CN115379616A - Parallel sequenced light-emitting diode lamp string - Google Patents
Parallel sequenced light-emitting diode lamp string Download PDFInfo
- Publication number
- CN115379616A CN115379616A CN202110551027.XA CN202110551027A CN115379616A CN 115379616 A CN115379616 A CN 115379616A CN 202110551027 A CN202110551027 A CN 202110551027A CN 115379616 A CN115379616 A CN 115379616A
- Authority
- CN
- China
- Prior art keywords
- led
- parallel
- voltage
- sequenced
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012163 sequencing technique Methods 0.000 claims abstract description 9
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241000191291 Abies alba Species 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
Landscapes
- Led Devices (AREA)
Abstract
本发明提供一种并联定序的发光二极管灯串包含若干发光二极管模组。各所述发光二极管模组通过具有若干线阻的一电源线并联连接。各所述发光二极管模组包含可提供阻抗特性的一阻抗元件。并联连接的各所述发光二极管模组接收一供电电源,且所述供电电源经由各所述线阻与各所述阻抗元件,使得在各所述发光二极管模组上所产生的电压大小不同,对各所述发光二极管模组进行定序。
The invention provides a parallel sequential LED lamp string including several LED modules. Each of the LED modules is connected in parallel through a power line with several line resistances. Each of the LED modules includes an impedance element that can provide impedance characteristics. Each of the LED modules connected in parallel receives a power supply, and the power supply passes through each of the line resistances and each of the impedance elements, so that the voltages generated on each of the LED modules are different, Sequencing is performed on each of the LED modules.
Description
技术领域technical field
本发明有关一种发光二极管灯串,尤指一种具有阻抗补偿技术的并联定序的发光二极管灯串。The invention relates to a light-emitting diode lamp string, in particular to a parallel-sequenced light-emitting diode lamp string with impedance compensation technology.
背景技术Background technique
由于发光二极管(light-emitting diode, LED)具有发光效率高、低耗电量、寿命长、响应速度快、可靠度高…等的优点,因此,发光二极管已广泛地以灯条(light bar)或灯串(light string)的串联、并联或串并联的连接方式,应用于照明用灯具或装饰用发光,例如圣诞树灯饰、运动鞋发光特效…等。Because light-emitting diodes (light-emitting diodes, LEDs) have the advantages of high luminous efficiency, low power consumption, long life, fast response, high reliability, etc., light-emitting diodes have been widely used as light bars Or the connection mode of series, parallel or series-parallel connection of light string (light string), which is applied to lighting lamps or decorative lighting, such as Christmas tree lighting, sports shoes lighting special effects, etc.
以节庆灯饰为例,完整的发光二极管灯具基本上包含发光二极管灯串(具有若干个灯)与驱动所述灯的驱动单元。驱动单元与所述灯串电性连接,并且通过对所述灯提供所需电力以及具有发光资料的控制信号,以点控的方式或者同步的方式控制,实现发光二极管灯具多样化的灯光输出效果与变化。Taking festive lighting decorations as an example, a complete LED lighting basically includes a string of LED lights (with several lights) and a driving unit for driving the lights. The drive unit is electrically connected to the light string, and by providing the required power and a control signal with luminous data to the light, it is controlled in a point-controlled or synchronous manner to achieve a variety of light output effects for LED lamps with change.
以现行的技术而言,为了驱动发光二极管灯串的各所述发光二极管以多样化地发光,各所述发光二极管具有不同的地址顺序资料。各所述发光二极管接收包含发光资料及地址资料的发光信号:如果发光二极管的所述地址顺序资料与所述发光信号的地址资料相同,则所述发光二极管依据发光信号的发光资料发光;如果发光二极管的地址顺序资料与发光信号的地址资料不相同,则发光二极管跳过发光信号的所述发光资料。According to the current technology, in order to drive each of the LEDs of the LED light string to emit light in various ways, each of the LEDs has different address sequence data. Each of the light-emitting diodes receives a light-emitting signal including light-emitting data and address data: if the address sequence data of the light-emitting diode is the same as the address data of the light-emitting signal, the light-emitting diode emits light according to the light-emitting data of the light-emitting signal; The address sequence data of the diode is different from the address data of the light emitting signal, and the light emitting diode skips the light emitting data of the light emitting signal.
目前,发光二极管灯串的各所述发光二极管的定序方法大多很复杂或困难;例如,在各所述发光二极管被组合成发光二极管灯串之前,需对每一个发光二极管烧录不同的地址顺序资料。之后,各所述发光二极管按照地址顺序资料依序地被放置并组合成所述发光二极管灯串。如果各所述发光二极管没有按照地址顺序资料依序地被放置,则各所述发光二极管的多样化的发光无法被正确地达成。At present, the sequencing method of each of the LEDs in the LED light string is mostly complicated or difficult; for example, before each of the LEDs is combined into a LED light string, it is necessary to burn a different address for each LED sequential data. Afterwards, each of the LEDs is sequentially placed according to the address sequence data and combined to form the LED string. If the light emitting diodes are not placed sequentially according to the address sequence data, the diversified lighting of the light emitting diodes cannot be correctly achieved.
发明内容Contents of the invention
本发明的目的在于提供一种并联定序的发光二极管灯串,其具有阻抗补偿技术,以解决现有技术以地址作为发光二极管定序所存在的问题。The purpose of the present invention is to provide a parallel sequenced light string of light emitting diodes, which has impedance compensation technology, so as to solve the problem in the prior art that the address is used as the sequence of light emitting diodes.
为达成前述目的,本发明所提出的并联定序的发光二极管灯串包含若干发光二极管模组。各所述发光二极管模组通过具有若干线阻的电源线并联连接。每个发光二极管模组包含可提供阻抗特性的一阻抗元件。并联连接的各所述发光二极管模组接收一供电电源,且所述供电电源经由各所述线阻与各所述阻抗元件,使得在各所述发光二极管模组上所产生的电压大小不同,对各所述发光二极管模组进行定序。In order to achieve the foregoing objectives, the parallel sequenced LED light string proposed by the present invention includes a plurality of LED modules. Each of the LED modules is connected in parallel through power lines with several line resistances. Each LED module includes an impedance element that can provide impedance characteristics. Each of the LED modules connected in parallel receives a power supply, and the power supply passes through each of the line resistances and each of the impedance elements, so that the voltages generated on each of the LED modules are different, Sequencing is performed on each of the LED modules.
在一实施例中,所产生的各所述电压大小与若干电压范围比对,以决定各所述发光二极管模组的顺序。In one embodiment, the generated voltages are compared with several voltage ranges to determine the sequence of the LED modules.
在一实施例中,各所述电压范围是建立于一查找表中。In one embodiment, each of the voltage ranges is established in a look-up table.
在一实施例中,各所述电压范围是根据所述供电电源的大小、各所述发光二极管模组的数量、各所述线阻的大小以及各所述阻抗元件的大小所决定。In one embodiment, each of the voltage ranges is determined according to the size of the power supply, the number of each of the LED modules, the size of each of the line resistances, and the size of each of the impedance elements.
在一实施例中,所述供电电源为一定电压源,各所述阻抗元件为阻值可调整的可控制电阻,且减小地设计可控制电阻的阻值。In one embodiment, the power supply is a constant voltage source, each of the impedance elements is a controllable resistor with adjustable resistance, and the resistance of the controllable resistor is designed to be reduced.
在一实施例中,前面的发光二极管模组所产生的电压大于后面的发光二极管模组所产生的电压。In one embodiment, the voltage generated by the front LED modules is greater than the voltage generated by the rear LED modules.
在一实施例中,所述供电电源为一定电流源,各所述阻抗元件为阻值可调整的可控制电阻,且增大地设计可控制电阻的阻值。In one embodiment, the power supply is a constant current source, each of the impedance elements is a controllable resistor with adjustable resistance, and the resistance of the controllable resistor is designed to increase.
在一实施例中,前面的发光二极管模组所产生的电压小于后面的发光二极管模组所产生的电压。In one embodiment, the voltage generated by the front LED modules is smaller than the voltage generated by the rear LED modules.
在一实施例中,并联定序的发光二极管灯串还包含一信号产生单元。所述信号产生单元提供一序列信号;各所述阻抗元件为阻值可调整的一可控制电阻。In one embodiment, the LED light strings sequenced in parallel further include a signal generating unit. The signal generating unit provides a sequence of signals; each of the impedance elements is a controllable resistor with adjustable resistance.
在一实施例中,各所述发光二极管模组根据所述序列信号的周期顺序决定各所述发光二极管模组的顺序;供电电源为定电压源,当完成一个发光二极管模组的定序后,将所对应的所述阻抗元件关闭,并且将未定序的发光二极管模组所对应的所述阻抗元件的阻值减小。In one embodiment, each of the LED modules determines the order of each of the LED modules according to the cycle sequence of the sequence signal; the power supply is a constant voltage source, and when the sequence of a LED module is completed , turning off the corresponding impedance elements, and reducing the resistance values of the impedance elements corresponding to the unsequenced LED modules.
在一实施例中,各所述发光二极管模组根据所述序列信号的周期顺序决定各所述发光二极管模组的顺序;供电电源为定电流源,当完成一个发光二极管模组的定序后,将所对应的所述阻抗元件关闭,并且将未定序的发光二极管模组所对应的所述阻抗元件的阻值增大。In one embodiment, each of the LED modules determines the order of each of the LED modules according to the periodic sequence of the sequence signal; the power supply is a constant current source, and when the sequence of a LED module is completed , turning off the corresponding impedance element, and increasing the resistance value of the impedance element corresponding to the unsequenced LED module.
在一实施例中,并联定序的发光二极管灯串还包含一开关单元。所述开关单元串联所述可控制电阻。In one embodiment, the LED light strings sequenced in parallel further include a switch unit. The switch unit is connected in series with the controllable resistor.
在一实施例中,各所述发光二极管模组包含若干电阻与若干开关单元。各所述开关单元对应地串联各所述若干电阻。In one embodiment, each of the LED modules includes a plurality of resistors and a plurality of switch units. Each of the switch units is correspondingly connected in series with each of the plurality of resistors.
在一实施例中,并联定序的发光二极管灯串还包含补偿单元。补偿单元并联耦接最后一个发光二极管模组。补偿单元包含阻值可调整的可控制电阻。In one embodiment, the LED light strings sequenced in parallel further include a compensation unit. The compensation unit is coupled in parallel to the last LED module. The compensation unit includes a controllable resistor with adjustable resistance.
在一实施例中,供电电源为定电压源;当发光二极管模组依序地进行定序时,可控制电阻的阻值依序地减小。In one embodiment, the power supply is a constant voltage source; when the LED modules are sequenced sequentially, the resistance values of the controllable resistors decrease sequentially.
在一实施例中,供电电源为定电流源;当发光二极管模组依序地进行定序时,可控制电阻的阻值依序地增大。In one embodiment, the power supply is a constant current source; when the LED modules are sequentially sequenced, the resistance value of the controllable resistors increases sequentially.
借由所提出的并联定序的发光二极管灯串,通过内建查找表所提供的电压范围信息,提供侦测电压的对应查找,并且根据电压大小的差异,以决定发光二极管模组的灯序,借此可简化电路设计、快速地完成发光二极管灯串的定序,并且通过使用阻值可调整的可控制电阻或者若干电阻的并联设计或者补偿单元的阻值调整,可达到提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。With the proposed parallel-sequenced LED strings, the voltage range information provided by the built-in look-up table provides a corresponding search for the detected voltage, and determines the sequence of the LED modules according to the difference in voltage , thereby simplifying the circuit design, quickly completing the sequencing of the light-emitting diode strings, and by using a controllable resistor with adjustable resistance or a parallel design of several resistors or adjusting the resistance of the compensation unit, it is possible to improve the detected The accuracy of comparison, judgment and identification between the received voltage and the voltage range of the lookup table.
附图说明Description of drawings
图1A:为本发明定电压源供电的并联定序的发光二极管灯串的第一实施例的电路图。Fig. 1A: The circuit diagram of the first embodiment of the LED light strings connected in parallel and sequenced for the constant voltage source of the present invention.
图1B:为本发明定电流源供电的并联定序的发光二极管灯串的第一实施例的电路图。FIG. 1B : a circuit diagram of a first embodiment of parallel-sequenced LED strings for powering a constant current source of the present invention.
图2A:为本发明定电压源供电的并联定序的发光二极管灯串的第二实施例的电路图。Fig. 2A: The circuit diagram of the second embodiment of the LED light strings connected in parallel and sequenced for the constant voltage source of the present invention.
图2B:为本发明定电流源供电的并联定序的发光二极管灯串的第二实施例的电路图。Fig. 2B: A circuit diagram of a second embodiment of a parallel-sequenced LED string for powering a constant current source of the present invention.
图3A:为本发明并联定序的发光二极管灯串的第一实施例的电压示意图。FIG. 3A is a voltage schematic diagram of the first embodiment of the LED light strings connected in parallel and sequenced according to the present invention.
图3B:为本发明并联定序的发光二极管灯串的第二实施例的电压示意图。FIG. 3B is a voltage schematic diagram of the second embodiment of the LED light strings connected in parallel and sequenced according to the present invention.
图4:为本发明可控制电阻实施方式的电路方块图。FIG. 4 is a circuit block diagram of an embodiment of a controllable resistance of the present invention.
图5:为本发明多电阻实施方式的电路方块图。FIG. 5 is a circuit block diagram of a multi-resistor embodiment of the present invention.
图6:为本发明计数操作的电路方块图。Fig. 6: is the circuit block diagram of the counting operation of the present invention.
图中:In the picture:
10:电源线;11,12,…,1N:发光二极管模组;10: Power cord; 11, 12,..., 1N: LED module;
RL1,RL2,…,RLN,RL1’,RL2’,…,RLN’:线阻;R1,R2,....,RN:电阻;R L1 ,R L2 ,…,R LN ,R L1' ,R L2' ,…,R LN' : wire resistance; R 1 ,R 2 ,....,R N : resistance;
C1,C2,....,CN:寄生电容;V1,V2,…,VN:电压;C 1 ,C 2 ,...,C N : parasitic capacitance; V 1 ,V 2 ,...,V N :voltage;
Vdc:供电电源;Idc:供电电源;R11,R21,R22:电阻;Q11,Q21,Q22:开关单元;Vdc: power supply; Idc: power supply; R11, R21, R22: resistance; Q11, Q21, Q22: switch unit;
31:稳压单元;32:模拟数字转换单元。31: a voltage stabilizing unit; 32: an analog-to-digital conversion unit.
具体实施方式Detailed ways
的下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
请参见图1A所示,其为本发明定电压源供电的并联定序的发光二极管灯串的第一实施例的电路图。所述并联定序的发光二极管灯串包含若干(N个)发光二极管模组11,12,…,1N。各所述发光二极管模组11,12,…,1N通过一电源线10并联连接。对实际线路而言,所述电源线10存在有线阻,因此所述电源线10具有若干线阻RL1,RL2,…,RLN,RL1’,RL2’,…,RLN’。各所述发光二极管模组11,12,…,1N包含一电阻R1,R2,....,RN,以及可等效与对应电阻R1,R2,....,RN并联的寄生电容C1,C2,....,CN,即第一发光二极管模组11包含第一电阻R1与并联的第一寄生电容C1、第二发光二极管模组12包含第二电阻R2与并联的第二寄生电容C2、…第N个发光二极管模组1N包含第N个电阻RN与并联的第N个寄生电容CN。Please refer to FIG. 1A , which is a circuit diagram of a first embodiment of a parallel sequence LED light string powered by a constant voltage source of the present invention. The parallel sequenced LED light strings include several (N)
如图1A所示,并联连接的各所述发光二极管模组11,12,…,1N接收一供电电源Vdc。在本实施例中,所述供电电源Vdc为一定电压源(constant voltage source),用以提供一固定电压大小的电压源。所述供电电源Vdc经由各所述线阻RL1,RL2,…,RLN,RL1’,RL2’,…,RLN’与各所述发光二极管模组11,12,…,1N内的各所述电阻R1,R2,....,RN,使得在各所述发光二极管模组11,12,…,1N上所产生的电压大小不同。As shown in FIG. 1A , each of the
在上电时,由于各所述发光二极管模组11,12,…,1N内的电路尚未启动、运作,因此,各所述发光二极管模组11,12,…,1N可等效为对应的电阻R1,R2,....,RN。再者,为方便说明,可将线阻RL1与线阻RL1’等效为单线的线阻RL1,同样地,线阻RL2与线阻RL2’等效为单线的线阻RL2,…线阻RLN与线阻RLN’等效为单线的线阻RLN。When powered on, since the circuits in each of the
当上电时,所述供电电源Vdc对各所述发光二极管模组11,12,…,1N供电,由于电流流经各线阻RL1,RL2,…,RLN所造成的电压差,对本实施例而言,定电压源的所述供电电源Vdc经各线阻RL1,RL2,…,RLN所造成的电压差为电压降,因此,在各所述发光二极管模组11,12,…,1N上所产生的电压大小不同。配合图3A所示,其为本发明并联定序的发光二极管灯串的第一实施例的电压示意图,在第一发光二极管模组11上的一第一电压V1大于在第二发光二极管模组12上的一第二电压V2、所述第二电压V2大于在第三发光二极管模组13上的一第三电压V3、…依此类推,意即,前面(上游)的发光二极管模组所产生的电压大于后面(下游)的发光二极管模组所产生的电压(V1>V2>…>VN)。借此,根据所产生的电压V1,V2,…,VN大小不同,对各所述发光二极管模组11,12,…,1N进行定序。以下,针对所产生的电压V1,V2,…,VN大小不同与发光二极管模组11,12,…,1N的定序原理加以说明。When powered on, the power supply Vdc supplies power to each of the
在一种实施例中,可通过内建对应的查找表(lookup table)的方式实现。举例来说,电路设计者可根据所述供电电源Vdc的大小、各所述发光二极管模组11,12,…,1N的数量、各所述线阻RL1,RL2,…,RLN的(估测)大小、以及各所述电阻R1,R2,....,RN的大小,预先建立所述查找表,以供所产生的电压V1,V2,…,VN的对应,以达到对各所述发光二极管模组11,12,…,1N的定序。In an embodiment, it may be implemented by building a corresponding lookup table (lookup table). For example, the circuit designer can according to the size of the power supply Vdc, the number of each of the
如下所示,为所述查找表的一种实施方式,其中以100个发光二极管模组11,12,…,1N为例加以说明。As shown below, it is an implementation manner of the look-up table, where 100
当发光二极管灯串上电时,所述供电电源Vdc对各所述发光二极管模组11,12,…,1N供电,因此会在第一发光二极管模组11上产生第一电压V1、会在第二发光二极管模组12上产生第二电压V2、…会在第N个发光二极管模组1N上产生第N个电压VN。举例来说,当某个发光二极管模组(例如第一发光二极管模组11)所得到的电压(例如第一电压V1)为5.00伏特时,由于所述电压介于第一灯序(#1)的电压范围(5.10~4.90伏特)内,因此可对所述发光二极管模组定序为第一发光二极管模组11。同样地,当某个发光二极管模组(例如第二发光二极管模组12)所得到的电压(例如第二电压V2)为4.80伏特时,由于所述电压介于第二灯序(#2)的电压范围(4.90~4.70伏特)内,因此可对所述发光二极管模组定序为第二发光二极管模组12。同样地,当某个发光二极管模组(例如第六发光二极管模组16)所得到的电压(例如第六电压V6)为4.20伏特时,由于所述电压介于第六灯序(#6)的电压范围(4.26~4.14伏特)内,因此可对所述发光二极管模组定序为第六发光二极管模组16。When the LED light string is powered on, the power supply Vdc supplies power to each of the
借此,在发光二极管灯串上电后,即可通过侦测各所述发光二极管模组11,12,…,1N所产生的电压V1,V2,…,VN,对应内建查找表的电压范围,即可获得各所述发光二极管模组11,12,…,1N的灯序。而上述电压范围不以所举例的电压值为限制,举凡可根据所述供电电源Vdc的大小、各所述发光二极管模组11,12,…,1N的数量、各所述线阻RL1,RL2,…,RLN的(估测)大小、各所述电阻R1,R2,....,RN的大小,或者其他参数,所预先建立的查找表的电压范围,能够实现侦测电压的对应,皆应包含于本发明的范畴中。In this way, after the LED light string is powered on, it can detect the voltages V 1 , V 2 , . The voltage range of the table can be used to obtain the light sequence of each of the
请参见图1B所示,其为本发明定电流源供电的并联定序的发光二极管灯串的第一实施例的电路图。本发明除了可以定电压源的方式实现所述供电电源Vdc外,亦可以以定电流源的方式实现,意即在本实施例中,所述供电电源Idc为一定电流源(constant currentsource),用以提供一固定电流大小的电流源。所述供电电源Idc经由各所述线阻RL1,RL2,…,RLN,RL1’,RL2’,…,RLN’与各所述发光二极管模组11,12,…,1N内的各所述电阻R1,R2,....,RN,使得在各所述发光二极管模组11,12,…,1N上所产生的电压大小不同。Please refer to FIG. 1B , which is a circuit diagram of a first embodiment of a parallel sequence LED light string powered by a constant current source of the present invention. In addition to realizing the power supply Vdc as a constant voltage source, the present invention can also be realized as a constant current source, which means that in this embodiment, the power supply Idc is a constant current source (constant current source). To provide a current source with a fixed current magnitude. The power supply Idc is connected to each of the light emitting
在上电时,由于各所述发光二极管模组11,12,…,1N内的电路尚未启动、运作,因此,各所述发光二极管模组11,12,…,1N可等效为对应的电阻R1,R2,....,RN。再者,为方便说明,可将线阻RL1与线阻RL1’等效为单线的线阻RL1,同样地,线阻RL2与线阻RL2’等效为单线的线阻RL2,…线阻RLN与线阻RLN’等效为单线的线阻RLN。When powered on, since the circuits in each of the
当上电时,所述供电电源Idc对各所述发光二极管模组11,12,…,1N供电,由于电流流经各线阻RL1,RL2,…,RLN所造成的电压差,对本实施例而言,定电流源的所述供电电源Idc经各线阻RL1,RL2,…,RLN所造成的电压差为电压升,因此,在各所述发光二极管模组11,12,…,1N上所产生的电压大小不同。配合图3B所示,其为本发明并联定序的发光二极管灯串的第二实施例的电压示意图,在第一发光二极管模组11上的一第一电压V1小于在第二发光二极管模组12上的一第二电压V2、所述第二电压V2小于在第三发光二极管模组13上的一第三电压V3、…依此类推,意即,前面(上游)的发光二极管模组所产生的电压小于后面(下游)的发光二极管模组所产生的电压(V1<V2<…<VN)。借此,根据所产生的电压V1,V2,…,VN大小不同,对各所述发光二极管模组11,12,…,1N进行定序。以下,针对所产生的电压V1,V2,…,VN大小不同与发光二极管模组11,12,…,1N的定序原理加以说明。When powered on, the power supply Idc supplies power to each of the
在一种实施例中,可通过内建对应的查找表(lookup table)的方式实现。举例来说,电路设计者可根据所述供电电源Idc的大小、各所述发光二极管模组11,12,…,1N的数量、各所述线阻RL1,RL2,…,RLN的(估测)大小、以及各所述电阻R1,R2,....,RN的大小,预先建立所述查找表,以供所产生的电压V1,V2,…,VN的对应,以达到对各所述发光二极管模组11,12,…,1N的定序。In an embodiment, it may be implemented by building a corresponding lookup table (lookup table). For example, according to the size of the power supply Idc, the number of each of the
如下所示,为所述查找表的一种实施方式,其中以100个发光二极管模组11,12,…,1N为例加以说明。As shown below, it is an implementation manner of the look-up table, where 100
当发光二极管灯串上电时,所述供电电源Idc对各所述发光二极管模组11,12,…,1N供电,因此会在第一发光二极管模组11上产生第一电压V1、会在第二发光二极管模组12上产生第二电压V2、…会在第N个发光二极管模组1N上产生第N个电压VN。举例来说,当某个发光二极管模组(例如第一发光二极管模组11)所得到的电压(例如第一电压V1)为2.34伏特时,由于所述电压介于第一灯序(#1)的电压范围(2.36~2.32伏特)内,因此可对所述发光二极管模组定序为第一发光二极管模组11。同样地,当某个发光二极管模组(例如第二发光二极管模组12)所得到的电压(例如第二电压V2)为2.38伏特时,由于所述电压介于第二灯序(#2)的电压范围(2.40~2.36伏特)内,因此可对所述发光二极管模组定序为第二发光二极管模组12。同样地,当某个发光二极管模组(例如第六发光二极管模组16)所得到的电压(例如第六电压V6)为2.64伏特时,由于所述电压介于第六灯序(#6)的电压范围(2.68~2.60伏特)内,因此可对所述发光二极管模组定序为第六发光二极管模组16。When the light-emitting diode light string is powered on, the power supply Idc supplies power to each of the light-emitting
借此,在发光二极管灯串上电后,即可通过侦测各所述发光二极管模组11,12,…,1N所产生的电压V1,V2,…,VN,对应内建查找表的电压范围,即可获得各所述发光二极管模组11,12,…,1N的灯序。而上述电压范围不以所举例的电压值为限制,举凡可根据所述供电电源Idc的大小、各所述发光二极管模组11,12,…,1N的数量、各所述线阻RL1,RL2,…,RLN的(估测)大小、各所述电阻R1,R2,....,RN的大小,或者其他参数,所预先建立的查找表的电压范围,能够实现侦测电压的对应,皆应包含于本发明的范畴中。In this way, after the LED light string is powered on, it can detect the voltages V 1 , V 2 , . The voltage range of the table can be used to obtain the light sequence of each of the
以图1A所示的第一实施例中(即定电压源的供电方式),为了提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度,因此,各所述发光二极管模组11,12,…,1N内的各所述电阻R1,R2,....,RN可为阻值可调整的一可控制电阻。并且,于上电进行对各所述发光二极管模组11,12,…,1N定序时,可通过将各所述可控制电阻(即各所述电阻R1,R2,....,RN)的阻值设计为最小值,使得流经各所述电阻R1,R2,....,RN的电流最大,因此在各所述发光二极管模组11,12,…,1N上产生的电压V1,V2,…,VN可为最大,借此可提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。In the first embodiment shown in FIG. 1A (that is, the power supply mode of a constant voltage source), in order to improve the accuracy of comparison, judgment, and identification between the detected voltage and the voltage range of the look-up table, each institute Each of the resistors R 1 , R 2 , ..., RN in the
再者,在电路应用上,由于提供定电压源的所述供电电源Vdc,并且因为等效电阻效应的关系,使得越后面的电流越小,造成越后面的发光二极管模组两者之间的电压差会越小。配合图3A所示,举例来说,产生在第一发光二极管模组上的第一电压V1与产生在第二发光二极管模组上的第二电压V2的电压差会大于第二电压V2与产生在第三发光二极管模组上的第三电压V3的电压差(即,V3-V2<V2-V1),而且,越后面的发光二极管模组两者之间的电压差会越小。附带一提,配合图1B与图3B所示,对于提供定电流源的所述供电电源Idc,其电路效应与定电压源的所述供电电源Vdc相近,但效果相反,因此,下文中对于供定电压源的所述供电电源Vdc的操作原理,同样可适用于提供定电流源的所述供电电源Idc,将不再加以赘述,仅就提供定电压源的所述供电电源Vdc的操作原理加以说明如下。Furthermore, in the application of the circuit, since the power supply Vdc of the constant voltage source is provided, and because of the equivalent resistance effect, the current at the rear is smaller, resulting in a gap between the LED modules at the rear. The voltage difference will be smaller. As shown in FIG. 3A , for example, the voltage difference between the first voltage V 1 generated on the first LED module and the second voltage V 2 generated on the second LED module will be greater than the second voltage V 2 and the voltage difference between the third voltage V 3 generated on the third LED module (that is, V 3 -V 2 <V 2 -V 1 ), and the lower LED module between the two The voltage difference will be smaller. Incidentally, as shown in FIG. 1B and FIG. 3B , for the power supply Idc that provides a constant current source, its circuit effect is similar to that of the power supply Vdc that is a constant voltage source, but the effect is opposite. The operation principle of the power supply Vdc of the constant voltage source is also applicable to the power supply Idc of the constant current source, and will not be described in detail, only the operation principle of the power supply Vdc of the constant voltage source will be described. described as follows.
因此,为了避免由于越后面的发光二极管模组两者之间的电压差会越小所产生侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度下降,本发明并联定序的发光二极管灯串通过调整各所述电阻R1,R2,....,RN的阻值的方式,以维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。所采行的方式,通过一序列信号,配合调整各所述电阻R1,R2,....,RN的阻值达成。具体说明如下。Therefore, in order to avoid the decrease in the accuracy of the comparison, judgment and identification between the detected voltage and the voltage range of the look-up table due to the smaller voltage difference between the LED modules at the rear, the present invention connects them in parallel. The sequenced LED light string maintains the same current by adjusting the resistance value of each of the resistors R 1 , R 2 ,..., RN , so that the voltage difference between any two LED modules maintains Fixed to improve the accuracy of comparison, judgment and identification between the detected voltage and the voltage range of the look-up table. The adopted method is achieved by adjusting the resistance of each of the resistors R 1 , R 2 , . . . , R N through a sequence of signals. The details are as follows.
所述序列信号为一脉波信号,即具有高、低准位交错变化的信号,并且每个高准位(或者低准位)可用以作为序列的依据。意即,第一个周期可视为第一次序、第二个周期可视为第二次序…依此类推。The sequence signal is a pulse wave signal, that is, a signal with alternating high and low levels, and each high level (or low level) can be used as a basis for the sequence. That is, the first cycle can be considered as the first order, the second cycle as the second order...and so on.
因此,当第一次上电时,因为各所述电阻R1,R2,....,RN为并联的状态,因此等效电阻值最小,所以流过的电流最大。可以得到所述脉波信号的第一个次序(第一个周期)所对应的第一电压V1大小。Therefore, when the power is turned on for the first time, because the resistors R 1 , R 2 , ... , R N are connected in parallel, the equivalent resistance value is the smallest, so the current flowing is the largest. The magnitude of the first voltage V1 corresponding to the first sequence (first period) of the pulse signal can be obtained.
当第一次上电结束,可通过将所述第一电阻R1关闭,例如将所述第一电阻R1的阻值调整为相当大的值,对电流而言如同开路,使得流经所述第一电阻R1的电流趋近为零,或者通过串联所述第一电阻R1的开关元件关断,使得流经所述第一电阻R1的电流为零,并且将第二发光二极管模组12的第二电阻R2至最后一个发光二极管模组的电阻(例如第100个电阻),即剩余的99个电阻的阻值皆减小,例如但不限制为原阻值的1/100。因此,由于剩余的电阻的阻值皆减小,使得并联后的等效电阻值会相同,如此可使得流过的电流相同。当再次上电时,可以得到所述脉波信号的第二个次序(第二个周期)所对应的第二电压V2大小。When the first power-on is completed, the first resistor R1 can be turned off, for example, the resistance value of the first resistor R1 can be adjusted to a relatively large value, which is like an open circuit for the current, so that the current flowing through the The current of the first resistor R1 approaches zero, or the switching element connected in series with the first resistor R1 is turned off, so that the current flowing through the first resistor R1 is zero, and the second light-emitting diode From the second resistor R2 of the
同样地,当第二次上电结束,可通过将所述第一电阻R1与第二电阻R2皆关闭,例如将所述第一电阻R1与第二电阻R2的阻值调整为相当大的值,对电流而言如同开路,使流经所述第一电阻R1与第二电阻R2的电流趋近为零,并且将第三发光二极管模组12的第三电阻R3至最后一个发光二极管模组的电阻(例如第100个电阻),即剩余的98个电阻的阻值皆减小,例如但不限制为前此阻值的1/100。因此,由于剩余的电阻的阻值皆减小,使得并联后的等效电阻值会相同,如此可使得流过的电流相同。当再次上电时,可以得到所述脉波信号的第三个次序(第三个周期)所对应的第三电压V3大小。借此,可通过序列信号作为序列的依据,并且配合调整(减小)剩余电阻的阻值的方式,维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。Similarly, when the second power-on ends, both the first resistor R1 and the second resistor R2 can be turned off, for example, the resistance values of the first resistor R1 and the second resistor R2 can be adjusted to A relatively large value is like an open circuit for the current, making the current flowing through the first resistor R1 and the second resistor R2 approach to zero, and the third resistor R3 of the
相较于图1A的定电压供电,图1B的定电流供电的阻抗补偿则是通过将剩余的电阻的阻值皆增大,使得并联后的等效电阻值会增加,如此可使得流过的电流变小。借此,可通过序列信号作为序列的依据,并且配合调整(增大)剩余电阻的阻值的方式,维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。Compared with the constant voltage power supply in Figure 1A, the impedance compensation of the constant current power supply in Figure 1B is to increase the resistance value of the remaining resistors, so that the equivalent resistance value after parallel connection will increase, so that the flow through The current becomes smaller. In this way, the sequence signal can be used as the basis of the sequence, and the resistance value of the remaining resistor can be adjusted (increased) to maintain the same current, so that the voltage difference between any two LED modules can be kept constant, so as to improve the detection efficiency. The accuracy of comparison, judgment and identification between the measured voltage and the voltage range of the look-up table.
请参见图2A与图2B所示,其分别为本发明定电压源供电的并联定序的发光二极管灯串的第二实施例的电路图与本发明定电流源供电的并联定序的发光二极管灯串的第二实施例的电路图。为方便说明,同样以提供定电压源的图2A与图3A为例,并且可适用于图2B提供定电流源的所述供电电源Idc,将不再加以赘述,仅就提供定电压源的所述供电电源Vdc的操作原理加以说明如下。Please refer to FIG. 2A and FIG. 2B , which are respectively the circuit diagram of the second embodiment of the parallel sequenced LED lamp string powered by the constant voltage source of the present invention and the parallel sequenced LED lamp powered by the constant current source of the present invention. Circuit diagram of the second embodiment of the string. For the convenience of description, also take the example of FIG. 2A and FIG. 3A that provide a constant voltage source, and is applicable to the power supply Idc that provides a constant current source in FIG. 2B . The operating principle of the power supply Vdc described above is explained as follows.
图2A所示的发光二极管灯串与图1A所示的发光二极管灯串最大的差异在于:图2A的发光二极管灯串中的每个发光二极管模组11,12,…,1N内的阻值并不具备如图1A为可控的特性,亦即,为达成阻值补偿的效果,图2A所示的发光二极管灯串还包含补偿单元20,用以取代如图1A中每个发光二极管模组11,12,…,1N内的阻值的可控调整。换言之,在图1A与图1B所实施的具备可调整阻值(即阻值可控)的补偿方式,将通过补偿单元20所实现,因此,不仅可简化电路控制,亦可节省电路成本。其中,补偿单元20为一积体电路(IC),其具有计数功能,或者补偿单元20为数比电路与数位电路兜成的线路,其具有计数功能。The biggest difference between the LED light string shown in FIG. 2A and the LED light string shown in FIG. 1A is: the resistance value of each
当第一次上电时,因为各所述电阻R1,R2,....,RN为并联的状态,因此等效电阻值最小,所以流过的电流最大。可以得到所述脉波信号的第一个次序(第一个周期)所对应的第一电压V1大小。When the power is turned on for the first time, because the resistors R 1 , R 2 , ... , R N are connected in parallel, the equivalent resistance value is the smallest, so the flowing current is the largest. The magnitude of the first voltage V1 corresponding to the first sequence (first period) of the pulse signal can be obtained.
当第一次上电结束,可通过将所述第一电阻R1关闭,并且控制减小补偿单元20的阻抗(即补偿单元20的阻抗补偿),使得并联后的等效电阻值会相同,如此可使得流过的电流相同。当再次上电时,可以得到所述脉波信号的第二个次序(第二个周期)所对应的第二电压V2大小。When the first power-on ends, the first resistor R1 can be turned off, and the impedance of the
同样地,当第二次上电结束,可通过将所述第一电阻R1与第二电阻R2皆关闭,并且控制再减小补偿单元20的阻抗,使得并联后的等效电阻值会相同,即第一电阻R1与第二电阻R2皆关闭时补偿单元20的阻抗会小于仅第一电阻R1关闭时的阻抗(即补偿单元20的阻抗补偿),如此可使得流过的电流相同。当再次上电时,可以得到所述脉波信号的第三个次序(第三个周期)所对应的第三电压V3大小。借此,可通过序列信号作为序列的依据,并且配合调整(减小)补偿单元20的阻抗,维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压辨识的准确度。Similarly, when the second power-on ends, both the first resistor R 1 and the second resistor R 2 can be turned off, and the impedance of the
相较于图2A的定电压供电,图2B的定电流供电的阻抗补偿则是通过将补偿单元20的阻值增大,使得并联后的等效电阻值会增加,如此可使得流过的电流变小。借此,可通过序列信号作为序列的依据,并且配合调整(增大)补偿单元20的阻值的方式,维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压辨识的准确度。Compared with the constant voltage power supply in FIG. 2A , the impedance compensation of the constant current power supply in FIG. 2B is to increase the resistance value of the
请参见图4所示,其为本发明可控制电阻实施方式的电路方块图。承前所述,各所述发光二极管模组11,12,…,1N的所述电阻R1,R2,....,RN可为阻值可调整的一可控制电阻R11。再者,所述可控制电阻R11串联连接一开关单元Q11,例如但不限制为一电晶体开关。借此,可通过调整所述可控制电阻R11的阻值为减小的值,特别地当设计为最小值时,将使得流经各所述控制电阻R11的电流最大,因此在各所述发光二极管模组11,12,…,1N上产生的电压V1,V2,…,VN可为最大,借此可提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度,或者,可通过将所述可控制电阻R11的阻值调整为相当大的值,或者关断所述开关单元Q11,使得流经所述可控制电阻R11的电流趋近为零或等于零,借此维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。Please refer to FIG. 4 , which is a circuit block diagram of a controllable resistance embodiment of the present invention. As mentioned above, the resistors R 1 , R 2 , . . . , RN of each of the
请参见图5所示,其为本发明多电阻实施方式的电路方块图。相较于图4所示的阻值可调整的可控制电阻,本发明亦可通过多电阻并联的方式(如图所示的两个电阻R21,R22),达成不同阻值的设计。各所述电阻R21,R22分别对应串联连接一开关单元Q21,Q22,即电阻R21串联连接开关单元Q21,电阻R22串联连接开关单元Q22。以两个电阻R21,R22与两个开关单元Q21,Q22为例,若要产生较小的电阻值,可通过导通开关单元Q21,Q22,使得电阻R21,R22为并联连接。若要产生较大的电阻值,可通过关断至少一个开关单元Q21,Q22,甚至同时关断两者开关单元Q21,Q22,使得等效为开路的状态。借此,同样可实现前述可提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度以及维持电流一致,使得任两发光二极管模组之间的电压差维持固定,以提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。此外,还包含一稳压单元31与一模拟数字转换单元32。所述稳压单元31并联耦接各所述电阻R21,R22与各所述开关单元Q21,Q22,用以提供稳压的操作。所述模拟数字转换单元32耦接所述稳压单元31,用以提供模拟信号转换为数字信号的操作之用。Please refer to FIG. 5 , which is a circuit block diagram of a multi-resistor embodiment of the present invention. Compared with the controllable resistor with adjustable resistance shown in FIG. 4 , the present invention can also achieve different resistance designs by connecting multiple resistors in parallel (two resistors R21 and R22 as shown in the figure). Each of the resistors R21, R22 is correspondingly connected in series with a switch unit Q21, Q22, that is, the resistor R21 is connected in series with the switch unit Q21, and the resistor R22 is connected in series with the switch unit Q22. Taking two resistors R21, R22 and two switch units Q21, Q22 as an example, if a smaller resistance value is to be generated, the resistors R21, R22 can be connected in parallel by turning on the switch units Q21, Q22. To generate a larger resistance value, at least one switch unit Q21, Q22 can be turned off, or even both switch units Q21, Q22 can be turned off at the same time, so that the state is equivalent to an open circuit. In this way, it is also possible to improve the accuracy of the comparison, judgment and identification between the detected voltage and the voltage range of the look-up table, as well as maintain the consistency of the current, so that the voltage difference between any two LED modules remains constant. , so as to improve the accuracy of comparison, judgment and identification between the detected voltage and the voltage range of the look-up table. In addition, a
请参见图6所示,其为本发明计数操作的电路方块图,亦为补偿单元的方块图,用以实现可调整阻值(即阻值可控)的补偿方式。Please refer to FIG. 6 , which is a circuit block diagram of the counting operation of the present invention, and is also a block diagram of a compensation unit, which is used to realize a compensation method with adjustable resistance (that is, controllable resistance).
综上所述,本发明具有以下的特征与优点:In summary, the present invention has the following features and advantages:
1、通过内建查找表所提供的电压范围信息,提供侦测电压的对应查找,并且根据电压大小的差异,以决定发光二极管模组的灯序,借此可简化电路设计、快速地完成发光二极管灯串的定序。1. Through the voltage range information provided by the built-in lookup table, provide the corresponding search for the detection voltage, and determine the light sequence of the LED module according to the difference in voltage, so as to simplify the circuit design and quickly complete the light emission Sequencing of diode strings.
2、通过使用阻值可调整的可控制电阻或者若干电阻的并联设计或者补偿单元20的阻值调整,可达到提高所侦测到的电压与查找表的电压范围的比对、判断、辨识的准确度。2. By using a controllable resistor with adjustable resistance or a parallel design of several resistors or adjusting the resistance of the
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110551027.XA CN115379616A (en) | 2021-05-20 | 2021-05-20 | Parallel sequenced light-emitting diode lamp string |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110551027.XA CN115379616A (en) | 2021-05-20 | 2021-05-20 | Parallel sequenced light-emitting diode lamp string |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115379616A true CN115379616A (en) | 2022-11-22 |
Family
ID=84058649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110551027.XA Pending CN115379616A (en) | 2021-05-20 | 2021-05-20 | Parallel sequenced light-emitting diode lamp string |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115379616A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117542310A (en) * | 2023-11-24 | 2024-02-09 | 深圳御光新材料有限公司 | Online address writing method and device, electronic equipment and storage medium |
CN117612479A (en) * | 2023-11-24 | 2024-02-27 | 深圳御光新材料有限公司 | Selection circuit, LED display device and LED lamp strip |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110084621A1 (en) * | 2009-10-09 | 2011-04-14 | Au Optronics Corp. | Light-emitting adjustment method and display device |
US20120299492A1 (en) * | 2010-02-03 | 2012-11-29 | Shunji Egawa | Led driving circuit |
US20140159586A1 (en) * | 2012-12-11 | 2014-06-12 | Panasonic Corporation | Visible light communication device |
CN204795757U (en) * | 2015-07-03 | 2015-11-18 | 周玉龙 | LED lamp drive protection circuit |
CN105101521A (en) * | 2014-05-20 | 2015-11-25 | 名科半导体股份有限公司 | Light emitting diode circuit and driving method thereof |
-
2021
- 2021-05-20 CN CN202110551027.XA patent/CN115379616A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110084621A1 (en) * | 2009-10-09 | 2011-04-14 | Au Optronics Corp. | Light-emitting adjustment method and display device |
US20120299492A1 (en) * | 2010-02-03 | 2012-11-29 | Shunji Egawa | Led driving circuit |
US20140159586A1 (en) * | 2012-12-11 | 2014-06-12 | Panasonic Corporation | Visible light communication device |
CN105101521A (en) * | 2014-05-20 | 2015-11-25 | 名科半导体股份有限公司 | Light emitting diode circuit and driving method thereof |
CN204795757U (en) * | 2015-07-03 | 2015-11-18 | 周玉龙 | LED lamp drive protection circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117542310A (en) * | 2023-11-24 | 2024-02-09 | 深圳御光新材料有限公司 | Online address writing method and device, electronic equipment and storage medium |
CN117612479A (en) * | 2023-11-24 | 2024-02-27 | 深圳御光新材料有限公司 | Selection circuit, LED display device and LED lamp strip |
CN117612479B (en) * | 2023-11-24 | 2024-07-19 | 深圳御光新材料有限公司 | Selection circuit, LED display device and LED lamp strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6113885B2 (en) | Lighting device to which semiconductor light emitting element is applied | |
US8492986B2 (en) | LED circuit arrangement with improved flicker performance | |
US9198242B2 (en) | Apparatus for driving LEDs using high voltage | |
CN102781146B (en) | driving circuit of light emitting diode string and driving method thereof | |
CN101730342A (en) | Apparatus for driving light emitting device | |
TW201408127A (en) | Light emitting diode driving apparatus | |
CN115379616A (en) | Parallel sequenced light-emitting diode lamp string | |
TWI760202B (en) | LED driving system, driving device and brightness control circuit | |
TWI594664B (en) | Light-emitting diode driving device and short protection method for driving device | |
TWI611727B (en) | Light emitting driving apparatus and signal modulating module thereof | |
CN108307557B (en) | Method and apparatus for correcting power harmonics | |
TW200301881A (en) | LED driving circuit | |
CN103517497B (en) | Light-emitting diode controller, light-emitting system and control method | |
US11546981B1 (en) | LED light string with automatic sequencing function and method of automatically sequencing the same | |
CN106982489A (en) | light emitting diode driving device and signal adjusting module thereof | |
TWI767698B (en) | Parallel sequenced led light string | |
CN110035576A (en) | LED drive | |
US11950338B2 (en) | Parallel sequenced LED light string | |
TWI779721B (en) | Led light string with automatic sequencing function and method of automatically sequencing the same | |
JP2014197656A (en) | LED drive circuit | |
CN210781465U (en) | A non-isolated flyback LED constant current source based on current mirror | |
KR20110065698A (en) | Driving Device of LED Array | |
US10537008B2 (en) | Universal method for driving LEDs using high voltage | |
CN115696670A (en) | LED lamp string with automatic sequencing function and automatic sequencing method thereof | |
CN114724494B (en) | Display screen, display algorithm, display data processing method and current adjusting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |