[go: up one dir, main page]

CN115377606B - 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用 - Google Patents

一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用 Download PDF

Info

Publication number
CN115377606B
CN115377606B CN202211012444.8A CN202211012444A CN115377606B CN 115377606 B CN115377606 B CN 115377606B CN 202211012444 A CN202211012444 A CN 202211012444A CN 115377606 B CN115377606 B CN 115377606B
Authority
CN
China
Prior art keywords
polyacrylonitrile
chitosan
lithium
preparation
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211012444.8A
Other languages
English (en)
Other versions
CN115377606A (zh
Inventor
黄雅钦
谷明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202211012444.8A priority Critical patent/CN115377606B/zh
Publication of CN115377606A publication Critical patent/CN115377606A/zh
Application granted granted Critical
Publication of CN115377606B publication Critical patent/CN115377606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本发明涉及一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用,在聚丙烯腈溶液中超声分散壳聚糖,形成分散均匀的悬浊液;利用静电纺丝技术将上述所得悬浊液纺在铝箔表面,形成静电纺丝纳米纤维膜,之后在室温下静置令溶剂挥发完;加热,使得聚丙烯腈转化为预氧化聚丙烯腈,即得。本发明同时解决了在电池循环过程中锂枝晶的产生及多硫化物穿梭的问题,制备的壳聚糖/聚丙烯腈隔膜具有优异的循环稳定性及库伦效率。

