影响参数决定;所述更新模块14包括以下:In an optional implementation manner, the first corresponding relationship is a correction coefficient k, and the correction coefficient k is determined by the duration of the current working phase of the battery and at least one influencing parameter; the update module 14 includes the following :
参数获取单元141,用于获取电池当前时刻当前工作阶段的至少一种影响参数;A
更新单元142,用于基于所述影响参数和第一公式更新所述第一对应关系。An updating
在可选的一种实施方式中,所述影响参数包括环境温度、电池温度、充电功率、放电功率。In an optional implementation manner, the influencing parameters include ambient temperature, battery temperature, charging power, and discharging power.
在可选的一种实施方式中,所述预测系统10还包括:In an optional embodiment, the
监控模块15,用于监控所述电池的工作阶段;A
跳转模块16,用于当所述电池的工作阶段发生改变时,返回所述根据当前的所述第一对应关系、上一工作阶段的理论剩余容量值和当前工作阶段的理论衰减值预测当前时刻当前工作阶段的理论剩余容量值的步骤开始下一轮的预测。The
在可选的一种实施方式中,所述工作阶段包括充电阶段、存储阶段、放电阶段。In an optional implementation manner, the working phase includes a charging phase, a storage phase, and a discharging phase.
在可选的一种实施方式中,当同时获取全部影响参数时,所述第一公式为:In an optional implementation manner, when all influencing parameters are acquired at the same time, the first formula is:
其中,t0为当前工作阶段的起始时间,t1为当前工作阶段的结束时间,Pa为充电功率,Pb为放电功率;Ta为电池温度;Tb为环境温度;Among them, t 0 is the start time of the current working stage, t 1 is the end time of the current working stage, Pa is the charging power, P b is the discharging power; T a is the battery temperature; T b is the ambient temperature;
分别为对应工作阶段下的拟合函数; are the fitting functions in the corresponding working stages;
pa,pb,ta,tb为预设基准参数;p a , p b , t a , t b are preset reference parameters;
ja,jb,jc,jd为预设权重修正系数;j a , j b , j c , j d are preset weight correction coefficients;
在可选的一种实施方式中,所述预测系统10还包括:In an optional embodiment, the
返回模块17,用于当所述实际剩余容量值和所述理论剩余容量值的比值未超出预设区间时,执行当所述电池的工作阶段发生改变时,返回所述预测模块12开始下一轮的预测的步骤。return module 17, used to return to the
在可选的一种实施方式中,所述预测系统10还包括:In an optional embodiment, the
容量更新模块18,用于更新所述理论剩余容量值;A capacity update module 18, configured to update the theoretical remaining capacity value;
判断模块19,用于判断电池的理论剩余容量值是否小于预设阈值;Judging
警示模块20,用于当电池的理论剩余容量值小于预设阈值时发出警示;A
在可选的一种实施方式中,所述预测系统10还包括:In an optional embodiment, the
保存模块21,用于保存更新前的所述第一对应关系。The saving
本实施例中,提供一种预测系统,该系统通过针对一个电池的不同的工作阶段下不同工况的采集,设计一套能够完成自我更新迭代的电池剩余容量的预测方法,使得运行过程中减少剩余容量预测不准确情形,避免因电量计算不准确导致的电量数据显示值跌落问题,提供给电池个体相对应的准确的实际剩余容量的预测结果。In this embodiment, a prediction system is provided. The system designs a set of prediction methods for the remaining capacity of the battery that can complete self-renewal iterations through the collection of different working conditions in different working stages of a battery, so that the reduction in the operating process is reduced. In the case of inaccurate prediction of remaining capacity, it avoids the problem of power data display value drop caused by inaccurate power calculation, and provides accurate prediction results of actual remaining capacity corresponding to individual batteries.
实施例3Example 3
本实施例提供一种电子设备,图8为本实施例提供的一种电子设备的结构示意图,该电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例1中的电池剩余容量的预测方法。图8显示的电子设备80仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。如图8所示,电子设备80可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备80的组件可以包括但不限于:上述至少一个处理器81、上述至少一个存储器82、连接不同系统组件(包括存储器82和处理器81)的总线83。This embodiment provides an electronic device. FIG. 8 is a schematic structural diagram of an electronic device provided by this embodiment. The electronic device includes a memory, a processor, and a computer program stored in the memory and operable on the processor. When the computer executes the computer program, the method for predicting the remaining capacity of the battery in Embodiment 1 above is realized. The
总线83包括数据总线、地址总线和控制总线。The
存储器82可以包括易失性存储器,例如随机存取存储器(RAM)821和/或高速缓存存储器822,还可以进一步包括只读存储器(ROM)823。The
存储器82还可以包括具有一组(至少一个)程序模块824的程序工具825(或实用工具),这样的程序模块824包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器81通过运行存储在存储器82中的计算机程序,从而执行各种功能应用以及数据处理,例如上述实施例1中的电池剩余容量的预测方法。The
电子设备80也可以与一个或多个外部设备84通信。这种通信可以通过输入/输出(I/O)接口85进行。并且,模型生成的电子设备80还可以通过网络适配器86与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图8所示,网络适配器86通过总线83与电子设备80的其它模块通信。应当明白,尽管图8中未示出,可以结合电子设备80使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。It should be noted that although several units/modules or subunits/modules of an electronic device are mentioned in the above detailed description, such division is only exemplary and not mandatory. Actually, according to the embodiments of the present disclosure, the features and functions of two or more units/modules described above may be embodied in one unit/module. Conversely, the features and functions of one unit/module described above can be further divided to be embodied by a plurality of units/modules.
实施例4Example 4
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例1中的电池剩余容量的预测方法。This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for predicting the remaining capacity of the battery in Embodiment 1 above is implemented.
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。Wherein, the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read-only memory, erasable programmable read-only memory, optical storage device, magnetic storage device or any of the above-mentioned the right combination.
在可能的实施方式中,本公开还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现上述实施例1中的电池剩余容量的预测方法的步骤。In a possible implementation manner, the present disclosure can also be implemented in the form of a program product, which includes program code. When the program product runs on the terminal device, the program code is used to make the terminal device execute the implementation of the above-mentioned embodiment 1. The steps of the method for predicting the remaining capacity of the battery.
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。Wherein, the program code for executing the present disclosure may be written in any combination of one or more programming languages, and the program code may be completely executed on the user equipment, partially executed on the user equipment, or used as an independent software Package execution, partly on the user device and partly on the remote device, or entirely on the remote device.
虽然以上描述了本公开的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本公开的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本公开的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本公开的保护范围。Although the specific implementations of the present disclosure have been described above, those skilled in the art should understand that this is only an example, and the protection scope of the present disclosure is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present disclosure, but these changes and modifications all fall within the protection scope of the present disclosure.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211144216.6A CN115389938A (en) | 2022-09-20 | 2022-09-20 | Method, system, electronic device and medium for predicting battery remaining capacity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211144216.6A CN115389938A (en) | 2022-09-20 | 2022-09-20 | Method, system, electronic device and medium for predicting battery remaining capacity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115389938A true CN115389938A (en) | 2022-11-25 |
Family
ID=84126150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211144216.6A Pending CN115389938A (en) | 2022-09-20 | 2022-09-20 | Method, system, electronic device and medium for predicting battery remaining capacity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115389938A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471328A (en) * | 2023-12-27 | 2024-01-30 | 高新兴科技集团股份有限公司 | Method, system and terminal equipment for determining capacity of lead-acid battery |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053925A (en) * | 2001-12-24 | 2003-07-02 | 에스케이텔레텍주식회사 | Method for Detecting and Correcting Error on Remaining Capacity Data of Battery for Mobile Communication Device |
US20080243405A1 (en) * | 2007-03-29 | 2008-10-02 | The Furukawa Electric Co., Ltd | Method and device for estimating battery residual capacity, and battery power supply system |
KR101145993B1 (en) * | 2010-12-08 | 2012-05-15 | 한국항공우주연구원 | Prediction method of soc for battery |
EP2775313A1 (en) * | 2013-03-06 | 2014-09-10 | IFP Energies nouvelles | Method of determining the residual capacity of a battery |
CN107436418A (en) * | 2017-06-15 | 2017-12-05 | 捷开通讯(深圳)有限公司 | Method, terminal and the device of calibration battery electricity decay |
CN110488198A (en) * | 2019-09-26 | 2019-11-22 | 广州小鹏汽车科技有限公司 | Evaluation method, device and the vehicle of battery remaining power |
JP2020092593A (en) * | 2018-12-06 | 2020-06-11 | 新盛力科技股▲ふん▼有限公司 | Method of predicting charging state of battery |
CN111929596A (en) * | 2020-07-31 | 2020-11-13 | 蜂巢能源科技有限公司 | Method and device for acquiring battery capacity, storage medium and electronic equipment |
CN113484763A (en) * | 2021-07-23 | 2021-10-08 | 江苏小牛电动科技有限公司 | Method, device, equipment and storage medium for determining residual electric quantity of battery |
CN113608128A (en) * | 2021-06-30 | 2021-11-05 | 博科能源系统(深圳)有限公司 | State of charge estimation method, computer device and computer storage medium |
CN114545241A (en) * | 2022-01-27 | 2022-05-27 | 惠州市蓝微电子有限公司 | Freezing capacity-based SOC estimation method and electronic equipment |
-
2022
- 2022-09-20 CN CN202211144216.6A patent/CN115389938A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053925A (en) * | 2001-12-24 | 2003-07-02 | 에스케이텔레텍주식회사 | Method for Detecting and Correcting Error on Remaining Capacity Data of Battery for Mobile Communication Device |
US20080243405A1 (en) * | 2007-03-29 | 2008-10-02 | The Furukawa Electric Co., Ltd | Method and device for estimating battery residual capacity, and battery power supply system |
KR101145993B1 (en) * | 2010-12-08 | 2012-05-15 | 한국항공우주연구원 | Prediction method of soc for battery |
EP2775313A1 (en) * | 2013-03-06 | 2014-09-10 | IFP Energies nouvelles | Method of determining the residual capacity of a battery |
CN107436418A (en) * | 2017-06-15 | 2017-12-05 | 捷开通讯(深圳)有限公司 | Method, terminal and the device of calibration battery electricity decay |
JP2020092593A (en) * | 2018-12-06 | 2020-06-11 | 新盛力科技股▲ふん▼有限公司 | Method of predicting charging state of battery |
CN110488198A (en) * | 2019-09-26 | 2019-11-22 | 广州小鹏汽车科技有限公司 | Evaluation method, device and the vehicle of battery remaining power |
CN111929596A (en) * | 2020-07-31 | 2020-11-13 | 蜂巢能源科技有限公司 | Method and device for acquiring battery capacity, storage medium and electronic equipment |
CN113608128A (en) * | 2021-06-30 | 2021-11-05 | 博科能源系统(深圳)有限公司 | State of charge estimation method, computer device and computer storage medium |
CN113484763A (en) * | 2021-07-23 | 2021-10-08 | 江苏小牛电动科技有限公司 | Method, device, equipment and storage medium for determining residual electric quantity of battery |
CN114545241A (en) * | 2022-01-27 | 2022-05-27 | 惠州市蓝微电子有限公司 | Freezing capacity-based SOC estimation method and electronic equipment |
Non-Patent Citations (1)
Title |
---|
李练兵;杜仲刚;梁浩;: "锂离子电池组可用剩余容量的估算方法", 电源技术, no. 12, 20 December 2011 (2011-12-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471328A (en) * | 2023-12-27 | 2024-01-30 | 高新兴科技集团股份有限公司 | Method, system and terminal equipment for determining capacity of lead-acid battery |
CN117471328B (en) * | 2023-12-27 | 2024-04-12 | 高新兴科技集团股份有限公司 | Method, system and terminal equipment for determining capacity of lead-acid battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103038657B (en) | Monitor the rechargeable battery with many kinds of parameters renewal rate | |
US20160003918A1 (en) | Monitoring apparatus, control apparatus, and control system | |
CN111781507B (en) | SOC value display method and device and energy storage system | |
WO2023184824A1 (en) | Method and system for estimating state of charge of battery cluster, electronic device, and storage medium | |
CN115940224B (en) | Charging and discharging control method, device and equipment of energy storage system and medium | |
CN114371408B (en) | Method for estimating state of charge of battery, method and device for extracting charging curve | |
WO2021186512A1 (en) | Information processing device, information processing method, computer program and information processing system | |
CN104950260A (en) | Model-independent battery life and performance forecaster | |
JP2022041931A (en) | Method and apparatus for battery state estimation | |
CN110133515B (en) | Method and device for determining remaining energy of battery | |
CN113190693A (en) | Data processing method and device of energy storage system, electronic equipment and storage medium | |
CN117249918A (en) | Temperature sensor failure early warning method, device, medium and equipment | |
CN117895611A (en) | Battery balancing control method and system based on fuzzy predictive control algorithm | |
CN112034353B (en) | Battery life prediction method and system | |
US11733304B2 (en) | Determination apparatus | |
CN115389938A (en) | Method, system, electronic device and medium for predicting battery remaining capacity | |
CN118759369A (en) | Battery SOC estimation method and device based on extended Kalman filter and multi-parameter fusion | |
CN118226262A (en) | Battery state of charge estimation method and device, energy storage power station and storage medium | |
CN117335515A (en) | Battery pack parallel operation control method, system, electronic equipment and storage medium | |
CN116299116A (en) | OCV-SOC calibration method of energy storage system and electronic equipment | |
CN115877247A (en) | SOH value estimation method for battery pack, battery management system, and storage medium | |
CN115993534A (en) | SOC estimation method, device and equipment of battery system | |
WO2025056084A1 (en) | Method for dynamically correcting state of charge, apparatus, and electronic device | |
KR20230075033A (en) | Electronic device for estimating battery state and method for operating method thereof | |
WO2021089057A1 (en) | Method, system and device for acquiring battery health, and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |