CN115389826A - Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method - Google Patents
Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method Download PDFInfo
- Publication number
- CN115389826A CN115389826A CN202211032194.4A CN202211032194A CN115389826A CN 115389826 A CN115389826 A CN 115389826A CN 202211032194 A CN202211032194 A CN 202211032194A CN 115389826 A CN115389826 A CN 115389826A
- Authority
- CN
- China
- Prior art keywords
- transformer
- voltage side
- low
- waveform
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/20—Measuring number of turns; Measuring transformation ratio or coupling factor of windings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/02—Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
技术领域technical field
本发明涉及互感器检测的技术领域,尤其是涉及一种人体安全的低压直流阶跃冲击式互感器变比检测方法。The invention relates to the technical field of transformer detection, in particular to a human-safe low-voltage DC step-impact transformer transformation ratio detection method.
背景技术Background technique
变电站工程现场中,互感器的变比检测是一项基础而重要的工作,直接关系二次装置能否正确运行,现阶段由于互感器一次侧存在串并联的问题、二次侧存在抽头的问题,互感器变比尤其是电流互感器的变比并不唯一,在设备验收中互感器所采用的变比需现场检测。In the substation engineering site, the transformer ratio detection is a basic and important work, which is directly related to the correct operation of the secondary device. At this stage, due to the problem of series and parallel connection on the primary side of the transformer and the tap problem on the secondary side , the transformation ratio of transformers, especially the transformation ratio of current transformers, is not unique, and the transformation ratio used by transformers needs to be tested on site during equipment acceptance.
现阶段,互感器变比检测采用通入大电压或者大电流的方式实际检测,而电压或电流往往需借助升压装置或者大电流发生器,人身风险高、设备昂贵、重量大、易损坏。为了克服互感器的变比检测人身风险高、设备昂贵、重量大、易损坏的现场问题,基于此本专利提出了一种人体安全的低压直流阶跃冲击式互感器变比检测方法。At this stage, the detection of the transformation ratio of the transformer is actually detected by feeding a large voltage or a large current, and the voltage or current often needs to be boosted by a booster device or a large current generator, which has high personal risks, expensive equipment, heavy weight, and is easily damaged. In order to overcome the on-site problems of high personal risk, expensive equipment, heavy weight, and easy damage in transformer ratio detection, this patent proposes a human-safe low-voltage DC step-impact transformer ratio detection method.
发明内容Contents of the invention
本发明提供了一种人体安全的低压直流阶跃冲击式互感器变比检测方法,解决了操作人员在现有的互感器变比检测中人身风险高、设备昂贵、重量大、易损坏的现场问题。The invention provides a human-safe low-voltage DC step-impact transformer transformation ratio detection method, which solves the problems of high personal risk, expensive equipment, heavy weight and easy damage to operators in the existing transformation ratio detection of transformers. question.
本发明解决其技术问题是采取以下技术方案实现的:The present invention solves its technical problem and realizes by taking the following technical solutions:
一种人体安全的低压直流阶跃冲击式互感器变比检测方法,具体步骤如下:A method for detecting the transformation ratio of a low-voltage DC step-impact transformer that is safe for human body, the specific steps are as follows:
步骤1、基于互感器RLC无源网络的相关参数和传递函数,获取互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系;Step 1. Based on the relevant parameters and the transfer function of the RLC passive network of the transformer, the relationship between the waveform parameters converted to the high-voltage side under the unit step pulse shock excitation of the transformer and the relevant parameters of the RLC passive network of the transformer is obtained;
步骤2、基于互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系,获取互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系;Step 2. Based on the relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the relevant parameters of the RLC passive network of the transformer, obtain the waveform converted to the high voltage side under the unit step pulse impulse excitation of the transformer Mathematical relationship between parameters;
步骤3、基于获取互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系,获取互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系;Step 3. Based on obtaining the mathematical relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer, obtain the unconverted waveform parameters of the low voltage side under the unit step pulse impulse excitation of the transformer. The mathematical relationship between ;
步骤4、基于获取的互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系,获取互感器的变比值;Step 4. Based on the obtained mathematical relationship between the unconverted waveform parameters on the low-voltage side under the excitation of the unit step pulse shock of the transformer, the transformation ratio value of the transformer is obtained;
步骤5、基于互感器二次侧输出衰减的震荡波形,获取互感器二次侧输出波形实测参数;Step 5, based on the attenuated oscillation waveform of the secondary side output of the transformer, the measured parameters of the output waveform of the secondary side of the transformer are obtained;
步骤6、获取互感器二次侧绕组线圈及其外部导线的直阻总和的实测值Rl';Step 6. Obtain the measured value R l ' of the sum of the direct resistance of the secondary side winding coil of the transformer and its external wires;
步骤7、通过对互感器二次侧制作预制导线,获取互感器二次侧固定电容C2';Step 7. Obtain the fixed capacitance C 2 ' on the secondary side of the transformer by making prefabricated wires on the secondary side of the transformer;
步骤8、利用获取的互感器二次侧输出波形实测参数、互感器二次侧绕组线圈及其外部导线的直阻总和的实测值Rl'和互感器二次侧固定电容C2',获取互感器的变比推算值;Step 8. Using the obtained measured parameters of the output waveform of the secondary side of the transformer, the measured value R l ' of the sum of the direct resistance of the secondary winding coil of the transformer and its external wires, and the fixed capacitance C 2 ' of the secondary side of the transformer, obtain Transformation ratio estimated value of transformer;
优选地,所述步骤1中基于互感器RLC无源网络的相关参数包括高压侧电感Lh、高压侧电阻Rh、低压侧折算后的电感Ll、低压侧折算后的电阻Rl、励磁电抗Mm、励磁电阻Rm、表一次侧导线电容C1、二次侧导线电容C2、一次侧所加实验电压ui和二次侧输出电压u0;Preferably, the relevant parameters based on the transformer RLC passive network in step 1 include high-voltage side inductance L h , high-voltage side resistance R h , low-voltage side converted inductance L l , low-voltage side converted resistance R l , excitation Reactance M m , excitation resistance R m , primary side wire capacitance C 1 , secondary side wire capacitance C 2 , primary side applied experimental voltage ui and secondary side output voltage u0;
利用上述获取的互感器RLC无源网络相关参数获取互感器RLC无源网络的传递函数,具体为:The transfer function of the RLC passive network of the transformer is obtained by using the relevant parameters of the RLC passive network of the transformer obtained above, specifically:
获取互感器RLC无源网络对应支路的复数阻抗Z1、Z2和Z3,具体公式如下:Obtain the complex impedance Z 1 , Z 2 and Z 3 of the branch corresponding to the RLC passive network of the transformer, the specific formula is as follows:
Z2=(Lh+Ll)s+Rh+Rl;Z 2 =(L h +L l )s+R h +R l ;
式中:In the formula:
s表示复频率,s represents the complex frequency,
Z1、Z2、Z3分别表示对应支路的复数阻抗;Z 1 , Z 2 , and Z 3 respectively represent the complex impedance of the corresponding branch;
利用获取互感器RLC无源网络对应支路的复数阻抗Z1、Z2和Z3可得出关系式为:By obtaining the complex impedances Z 1 , Z 2 and Z 3 of the corresponding branches of the transformer RLC passive network, the relationship can be obtained as follows:
优选地,所述步骤1中获取互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系包括,Preferably, in the step 1, the relationship between the waveform parameters converted to the high-voltage side and the relevant parameters of the RLC passive network of the transformer under the unit step pulse shock excitation of the transformer is obtained, including:
对互感器输入波形为单位阶跃脉冲,即形式满足ui(t)=u(t),其中 The input waveform of the transformer is a unit step pulse, that is, the form satisfies u i (t)=u(t), where
根据拉普拉斯变换公式可得具体公式如下:According to the Laplace transform formula The specific formula can be obtained as follows:
根据拉氏变换对照表,上述公式形式满足关系式 According to the Laplace transform comparison table, the above formula satisfies the relation
式中:In the formula:
阻尼比 Damping ratio
固有频率 Natural frequency
根据拉氏变换对照表,在形式满足上述关系式下,可得进行拉氏反变换的时域表达式为:According to the Laplace transform comparison table, the above relation is satisfied in the form Under the following conditions, the time-domain expression for inverse Laplace transform can be obtained as:
式中:In the formula:
得到互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系式如下:The relationship between the waveform parameters converted to the high-voltage side and the relevant parameters of the RLC passive network of the transformer under the unit step pulse impulse excitation of the transformer is obtained as follows:
利用上述互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系式,可得到互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数,具体包括振幅A、角速度ω和衰减时间常数τ,具体公式如下:Using the relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the relevant parameters of the RLC passive network of the transformer, the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer can be obtained , including amplitude A, angular velocity ω and decay time constant τ, the specific formula is as follows:
优选地,所述步骤2中互感器RLC无源网络相关参数包括高压侧电阻Rh、低压侧折算后的电阻Rl和二次侧导线电容C2;Preferably, in the step 2, the parameters related to the passive network of the transformer RLC include the high-voltage side resistance R h , the converted resistance R 1 of the low-voltage side, and the secondary-side wire capacitance C 2 ;
所述基于获取的互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数包括互感器折算到高压侧的输出波形的振幅A、角速度ω、衰减时间常数τ,The waveform parameters converted to the high-voltage side based on the obtained transformer unit step pulse shock excitation include the amplitude A, angular velocity ω, and decay time constant τ of the output waveform of the transformer converted to the high-voltage side,
利用互感器折算到高压侧的输出波形的振幅A、角速度ω、衰减时间常数τ、高压侧电阻Rh、低压侧折算后的电阻Rl和二次侧导线电容C2,可得互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系式如下:Using the amplitude A, angular velocity ω, decay time constant τ, high-voltage side resistance R h , low-voltage side converted resistance R l and secondary-side wire capacitance C 2 of the output waveform converted from the transformer to the high-voltage side, the transformer unit can be obtained The mathematical relationship between the waveform parameters converted to the high-voltage side is deduced under step pulse shock excitation as follows:
利用互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系式,The mathematical relationship between the waveform parameters converted to the high-voltage side is deduced by using the unit step pulse impulse excitation of the transformer,
由于Rh<Rl';得到Rh<<N2Rl'=Rl,进而推得Rh+Rl≈Rl,得到关系式如下:Since R h <R l '; get R h <<N 2 R l '=R l , and then deduce that R h +R l ≈R l , the relationship is as follows:
根据如上关系式,可推导出关系式如下:According to the above relationship, the relationship can be deduced as follows:
优选地,所述步骤3中获取互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系包括利用互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器单位阶跃脉冲冲击激励下折算到低压侧的波形参数的对应关系式A=A'N、ω=ω'和τ=τ'可得具体关系式如下:Preferably, obtaining the mathematical relationship between the unconverted waveform parameters on the low voltage side under the unit step pulse impulse excitation of the transformer in the step 3 includes using the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the mutual inductance The corresponding relationship formulas A=A'N, ω=ω' and τ=τ' of the waveform parameters converted to the low-voltage side under the unit step pulse shock excitation of the device can be obtained as follows:
式中:In the formula:
A'为互感器低压侧输出波形的幅值;A' is the amplitude of the output waveform at the low-voltage side of the transformer;
ω'为互感器低压侧输出波形的角频率;ω' is the angular frequency of the output waveform at the low-voltage side of the transformer;
C2'为互感器低压侧实际电容;C 2 ' is the actual capacitance of the low-voltage side of the transformer;
N为互感器变比值;N is the transformation ratio of the transformer;
τ'为互感器低压侧输出波形的衰减时间常数;τ' is the decay time constant of the output waveform at the low-voltage side of the transformer;
Rl'为互感器低压侧实际电阻;R l ' is the actual resistance of the low-voltage side of the transformer;
优选地,所述步骤4中基于获取的互感器单位阶跃脉冲冲击激励下低压输出波形的幅值,获取互感器低压侧变比值的具体计算公式如下:Preferably, in the step 4, based on the amplitude of the low-voltage output waveform obtained under the excitation of the unit step pulse shock of the transformer, the specific calculation formula for obtaining the transformation ratio of the low-voltage side of the transformer is as follows:
优选地,所述步骤5中互感器二次侧输出衰减的震荡波形包括提取三个互感器二次侧输出衰减的震荡波形的三个最大值分别为Y1、Y2、Y3以及Y1与Y2的时间差t1、Y2与Y3的时间差t2,Preferably, the oscillating waveform attenuated by the secondary side output of the transformer in the step 5 includes extracting three maximum values of the attenuated oscillating waveform output at the secondary side of the three transformers, which are respectively Y 1 , Y 2 , Y 3 and Y 1 Time difference t 1 with Y 2 , time difference t 2 between Y 2 and Y 3 ,
所述获取互感器二次侧输出波形实测参数,包括互感器低压侧输出波形的幅值A'、互感器低压侧输出波形的角频率ω'和互感器低压侧输出波形的衰减时间常数τ',The acquisition of measured parameters of the output waveform of the secondary side of the transformer includes the amplitude A' of the output waveform of the low-voltage side of the transformer, the angular frequency ω' of the output waveform of the low-voltage side of the transformer, and the decay time constant τ' of the output waveform of the low-voltage side of the transformer. ,
利用所述三个互感器二次侧输出衰减的震荡波形的三个最大值分别为Y1、Y2、Y3以及Y1与Y2的时间差t1、Y2与Y3的时间差t2进行计算以获取互感器低压侧输出波形的幅值A'、互感器低压侧输出波形的角频率ω'和互感器低压侧输出波形的衰减时间常数τ',具体公式如下:The three maximum values of the attenuated oscillating waveforms output by the secondary side of the three transformers are Y 1 , Y 2 , Y 3 , and the time difference t 1 between Y 1 and Y 2 , and the time difference t 2 between Y 2 and Y 3 Perform calculations to obtain the amplitude A' of the output waveform at the low-voltage side of the transformer, the angular frequency ω' of the output waveform at the low-voltage side of the transformer, and the decay time constant τ' of the output waveform at the low-voltage side of the transformer. The specific formulas are as follows:
优选地,所述步骤8中利用获取的互感器二次侧输出波形实测参数、互感器二次侧绕组线圈及其外部导线的直阻总和的实测值Rl'和互感器二次侧固定电容C2',获取互感器的变比推算值的具体计算公式如下:Preferably, in the step 8, the obtained transformer secondary side output waveform measured parameters, the measured value R l ' of the direct resistance sum of the transformer secondary side winding coil and its external wire and the transformer secondary side fixed capacitance C 2 ', the specific calculation formula for obtaining the transformation ratio estimation value of the transformer is as follows:
本发明的优点和积极效果是:Advantage and positive effect of the present invention are:
本发明涉及的一种人体安全的低压直流阶跃冲击式互感器变比检测方法,该互感器变比检测技术具有如下优点:The invention relates to a method for detecting the transformation ratio of a low-voltage DC step-impact transformer that is safe for the human body. The transformation ratio detection technology of the transformer has the following advantages:
1、本专利借助人体承受范围内的低压直流电,推导得出变电站电流互感器、电压互感器的互感器变比检测技术;1. With the help of low-voltage direct current within the range of human body tolerance, this patent derives the transformer ratio detection technology for current transformers and voltage transformers in substations;
2、本专利技术改变了工程现场变比检测借助升压装置或大电流发生器做变比试验的方式,改变了变比检测人身风险高、设备昂贵、重量大、易损坏的现状,使得现场变比检测工作变得简便、无人身风险;2. This patented technology has changed the method of on-site transformation ratio testing with the help of a booster device or a large current generator, and changed the current situation of high personal risk, expensive equipment, heavy weight, and easy damage in the field of transformation ratio detection, making the on-site The variable ratio detection work becomes simple and has no personal risk;
3、改变了当前变电站互感器验收设备资产较重的现状,为现场传统验收工艺向精益化、科技化、高端化转变提供了借鉴;3. It has changed the current situation that the current substation transformer acceptance equipment has heavy assets, and provided a reference for the traditional on-site acceptance process to be lean, technological, and high-end;
4、专利方法克服了现阶段互感器变比检测采用通入大电压或者大电流的方式实际检测,而电压或电流往往需借助升压装置或者大电流发生器,人身风险高、设备昂贵、重量大、易损坏,便可快速、安全得到互感器变比数值。4. The patented method overcomes the fact that the transformation ratio detection of the current transformer adopts the method of inputting a large voltage or a large current for actual detection, and the voltage or current often needs to use a booster device or a large current generator, which has high personal risks, expensive equipment, and heavy weight. Large and easily damaged, you can quickly and safely obtain the transformation ratio value of the transformer.
附图说明Description of drawings
图1为本发明的人体安全的低压直流阶跃冲击式互感器变比检测的方法流程图;Fig. 1 is the method flow chart of the low-voltage DC step impact transformer ratio detection of human body safety of the present invention;
图2为互感器的RLC输入输出无源网络图;Fig. 2 is the RLC input and output passive network diagram of transformer;
图3为互感器的RLC复数阻抗无源网络图;Fig. 3 is the RLC complex impedance passive network diagram of transformer;
图4为互感器二次侧输出衰减的震荡波形图;Fig. 4 is the oscillating waveform diagram of transformer secondary side output attenuation;
图5为互感器低压侧绕组线圈及其外部导线的直阻总和的实测值图;Fig. 5 is the actual measured value diagram of the direct resistance sum of the low-voltage side winding coil of the transformer and its external wire;
图6为互感器二次侧制作预制导线示意图。Figure 6 is a schematic diagram of making prefabricated wires on the secondary side of the transformer.
具体实施方式Detailed ways
本发明提供了一种人体安全的低压直流阶跃冲击式互感器变比检测方法,如图1所示,具体步骤如下:The present invention provides a human-safe low-voltage DC step impact transformer ratio detection method, as shown in Figure 1, the specific steps are as follows:
步骤1、基于互感器RLC无源网络的相关参数和传递函数,获取互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系;Step 1. Based on the relevant parameters and the transfer function of the RLC passive network of the transformer, the relationship between the waveform parameters converted to the high-voltage side under the unit step pulse shock excitation of the transformer and the relevant parameters of the RLC passive network of the transformer is obtained;
在此步骤中,如图2所示,所述基于互感器RLC无源网络的相关参数包括高压侧电感Lh、高压侧电阻Rh、低压侧折算后的电感Ll、低压侧折算后的电阻Rl、励磁电抗Mm、励磁电阻Rm、表一次侧导线电容C1、二次侧导线电容C2、一次侧所加实验电压ui和二次侧输出电压u0;In this step, as shown in Figure 2, the relevant parameters of the transformer-based RLC passive network include high-voltage side inductance L h , high-voltage side resistance R h , low-voltage side converted inductance L l , low-voltage side converted Resistor R l , excitation reactance M m , excitation resistance R m , primary side wire capacitance C 1 , secondary side wire capacitance C 2 , primary side applied experimental voltage ui and secondary side output voltage u0;
利用上述获取的互感器RLC无源网络相关参数获取互感器RLC无源网络的传递函数,具体为:The transfer function of the RLC passive network of the transformer is obtained by using the relevant parameters of the RLC passive network of the transformer obtained above, specifically:
获取互感器RLC无源网络对应支路的复数阻抗Z1、Z2和Z3,具体公式如下:Obtain the complex impedance Z 1 , Z 2 and Z 3 of the branch corresponding to the RLC passive network of the transformer, the specific formula is as follows:
Z2=(Lh+Ll)s+Rh+Rl;Z 2 =(L h +L l )s+R h +R l ;
式中:In the formula:
s表示复频率,s represents the complex frequency,
Z1、Z2、Z3分别表示对应支路的复数阻抗;利用获取互感器RLC无源网络对应支路的复数阻抗Z1、Z2和Z3可得出关系式为:Z 1 , Z 2 , and Z 3 respectively represent the complex impedances of the corresponding branches; by obtaining the complex impedances Z 1 , Z 2 and Z 3 of the corresponding branches of the transformer RLC passive network, the relationship can be obtained as follows:
在此步骤中,所述获取互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数包括,In this step, the acquisition of waveform parameters converted to the high-voltage side under unit step pulse shock excitation of the transformer includes,
对互感器输入波形为单位阶跃脉冲,即形式满足ui(t)=u(t),其中 The input waveform of the transformer is a unit step pulse, that is, the form satisfies u i (t)=u(t), where
根据拉普拉斯变换公式可得具体公式如下:According to the Laplace transform formula The specific formula can be obtained as follows:
根据拉氏变换对照表,上述公式形式满足关系式 According to the Laplace transform comparison table, the above formula satisfies the relation
式中:In the formula:
阻尼比 Damping ratio
固有频率 Natural frequency
根据拉氏变换对照表,在形式满足上述关系式下,可得进行拉氏反变换的时域表达式为:According to the Laplace transform comparison table, the above relation is satisfied in the form Under the following conditions, the time-domain expression for inverse Laplace transform can be obtained as:
式中:In the formula:
得到互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系式如下:The relationship between the waveform parameters converted to the high-voltage side and the relevant parameters of the RLC passive network of the transformer under the unit step pulse impulse excitation of the transformer is obtained as follows:
利用上述互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系式,可得到互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数,具体包括振幅A、角速度ω和衰减时间常数τ,具体公式如下:Using the relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the relevant parameters of the RLC passive network of the transformer, the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer can be obtained , including amplitude A, angular velocity ω and decay time constant τ, the specific formula is as follows:
步骤2、基于互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器RLC无源网络的相关参数的关系,获取互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系;Step 2. Based on the relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the relevant parameters of the RLC passive network of the transformer, obtain the waveform converted to the high voltage side under the unit step pulse impulse excitation of the transformer Mathematical relationship between parameters;
在此步骤中,所述互感器RLC无源网络相关参数包括高压侧电阻Rh、低压侧折算后的电阻Rl和二次侧导线电容C2;In this step, the parameters related to the passive network of the transformer RLC include the high voltage side resistance R h , the low voltage side converted resistance R 1 and the secondary side wire capacitance C 2 ;
所述基于获取的互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数包括互感器折算到高压侧的输出波形的振幅A、角速度ω、衰减时间常数τ,The waveform parameters converted to the high-voltage side based on the obtained transformer unit step pulse shock excitation include the amplitude A, angular velocity ω, and decay time constant τ of the output waveform of the transformer converted to the high-voltage side,
利用互感器折算到高压侧的输出波形的振幅A、角速度ω、衰减时间常数τ、高压侧电阻Rh、低压侧折算后的电阻Rl和二次侧导线电容C2,可得互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系式如下:Using the amplitude A, angular velocity ω, decay time constant τ, high-voltage side resistance R h , low-voltage side converted resistance R l and secondary-side wire capacitance C 2 of the output waveform converted from the transformer to the high-voltage side, the transformer unit can be obtained The mathematical relationship between the waveform parameters converted to the high-voltage side is deduced under step pulse shock excitation as follows:
利用互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系式,The mathematical relationship between the waveform parameters converted to the high-voltage side is deduced by using the unit step pulse impulse excitation of the transformer,
由于Rh<Rl';得到Rh<<N2Rl'=Rl,进而推得Rh+Rl≈Rl,得到关系式如下:Since R h <R l '; get R h <<N 2 R l '=R l , and then deduce that R h +R l ≈R l , the relationship is as follows:
根据如上关系式,可推导出关系式如下:According to the above relationship, the relationship can be deduced as follows:
步骤3、基于获取互感器单位阶跃脉冲冲击激励下推导折算到高压侧的波形参数之间的数学关系,获取互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系:Step 3. Based on obtaining the mathematical relationship between the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer, obtain the unconverted waveform parameters of the low voltage side under the unit step pulse impulse excitation of the transformer. The mathematical relationship between :
在此步骤中,所述获取互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系包括利用互感器单位阶跃脉冲冲击激励下折算到高压侧的波形参数与互感器单位阶跃脉冲冲击激励下折算到低压侧的波形参数的对应关系式A=A'N、ω=ω'和τ=τ'可得具体关系式如下:In this step, said obtaining the mathematical relationship between the unconverted waveform parameters on the low voltage side under the unit step pulse impulse excitation of the transformer includes using the waveform parameters converted to the high voltage side under the unit step pulse impulse excitation of the transformer and the transformer The corresponding relational expressions A=A'N, ω=ω' and τ=τ' of the waveform parameters converted to the low-voltage side under unit step pulse shock excitation can be obtained as follows:
式中:In the formula:
A'为互感器低压侧输出波形的幅值;A' is the amplitude of the output waveform at the low-voltage side of the transformer;
ω'为互感器低压侧输出波形的角频率;ω' is the angular frequency of the output waveform at the low-voltage side of the transformer;
C2'为互感器低压侧实际电容;C 2 ' is the actual capacitance of the low-voltage side of the transformer;
N为互感器变比值;N is the transformation ratio of the transformer;
τ'为互感器低压侧输出波形的衰减时间常数;τ' is the decay time constant of the output waveform at the low-voltage side of the transformer;
Rl'为互感器低压侧实际电阻;R l ' is the actual resistance of the low-voltage side of the transformer;
步骤4、基于获取的互感器单位阶跃脉冲冲击激励下低压侧未折算的波形参数之间的数学关系,获取互感器的变比值;Step 4. Based on the obtained mathematical relationship between the unconverted waveform parameters on the low-voltage side under the excitation of the unit step pulse shock of the transformer, the transformation ratio value of the transformer is obtained;
具体计算公式如下:The specific calculation formula is as follows:
步骤5、基于互感器二次侧输出衰减的震荡波形,获取互感器二次侧输出波形实测参数;Step 5, based on the attenuated oscillation waveform of the secondary side output of the transformer, the measured parameters of the output waveform of the secondary side of the transformer are obtained;
在此步骤中,如图3所示,所述互感器二次侧输出衰减的震荡波形包括提取三个互感器二次侧输出衰减的震荡波形的三个最大值分别为Y1、Y2、Y3以及Y1与Y2的时间差t1、Y2与Y3的时间差t2,In this step, as shown in FIG. 3 , the attenuated oscillating waveform at the secondary side of the transformer includes extracting three maximum values of the attenuated oscillating waveform at the secondary side of the transformer, respectively Y 1 , Y 2 , Y 3 and the time difference t 1 between Y 1 and Y 2 , the time difference t 2 between Y 2 and Y 3 ,
所述获取互感器二次侧输出波形实测参数,包括互感器低压侧输出波形的幅值A'、互感器低压侧输出波形的角频率ω'和互感器低压侧输出波形的衰减时间常数τ',The acquisition of measured parameters of the output waveform of the secondary side of the transformer includes the amplitude A' of the output waveform of the low-voltage side of the transformer, the angular frequency ω' of the output waveform of the low-voltage side of the transformer, and the decay time constant τ' of the output waveform of the low-voltage side of the transformer. ,
利用所述三个互感器二次侧输出衰减的震荡波形的三个最大值分别为Y1、Y2、Y3以及Y1与Y2的时间差t1、Y2与Y3的时间差t2进行计算以获取互感器低压侧输出波形的幅值A'、互感器低压侧输出波形的角频率ω'和互感器低压侧输出波形的衰减时间常数τ',具体公式如下:The three maximum values of the attenuated oscillating waveforms output by the secondary side of the three transformers are Y 1 , Y 2 , Y 3 , and the time difference t 1 between Y 1 and Y 2 , and the time difference t 2 between Y 2 and Y 3 Perform calculations to obtain the amplitude A' of the output waveform at the low-voltage side of the transformer, the angular frequency ω' of the output waveform at the low-voltage side of the transformer, and the decay time constant τ' of the output waveform at the low-voltage side of the transformer. The specific formulas are as follows:
步骤6、获取互感器二次侧绕组线圈及其外部导线的直阻总和的实测值Rl';Step 6. Obtain the measured value R l ' of the sum of the direct resistance of the secondary side winding coil of the transformer and its external wires;
步骤7、通过对互感器二次侧制作预制导线,获取互感器二次侧固定电容C2';Step 7. Obtain the fixed capacitance C 2 ' on the secondary side of the transformer by making prefabricated wires on the secondary side of the transformer;
步骤8、利用获取的互感器二次侧输出波形实测参数、互感器二次侧绕组线圈及其外部导线的直阻总和的实测值Rl'和互感器二次侧固定电容C2',获取互感器的变比推算值;Step 8. Using the obtained measured parameters of the output waveform of the secondary side of the transformer, the measured value R l ' of the sum of the direct resistance of the secondary winding coil of the transformer and its external wires, and the fixed capacitance C 2 ' of the secondary side of the transformer, obtain Transformation ratio estimated value of transformer;
具体计算公式如下:The specific calculation formula is as follows:
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置的具体安装和工作过程,可以参考上述实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific installation and working process of the above-described device can refer to the corresponding process in the above-mentioned embodiments, which will not be repeated here.
首先,需要说明的是,以下将以示例方式来具体说明本发明的具体结构、特点和优点等,然而所有的描述仅是用来进行说明的,而不应将其理解为对本发明形成任何限制。此外,在本文所提及各实施例中予以描述或隐含的任意单个技术特征,仍然可在这些技术特征(或其等同物)之间继续进行任意组合或删减,从而获得可能未在本文中直接提及的本发明的更多其他实施例。First of all, it should be noted that the specific structure, features and advantages of the present invention will be specifically described below by way of examples, but all descriptions are only for illustration, and should not be construed as forming any limitation on the present invention . In addition, any single technical feature described or implied in the embodiments mentioned herein can still be combined or deleted between these technical features (or their equivalents), so as to obtain Further other embodiments of the invention mentioned directly in .
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and furthermore, the terms "comprising" and "having" and any variations thereof are intended to cover a non-exclusive inclusion, for example, includes A process, method, system, product, or device that is a series of steps or units is not necessarily limited to those steps or units explicitly listed, but may include other step or unit.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。It should be emphasized that the embodiments described in the present invention are illustrative rather than restrictive, so the present invention includes and is not limited to the embodiments described in the specific implementation, and those skilled in the art according to the technology of the present invention Other implementations derived from the scheme also belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211032194.4A CN115389826A (en) | 2022-08-26 | 2022-08-26 | Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211032194.4A CN115389826A (en) | 2022-08-26 | 2022-08-26 | Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115389826A true CN115389826A (en) | 2022-11-25 |
Family
ID=84123399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211032194.4A Pending CN115389826A (en) | 2022-08-26 | 2022-08-26 | Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115389826A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110031980A1 (en) * | 2009-08-07 | 2011-02-10 | Omicron Electronics Gmbh | System for monitoring a transformer |
CN104215928A (en) * | 2014-09-11 | 2014-12-17 | 国家电网公司 | Analytical model method for current conversion ratio and phase difference of open-type current transformer |
CN107271830A (en) * | 2017-05-25 | 2017-10-20 | 保定丰源电子科技有限公司 | A kind of no-load voltage ratio quick calculation method under special transformer non-equilibrium state |
CN112731257A (en) * | 2021-01-12 | 2021-04-30 | 中国电力科学研究院有限公司 | Step response simulation method and system of all-fiber current transformer |
CN113420449A (en) * | 2021-06-28 | 2021-09-21 | 云南电网有限责任公司电力科学研究院 | Method for identifying higher harmonic transfer function of transformer |
CN113640560A (en) * | 2021-10-13 | 2021-11-12 | 国网江西省电力有限公司电力科学研究院 | Method for generating parameterized trans-interval direct current step digital signals |
CN114280525A (en) * | 2021-11-12 | 2022-04-05 | 国网辽宁省电力有限公司电力科学研究院 | Portable current transformer polarity and transformation ratio integrated tester |
CN115389828A (en) * | 2022-08-26 | 2022-11-25 | 国网天津市电力公司 | Human body safety low-voltage direct-current peak pulse type transformer transformation ratio detection method |
-
2022
- 2022-08-26 CN CN202211032194.4A patent/CN115389826A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110031980A1 (en) * | 2009-08-07 | 2011-02-10 | Omicron Electronics Gmbh | System for monitoring a transformer |
CN104215928A (en) * | 2014-09-11 | 2014-12-17 | 国家电网公司 | Analytical model method for current conversion ratio and phase difference of open-type current transformer |
CN107271830A (en) * | 2017-05-25 | 2017-10-20 | 保定丰源电子科技有限公司 | A kind of no-load voltage ratio quick calculation method under special transformer non-equilibrium state |
CN112731257A (en) * | 2021-01-12 | 2021-04-30 | 中国电力科学研究院有限公司 | Step response simulation method and system of all-fiber current transformer |
CN113420449A (en) * | 2021-06-28 | 2021-09-21 | 云南电网有限责任公司电力科学研究院 | Method for identifying higher harmonic transfer function of transformer |
CN113640560A (en) * | 2021-10-13 | 2021-11-12 | 国网江西省电力有限公司电力科学研究院 | Method for generating parameterized trans-interval direct current step digital signals |
CN114280525A (en) * | 2021-11-12 | 2022-04-05 | 国网辽宁省电力有限公司电力科学研究院 | Portable current transformer polarity and transformation ratio integrated tester |
CN115389828A (en) * | 2022-08-26 | 2022-11-25 | 国网天津市电力公司 | Human body safety low-voltage direct-current peak pulse type transformer transformation ratio detection method |
Non-Patent Citations (2)
Title |
---|
FOHRINGER, J.P.: "Analysis of a boost converter with tapped inductor and reduced voltage stress across the buffer capacitor", 《 IEEE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY》, 31 December 2007 (2007-12-31) * |
李银城: "基于短路试验的配电变压器绕组性能评估方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, 15 February 2022 (2022-02-15) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9455633B2 (en) | Method and apparatus for controlling a frequency converter | |
Dommel et al. | Harmonics from transformer saturation | |
CN101572408B (en) | Method for improving simulation capacity of HVDC transmission system | |
CN107329044B (en) | A single-phase-to-ground fault line selection method in distribution network based on arc transient component | |
CN109815607B (en) | Full electromagnetic transient simulation method based on time-frequency coordinate transformation and oriented to large-scale alternating current power grid | |
CN103544377A (en) | Calculation and analysis method for resonance characteristics of direct-current circuit of high-voltage direct-current transmission | |
CN105004971B (en) | A kind of cable insulation medium spectrum and state of insulation resistance test method and device | |
CN103701152A (en) | Method and system for obtaining flicker transmission coefficient of grid connection of photovoltaic power stations | |
EP3270508A1 (en) | Systems and methods for mitigating resonance in long cable drives | |
CN117630583B (en) | Control method of power distribution network capacitance current and ground resistance detection device | |
CN103795061B (en) | A kind of HVDC (High Voltage Direct Current) transmission system second harmonic filter and Parameters design thereof | |
CN105044564B (en) | A kind of cable insulation medium spectrum detection method and device | |
CN106295231A (en) | A kind of marine wind electric field resonance suppressing method based on modal calculation | |
CN105606951A (en) | Method and device for measuring polarity of capacitor voltage transformer by using self-excitation method | |
CN115389828A (en) | Human body safety low-voltage direct-current peak pulse type transformer transformation ratio detection method | |
Ragavan et al. | Construction of physically realizable driving-point function from measured frequency response data on a model winding | |
Solomon et al. | Application of pseudo-random impulse perturbation for characterizing capacitor voltage transformer frequency responses | |
CN108226653A (en) | Transformer core depth method for testing saturated inductance and system based on alternating current-direct current AC-battery power source | |
CN115389826A (en) | Human body safety low-voltage direct-current step impact type transformer transformation ratio detection method | |
CN115389827A (en) | Human body safety impulse even type transformer transformation ratio detection method | |
CN108614949B (en) | A method for calculating harmonic current distribution of transformer integrated regulation and filtering system | |
CN103941103B (en) | The measurement apparatus of reactor inductance amount and method in Active Power Filter-APF | |
CN105467347B (en) | A kind of voltage transformer exciting characteristic curve acquiring method | |
Rygg et al. | Real-time stability analysis of power electronic systems | |
CN105842556A (en) | Single-phase parallel capacitor-discharge coil discharge process calculation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20221125 |
|
WD01 | Invention patent application deemed withdrawn after publication |