Description

一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制 备方法和应用
技术领域
本发明属于锂电池隔膜技术领域,具体涉及一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用。
背景技术
能源是人类赖以生存的基础,是推动人类世界发展的最基本驱动力。由经济发展带来的能源短缺以及环境污染等问题变得日益严峻。新型的可再生能源,诸如水能、太阳能等的利用,电动汽车等的逐步市场化,各种便携式设备的快速发展,均需要高效实用的能量储运体系,但是对于新型的“绿色”储能器件,在关切其“绿色”的同时,能够决定其是否适合工业化应用的关键是其是否具有高功率密度、高能量密度等重要指标。新型的电源体系,特别是二次电池是目前重要的“绿色”储能装置。
已经市场化的锂离子电池的能量密度已经接近它的理论能量密度,不能很好地满足一些新兴移动设备对电能高能量密度的需求。锂硫电池是一种前景十分光明的储能系统,理论比能量可以达到2600 Wh/kg,其原材料获取成本低廉、环境友好,因而锂硫电池具有巨大的发展空间。但锂硫电池在实际应用过程中存在一些严重的问题——一方面体现在多硫化物的“穿梭效应”,即在充放电反应过程中,硫会还原成为可溶性长链多硫化锂(Li2Sm,4≤m≤8),生成的Li2Sm会溶于电解液中并随之发生迁移,形成穿梭。在穿梭过程中,Li2Sm会进一步歧化生成绝缘的Li2S2和Li2S,造成活性物质损失,导致电池容量衰减;另一方面表现为锂枝晶的产生及生长,锂枝晶生长到一定的程度会与负极分离进入电解液形成“死锂”,从而降低负极金属利用率,锂枝晶的产生和发展严重妨碍了电池的长循环稳定性及电池的安全性等。因此,现在急需开发一种稳定安全的高性能锂硫电池隔膜以促进锂电池行业的高效发展。
发明内容
为了解决现有技术中存在的上述问题,更好地满足社会发展对于稳定安全的二次可充放锂电池的需求,本发明提供一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用,同时解决了在电池循环过程中锂枝晶的产生及多硫化物穿梭的问题,具有优异的循环稳定性及库伦效率。
为了实现发明目的,本发明采用如下技术方案:一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜的制备方法,包括以下步骤:
(1)在聚丙烯腈溶液中超声分散壳聚糖粉末,形成分散均匀的悬浊液;
(2)利用静电纺丝技术将上述悬浊液纺在铝箔表面,形成静电纺丝纳米纤维膜,之后在室温下静置令溶剂挥发完,形成壳聚糖/聚丙烯腈纤维膜;
(3)将壳聚糖/聚丙烯腈纤维膜进行加热处理,使得聚丙烯腈转化为预氧化聚丙烯腈;
(4)干燥后即得到所需锂硫电池隔膜。
在本发明的优选的实施方式中,步骤(1)中,将聚丙烯腈(PAN)溶解在N,N-二甲基甲酰胺(DMF)溶液中得到分散均匀的溶液,再将壳聚糖超声分散1-12h于上述溶液,室温条件下恒温磁力搅拌6-24h,得到分散均匀的悬浊液。
在本发明的优选的实施方式中,步骤(1)中,壳聚糖和聚丙烯腈的质量比为1:1-1:5,使得最终聚丙烯腈的质量浓度为8.33wt%-12wt%。
在本发明的优选的实施方式中,步骤(1)中,壳聚糖/聚丙烯腈溶液质量浓度为10-20wt%。
在本发明的优选的实施方式中,步骤(2)中,利用静电纺丝技术制得包含有壳聚糖的聚丙烯腈纤维膜,并使其附着在铝箔表面,膜厚度为0.05-0.10mm。
在本发明的优选的实施方式中,步骤(3)中,所述的加热处理为在马弗炉中120-350℃条件下进行预氧化处理,升温速率为1-5℃/min,在120-350℃下的保温时间为1-5小时,保温后自然降温至20-50℃,使得聚丙烯腈纳米纤维转化为部分氧化的PAN(oxy-PAN)。
本发明还保护上述制备方法制备得到的多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜。
本发明还保护所述的多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜用于制备多功能锂硫电池。
在本发明的优选的实施方式中,将所述的隔膜与两片金属锂片负极组装成纽扣电池,或是,将所述的隔膜与金属锂片负极、硫正极片组装成纽扣电池。
在本发明的优选的实施方式中,所述的硫正极片的制备方法为:将高纯升华硫、导电炭黑和明胶溶液以质量比63:30:7进行机械混合,明胶质量浓度为1-5%,得到粘性浆料,将其涂覆在用酒精清洁后的铝箔之上,铝箔在40-80°C的烘箱中干燥6-24h后取出,用压片机将铝箔切成直径为10-15mm的圆片。
在本发明的优选的实施方式中,所使用的电池电解液的溶剂为DOL/DME=1:1(体积比),包含1M LiTFSI和0.4M LiNO3作为溶质。
在本发明的优选的实施方式中,所组装的纽扣电池静置时间为8-12小时;其中,锂对电池在电流密度为1mA/cm2条件下沉积/剥离,锂硫电池在倍率为0.5C条件下进行充放电循环测试。
与现有技术相比,本发明的有益效果如下:
本发明所使用的主要材料壳聚糖为天然生物高分子,具有很好的吸附性、离子选择性和生物可降解性等理化性能。壳聚糖丰富的极性官能团与预氧化聚丙烯腈含氧官能团的协同作用,加之静电纺丝膜的三维立体结构可以高效捕获多硫化物,调节锂的沉积/剥离行为,有效避免在电池循环过程中锂枝晶的生长,抑制穿梭效应,提高锂硫电池的长循环稳定性和安全性。
附图说明
下面结合附图做进一步说明:
图1为本发明的实施例1中制备的隔膜所组成的锂对电池与普通隔膜所组成的锂对电池的循环性能对比图;
图2为本发明的实施例1中制备的隔膜所组成的锂硫电池与普通隔膜所组成的锂硫电池的放电比容量对比图;
图3为本发明的实施例1中制备的隔膜所组成的锂硫电池与普通隔膜所组成的锂硫电池的库伦效率对比图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明所包含范围不限于此,对本发明所做的任何形式上的变通或改变都应在本发明的保护范围内。
实施例中所用电池隔膜为普通商业隔膜—Celgard 2325。
实施例1
(1)制备稳定安全的隔膜
准确称取1.2g聚丙烯腈(PAN)溶解于8.5g N,N-二甲基甲酰胺(DMF)溶液中,准确称取0.3g壳聚糖(CS)将其分散在上述溶液中,超声2h,30℃恒温下搅拌12h,之后利用静电纺丝机将其在铝箔上纺成纳米纤维膜(膜厚度为0.06mm),步骤(2)中利用静电纺丝技术具体参数为:采用22号针头,接收距离18cm,纺丝电压16KV,推进速度0.1mm/min,温度30℃,湿度50%,将其室温下静置12小时。
将上述制备所得的纳米纤维膜在马弗炉中进行预氧化加热工艺处理,加热过程的温度区间为室温至230℃,升温速率为2℃/min,在230℃下的保温时间为2小时,保温后自然降温至30℃将材料取出并利用裁片机将其裁成直径为19mm的小圆片。
(2)制备锂对电池与锂硫电池
将上述隔膜与两片普通金属锂片负极在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置10小时。同样地,取普通隔膜与两片锂金属片组装成锂对电池作为对照。
将上述隔膜与普通金属锂片负极、硫正极片在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置10小时。同样地,取普通隔膜与锂金属片、硫正极组装成锂硫电池作为对照。
(3)锂对电池的电化学性能测试
在充放电设备上对锂对电池进行循环性能测试,测试条件为:充放电流密度1.0mA/cm2,充放电量1.0mAh/cm2。如图1所示即为二者循环性能测试结果。由图中数据可见,利用本发明所制备隔膜组装的锂对电池具有更小的极化电压以及更长更稳定的循环周期,说明本发明所提供的隔膜制备方法及所得隔膜是行之有效的。
(4)锂硫电池的电化学性能测试
在充放电设备上对锂硫电池进行循环性能测试,测试条件为0.5C。如图2所示即为二者循环性能测试结果。由图中数据可见,利用本发明所制备隔膜组装的锂硫电池具有更高的放电比容量以及更稳定的循环效率,说明本发明所提供的隔膜制备方法及所得的隔膜是可行的。
实施例2
(1)制备稳定安全的隔膜
准确称取1.0g聚丙烯腈(PAN)溶解于8.0g N,N-二甲基甲酰胺(DMF)溶液中,准确称取1.0g壳聚糖(CS)将其分散在上述溶液中,超声1h,30℃恒温下搅拌6h,之后利用静电纺丝机将其在铝箔上纺成纳米纤维膜(膜厚度为0.10mm),步骤(2)中利用静电纺丝技术具体参数为:采用22号针头,接收距离18cm,纺丝电压16KV,推进速度0.1mm/min,温度30℃,湿度50%,将其室温下静置12小时。
将上述制备所得的纳米纤维膜在马弗炉中进行预氧化加热工艺处理,加热过程的温度区间为室温至350℃,升温速率为5℃/min,在350℃下的保温时间为1小时,保温后自然降温至50℃将材料取出并利用裁片机将其裁成直径为19mm的小圆片。
(2)制备锂对电池与锂硫电池
将上述隔膜与两片普通金属锂片负极在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置8小时。同样地,取普通隔膜与两片锂金属片组装成锂对电池作为对照。
将上述隔膜与普通金属锂片负极、硫正极片在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置8小时。同样地,取普通隔膜与锂金属片、硫正极组装成锂硫电池作为对照。
(3)锂对电池的电化学性能测试
在充放电设备上对锂对电池进行循环性能测试,测试条件为:充放电流密度1.0mA/cm2,充放电量1.0mAh/cm2。利用本发明所制备隔膜组装的锂对电池具有更小的极化电压以及更长更稳定的循环周期。
(4)锂硫电池的电化学性能测试
在充放电设备上对锂硫电池进行循环性能测试,测试条件为0.5C。利用本发明所制备隔膜组装的锂硫电池具有更高的放电比容量以及更稳定的循环效率。
实施例3
(1)制备稳定安全的隔膜
准确称取0.833g聚丙烯腈(PAN)溶解于9.0g N,N-二甲基甲酰胺(DMF)溶液中,准确称取0.167g壳聚糖(CS)将其分散在上述溶液中,超声12h,30℃恒温下搅拌24h,之后利用静电纺丝机将其在铝箔上纺成纳米纤维膜(膜厚度为0.05mm),步骤(2)中利用静电纺丝技术具体参数为:采用22号针头,接收距离18cm,纺丝电压16KV,推进速度0.1mm/min,温度30℃,湿度50%,将其室温下静置12小时。
将上述制备所得的纳米纤维膜在马弗炉中进行预氧化加热工艺处理,加热过程的温度区间为室温至120℃,升温速率为1℃/min,在120℃下的保温时间为5小时,保温后自然降温至20℃将材料取出并利用裁片机将其裁成直径为19mm的小圆片。
(2)制备锂对电池与锂硫电池
将上述隔膜与两片普通金属锂片负极在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置12小时。同样地,取普通隔膜与两片锂金属片组装成锂对电池作为对照。
将上述隔膜与普通金属锂片负极、硫正极片在手套箱中组装成CR2025型纽扣电池,电解液为DOL/DME=1:1(体积比)+1M LiTFSI+0.4M LiNO3,将组装好的电池静置12小时。同样地,取普通隔膜与锂金属片、硫正极组装成锂硫电池作为对照。
(3)锂对电池的电化学性能测试
在充放电设备上对锂对电池进行循环性能测试,测试条件为:充放电流密度1.0mA/cm2,充放电量1.0mAh/cm2。利用本发明所制备隔膜组装的锂对电池具有更小的极化电压以及更长更稳定的循环周期。
(4)锂硫电池的电化学性能测试
在充放电设备上对锂硫电池进行循环性能测试,测试条件为0.5C。利用本发明所制备隔膜组装的锂硫电池具有更高的放电比容量以及更稳定的循环效率。
本领域技术人员将会认识到,在不偏离本发明的保护范围的前提下,可以对上述实施方式进行各种修改、变化和组合,并且认为这种修改、变化和组合是在独创性思想的范围之内。

Claims (10)

1.一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜的制备方法,其特征在于,包括以下步骤:
(1)在聚丙烯腈溶液中超声分散壳聚糖粉末,形成分散均匀的悬浊液;
(2)利用静电纺丝技术将上述悬浊液纺在铝箔表面,形成静电纺丝纳米纤维膜,之后在室温下静置令溶剂挥发完,形成壳聚糖/聚丙烯腈纤维膜;
(3)将壳聚糖/聚丙烯腈纤维膜进行加热处理,使得聚丙烯腈转化为预氧化聚丙烯腈;
(4)干燥后即得到所述的壳聚糖/聚丙烯腈隔膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,将聚丙烯腈(PAN)溶解在N,N-二甲基甲酰胺(DMF)溶液中得到分散均匀的溶液,再将壳聚糖超声分散1-12h于上述溶液,室温条件下恒温磁力搅拌6-24h,得到分散均匀的悬浊液。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,壳聚糖和聚丙烯腈的质量比为1:1-1:5,使得最终聚丙烯腈的质量浓度为8.33wt%-12wt%;壳聚糖/聚丙烯腈溶液质量浓度为10-20wt%。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,利用静电纺丝技术制得包含有壳聚糖的聚丙烯腈纤维膜,并使其附着在铝箔表面,膜厚度为0.05-0.10mm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的加热处理为在马弗炉中120-350℃条件下进行预氧化处理,升温速率为1-5℃/min,在120-350℃下的保温时间为1-5小时,保温后自然降温至20-50℃,使得聚丙烯腈纳米纤维转化为部分氧化的PAN(oxy-PAN)。
6.根据权利要求1-5中任一项所述的制备方法制备得到的多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜。
7.根据权利要求6所述的多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜在制备多功能锂硫电池中的应用。
8.根据权利要求7所述的应用,其特征在于,将所述的隔膜与两片金属锂片负极组装成纽扣电池,或是,将所述的隔膜与金属锂片负极、硫正极片组装成纽扣电池。
9.根据权利要求8所述的应用,其特征在于,所述的硫正极片的制备方法为:将升华硫、导电炭黑和明胶溶液以质量比63:30:7进行机械混合,明胶质量浓度为1-5%,得到粘性浆料,将其涂覆在用酒精清洁后的铝箔之上,铝箔在40-80°C的烘箱中干燥6-24h后取出,用压片机将铝箔切成直径为10-15mm的圆片。
10.根据权利要求8-9中任一项所述的应用,其特征在于,所使用的电池电解液的溶剂为DOL/DME=1:1(体积比),包含1M LiTFSI和0.4M LiNO3作为溶质;所组装的纽扣电池静置时间为8-12小时;其中,锂对电池在电流密度为1mA/cm2条件下沉积/剥离,锂硫电池在倍率为0.5C条件下进行充放电循环测试。
CN202211012444.8A 2022-08-23 2022-08-23 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用 Active CN115377606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211012444.8A CN115377606B (zh) 2022-08-23 2022-08-23 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211012444.8A CN115377606B (zh) 2022-08-23 2022-08-23 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115377606A CN115377606A (zh) 2022-11-22
CN115377606B true CN115377606B (zh) 2023-12-12

Family

ID=84067866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211012444.8A Active CN115377606B (zh) 2022-08-23 2022-08-23 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115377606B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284516B (zh) * 2023-02-07 2025-03-21 国科广化精细化工孵化器(南雄)有限公司 一种萜烯多硫低聚物/聚丙烯腈复合材料及其制备与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697901B1 (ja) * 2010-01-21 2011-06-08 平松産業株式会社 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ
KR20160140260A (ko) * 2015-05-29 2016-12-07 한국과학기술원 전도성 박막이 코팅된 이중 평균 직경 분포를 갖는 3차원 나노섬유 네트워크 및 이를 중간전극으로 이용한 리튬-황 전지
CN106362604A (zh) * 2016-11-24 2017-02-01 陕西聚洁瀚化工有限公司 聚电解质涂层和纳米纤维膜复合滤膜的制备方法
CN107732104A (zh) * 2017-09-27 2018-02-23 肇庆市华师大光电产业研究院 一种应用于锂硫电池中的正极功能性隔层的制备方法
CN108998892A (zh) * 2017-06-07 2018-12-14 南京理工大学 一种壳聚糖-氧化石墨烯/聚丙烯腈双层纳米纤维膜的制备方法
CN109868528A (zh) * 2019-01-30 2019-06-11 西南大学 一种一维多孔碳纳米纤维材料及其制备方法和应用
WO2020191003A1 (en) * 2019-03-21 2020-09-24 Ford Cheer International Limited Electrospun composite separator for electrochemical devices and applications of same
CN112452306A (zh) * 2020-11-09 2021-03-09 陈杰亮 一种用于吸附水中铅离子的改性聚丙烯腈纤维膜
CN112768834A (zh) * 2019-10-22 2021-05-07 天津工业大学 一种静电纺制备聚丙烯腈/磺化聚醚醚酮锂硫电池隔膜材料的方法
CN113241501A (zh) * 2021-05-10 2021-08-10 中国科学技术大学 一种阻燃、易成炭锂离子电池隔膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527504B1 (en) * 2010-01-21 2017-11-22 Tec One Co., Ltd. Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
JP2015515435A (ja) * 2012-03-02 2015-05-28 コーネル・ユニバーシティーCornell University リチウム含有ナノファイバー
WO2017103783A1 (en) * 2015-12-14 2017-06-22 King Abdullah University Of Science And Technology Lithium-sulfur battery, a dual blocking layer, methods of making, and methods of use thereof
EP3674354A4 (en) * 2017-08-25 2021-07-28 Beijing Normal University COMPOSITE POROUS MEMBRANE AND PROCESSES FOR PREPARATION AND USE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697901B1 (ja) * 2010-01-21 2011-06-08 平松産業株式会社 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ
KR20160140260A (ko) * 2015-05-29 2016-12-07 한국과학기술원 전도성 박막이 코팅된 이중 평균 직경 분포를 갖는 3차원 나노섬유 네트워크 및 이를 중간전극으로 이용한 리튬-황 전지
CN106362604A (zh) * 2016-11-24 2017-02-01 陕西聚洁瀚化工有限公司 聚电解质涂层和纳米纤维膜复合滤膜的制备方法
CN108998892A (zh) * 2017-06-07 2018-12-14 南京理工大学 一种壳聚糖-氧化石墨烯/聚丙烯腈双层纳米纤维膜的制备方法
CN107732104A (zh) * 2017-09-27 2018-02-23 肇庆市华师大光电产业研究院 一种应用于锂硫电池中的正极功能性隔层的制备方法
CN109868528A (zh) * 2019-01-30 2019-06-11 西南大学 一种一维多孔碳纳米纤维材料及其制备方法和应用
WO2020191003A1 (en) * 2019-03-21 2020-09-24 Ford Cheer International Limited Electrospun composite separator for electrochemical devices and applications of same
CN112768834A (zh) * 2019-10-22 2021-05-07 天津工业大学 一种静电纺制备聚丙烯腈/磺化聚醚醚酮锂硫电池隔膜材料的方法
CN112452306A (zh) * 2020-11-09 2021-03-09 陈杰亮 一种用于吸附水中铅离子的改性聚丙烯腈纤维膜
CN113241501A (zh) * 2021-05-10 2021-08-10 中国科学技术大学 一种阻燃、易成炭锂离子电池隔膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers;Sam Soo Kim, Jaewoong Lee;Carbohydrate Polymers;102(2014);231-237页 *
Liquid-Assisted Electrospinning Three-Dimensional Polyacrylonitrile Nanofiber Crosslinked with Chitosan;Xiaoli Yang;Journal of Nanomaterials;12(2021);1-9页 *
Preparation of various nanofiber layers using wire electrospinning system;Fatma Yalcinkaya;Arabian Journal of Chemistry;12(8);5162-5172页 *

Also Published As

Publication number Publication date
CN115377606A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN111653717B (zh) 一种复合隔膜的制备方法、复合隔膜和锂离子电池
CN107959049B (zh) 凝胶电解质的制备方法、凝胶电解质及锂离子电池
CN104124414B (zh) 一种锂离子电池复合电极片及其制备方法和锂离子电池
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN103904291B (zh) 水系锂离子电池电极及其制备方法、水系锂离子电池
CN103811719B (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
CN110828802B (zh) 一种高功率水系锌离子电池正极材料的制备方法
CN114335701A (zh) 一种复合固态电解质膜及其制备方法
CN110364761B (zh) 一种高能量密度长循环磷酸铁锂电池
CN105470564A (zh) 一种固体电解质膜及其制备方法和锂离子电池
CN110611084B (zh) 一种具有长循环寿命和100%库伦效率的锂硫二次电池
CN102709597A (zh) 一种复合全固态聚合物电解质锂离子电池及其制备方法
CN101222055B (zh) 一种锂电池用共聚物基聚合物电解质材料、复合电解质膜及其制备方法
CN111416089B (zh) 一种诱导和抑制锂枝晶生长的复合隔膜及制备方法和使用该隔膜的锂离子电池
CN112259722A (zh) 一种水系混合离子二次电池及其制备方法和应用
CN115020802A (zh) 原位紫外光固化纳米纤维复合固态电解质及其制备方法和应用
CN108923047B (zh) 锂离子电池用中空炭纤维负极材料及其制备方法和应用
CN103078135B (zh) 一类基于聚合硼酸酯锂盐的聚合物电解质及制备和应用
CN106848196A (zh) 一种锂硫电池负极片
CN115377606B (zh) 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用
CN108615888A (zh) 锂离子电池用生物质炭纤维负极材料及其制备方法和应用
CN114725313A (zh) 一种硅基负极片及其制备方法与应用
CN110311167A (zh) 一种复合固体电解质片及其制备方法和固态电池
CN118412523B (zh) 一种双极性对称钠离子电池
CN115832235B (zh) 负极浆料、负极极片、锂离子电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant