CN115376918A - A kind of IGBT device and its manufacturing method - Google Patents
A kind of IGBT device and its manufacturing method Download PDFInfo
- Publication number
- CN115376918A CN115376918A CN202211314368.6A CN202211314368A CN115376918A CN 115376918 A CN115376918 A CN 115376918A CN 202211314368 A CN202211314368 A CN 202211314368A CN 115376918 A CN115376918 A CN 115376918A
- Authority
- CN
- China
- Prior art keywords
- region
- conductivity type
- dielectric layer
- gate dielectric
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
- H10D12/032—Manufacture or treatment of IGBTs of vertical IGBTs
- H10D12/038—Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/461—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
- H10D12/481—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Thyristors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
一种IGBT器件及其制造方法,制造方法,包括:提供一衬底;在衬底的正面形成第一导电类型区,或者,在衬底的正面形成第一导电类型区和第二导电类型区;在衬底形成第一沟槽;在第一沟槽上形成沟槽栅,在沟槽栅形成的过程中,第一导电类型区与厚栅介质层接触的部分形成抽取通道;对衬底的正面进行掺杂,形成基区;在基区上形成发射区;在衬底的正面形成第一电极,第一电极分别与抽取通道、基区以及发射区电连接;在衬底的背面形成集电区,或者在衬底的背面形成缓冲层以及集电区;在集电区上形成第二电极。本申请可以减少IGBT器件的横向尺寸,提高器件的电流能力,并保证可以在关态时抽取少子。
An IGBT device and its manufacturing method, the manufacturing method comprising: providing a substrate; forming a first conductivity type region on the front surface of the substrate, or forming a first conductivity type region and a second conductivity type region on the front surface of the substrate ; Forming a first trench on the substrate; forming a trench gate on the first trench, during the formation of the trench gate, the part of the first conductivity type region in contact with the thick gate dielectric layer forms an extraction channel; The front side of the substrate is doped to form a base region; the emitter region is formed on the base region; the first electrode is formed on the front side of the substrate, and the first electrode is electrically connected to the extraction channel, the base region, and the emitter region; A collector region, or a buffer layer and a collector region are formed on the back of the substrate; a second electrode is formed on the collector region. The application can reduce the lateral size of the IGBT device, improve the current capability of the device, and ensure that the minority carrier can be extracted in the off state.
Description
技术领域technical field
本发明涉及半导体器件技术领域,具体涉及一种IGBT器件及其制造方法。The invention relates to the technical field of semiconductor devices, in particular to an IGBT device and a manufacturing method thereof.
背景技术Background technique
在IGBT器件,为了实现提高器件的功能或性能,往往需要采用两种以上栅极,除了常规栅极,还会设置屏蔽栅、浮空栅极等。例如在现有专利CN202210453957.6中,采用两种栅极,一种栅极用于在开态时导通器件,另一种栅极用于在关态时抽取少数载流子。In IGBT devices, in order to improve the function or performance of the device, it is often necessary to use more than two kinds of gates. In addition to conventional gates, shielded gates, floating gates, etc. are also set. For example, in the existing patent CN202210453957.6, two kinds of gates are used, one gate is used to turn on the device in the on state, and the other gate is used to extract minority carriers in the off state.
在该现有专利中,元胞尺寸较大,一方面是需要两种沟槽栅,另一方面是需要深层基区横向扩散至一定距离,两种沟槽栅之间需要保持隔开一定距离,保证深层基区不会把沟槽栅底部全部包围住或者深层基区没法保护沟槽栅拐角电场集中处(容易发生击穿)的薄弱位置。In this existing patent, the size of the cell is relatively large. On the one hand, two types of trench gates are required, and on the other hand, the deep base region needs to be diffused laterally to a certain distance, and a certain distance needs to be kept between the two trench gates. , to ensure that the deep base region does not completely surround the bottom of the trench gate or that the deep base region cannot protect the weak position where the electric field concentration at the corner of the trench gate is concentrated (prone to breakdown).
可见,该现有专利的元胞横向尺寸大,在相同芯片尺寸,元胞数目少,电流能力较小。It can be seen that the lateral size of the cells in this prior patent is large, and in the same chip size, the number of cells is small and the current capability is small.
发明内容Contents of the invention
本发明主要解决的技术问题是现有的IGBT器件的元胞横向尺寸大,电流能力较小的技术问题。The technical problem mainly solved by the invention is the technical problem that the cell lateral size of the existing IGBT device is large and the current capacity is small.
根据第一方面,一种实施例中提供IGBT器件的制造方法,包括:According to the first aspect, a method for manufacturing an IGBT device is provided in an embodiment, including:
提供一衬底,衬底作为IGBT器件的漂移区的部分或全部,衬底具有第二导电类型;providing a substrate, the substrate serves as part or all of the drift region of the IGBT device, and the substrate has a second conductivity type;
在衬底的正面形成第一导电类型区,或者,在衬底的正面形成第一导电类型区和第二导电类型区;forming a region of the first conductivity type on the front surface of the substrate, or forming a region of the first conductivity type and a region of the second conductivity type on the front surface of the substrate;
在衬底形成第一沟槽,第一沟槽穿通部分第一导电类型区;forming a first trench on the substrate, the first trench piercing through a part of the first conductivity type region;
在第一沟槽上形成沟槽栅,沟槽栅包括栅极以及包裹栅极的栅介质层;栅介质层包括分别形成的栅极两侧的厚栅介质层以及薄栅介质层,厚栅介质层的厚度大于薄栅介质层的厚度;厚栅介质层位于靠近第一导电类型区的一侧并与第一导电类型区接触;其中,在沟槽栅形成的过程中,第一导电类型区与厚栅介质层接触的部分形成抽取通道;A trench gate is formed on the first trench, and the trench gate includes a gate and a gate dielectric layer surrounding the gate; the gate dielectric layer includes thick gate dielectric layers and thin gate dielectric layers on both sides of the gate respectively formed, and the thick gate The thickness of the dielectric layer is greater than the thickness of the thin gate dielectric layer; the thick gate dielectric layer is located on the side close to the first conductivity type region and is in contact with the first conductivity type region; wherein, in the process of forming the trench gate, the first conductivity type The portion of the region in contact with the thick gate dielectric layer forms an extraction channel;
对衬底的正面进行掺杂,形成基区,基区具有第一导电类型,基区的底部高于沟槽栅的底部;Doping the front side of the substrate to form a base region, the base region has the first conductivity type, and the bottom of the base region is higher than the bottom of the trench gate;
在基区上形成发射区,发射区具有第二导电类型;发射区位于沟槽栅的薄栅介质层的一侧并与薄栅介质层接触;Forming an emitter region on the base region, the emitter region has a second conductivity type; the emitter region is located on one side of the thin gate dielectric layer of the trench gate and is in contact with the thin gate dielectric layer;
在衬底的正面形成第一电极,第一电极分别与抽取通道、基区以及发射区电连接;抽取通道用于在IGBT器件处于关断状态时,第一电极通过抽取通道抽取沟槽栅底部的少数载流子;A first electrode is formed on the front side of the substrate, and the first electrode is electrically connected to the extraction channel, the base area, and the emitter area; the extraction channel is used to extract the bottom of the trench gate through the extraction channel when the IGBT device is in the off state of minority carriers;
在衬底的背面形成集电区,或者在衬底的背面形成缓冲层以及集电区;在集电区上形成第二电极,第二电极与集电区电连接,缓冲层具有第二导电类型,集电区具有第一导电类型,第一导电类型和第二导电类型属于不同的半导体导电类型。Form a collector region on the back of the substrate, or form a buffer layer and a collector region on the back of the substrate; form a second electrode on the collector region, the second electrode is electrically connected to the collector region, and the buffer layer has a second conductive type, the collector region has a first conductivity type, and the first conductivity type and the second conductivity type belong to different semiconductor conductivity types.
一种实施例中,在第一沟槽上形成沟槽栅,包括:In one embodiment, forming a trench gate on the first trench includes:
通过热氧化在第一沟槽上生长出第一厚度的二氧化硅层作为厚栅介质层,在厚栅介质层形成的过程中,一个抽取通道形成在沟槽栅一侧;A silicon dioxide layer with a first thickness is grown on the first trench by thermal oxidation as a thick gate dielectric layer. During the formation of the thick gate dielectric layer, an extraction channel is formed on one side of the trench gate;
去除第一沟槽远离第一导电类型区的侧壁上的厚栅介质层;removing the thick gate dielectric layer on the sidewall of the first trench away from the first conductivity type region;
通过热氧化在第一沟槽上生长出第二厚度的二氧化硅层作为薄栅介质层。A silicon dioxide layer with a second thickness is grown on the first trench by thermal oxidation as a thin gate dielectric layer.
一种实施例中,在衬底的正面形成第一导电类型区,包括:In one embodiment, forming the first conductivity type region on the front surface of the substrate includes:
第一掺杂子步骤、对衬底的正面进行掺杂,形成第一导电类型区;The first doping sub-step is doping the front side of the substrate to form a first conductivity type region;
外延子步骤、在衬底上形成外延层,外延层具有第二导电类型;The epitaxy sub-step, forming an epitaxial layer on the substrate, the epitaxial layer has a second conductivity type;
外延掺杂子步骤、对外延层对应第一导电类型区的位置进行掺杂,延长第一导电类型区的深度;The sub-step of epitaxial doping is doping the epitaxial layer at the position corresponding to the first conductivity type region to extend the depth of the first conductivity type region;
依次重复上述外延子步骤与外延掺杂子步骤,直至第一导电类型区的深度被延长至第一深度。Repeating the above epitaxial sub-step and epitaxial doping sub-step in sequence until the depth of the first conductivity type region is extended to the first depth.
一种实施例中,在衬底的正面形成第一导电类型区和第二导电类型区,包括:In one embodiment, forming a region of the first conductivity type and a region of the second conductivity type on the front surface of the substrate includes:
第一掺杂子步骤、对衬底的正面进行掺杂,形成第二导电类型区;The first doping sub-step is doping the front side of the substrate to form a second conductivity type region;
第二掺杂子步骤、对衬底的正面进行掺杂,形成第一导电类型区;In the second doping sub-step, doping the front side of the substrate to form a region of the first conductivity type;
外延子步骤、在衬底上形成外延层,外延层具有第二导电类型;The epitaxy sub-step, forming an epitaxial layer on the substrate, the epitaxial layer has a second conductivity type;
外延掺杂子步骤、分别对外延层对应第二导电类型区以及第一导电类型区的位置进行掺杂,延长第二导电类型区以及第一导电类型区的深度;The sub-step of epitaxial doping, doping the epitaxial layer corresponding to the second conductivity type region and the first conductivity type region respectively, extending the depth of the second conductivity type region and the first conductivity type region;
依次重复上述外延子步骤与外延掺杂子步骤,直至第一导电类型区的深度被延长至第一深度,第二导电类型区的深度被延长至第二深度。The above-mentioned epitaxial sub-step and epitaxial doping sub-step are repeated in sequence until the depth of the region of the first conductivity type is extended to the first depth, and the depth of the region of the second conductivity type is extended to the second depth.
一种实施例中,在基区上形成发射区之前,还包括:In one embodiment, before forming the emission region on the base region, it further includes:
在基区下面形成少子势垒层,少子势垒层具有第二导电类型,少子势垒层的底部高于沟槽栅的底部;抽取通道穿通少子势垒层与第一导电类型区电连接。A minority carrier barrier layer is formed under the base region, the minority carrier barrier layer has a second conductivity type, and the bottom of the minority carrier barrier layer is higher than the bottom of the trench gate; the extraction channel penetrates the minority carrier barrier layer and is electrically connected to the first conductivity type region.
一种实施例中,在第一沟槽上形成沟槽栅之前,还包括:In one embodiment, before forming the trench gate on the first trench, the method further includes:
在第一沟槽底部形成第二导电类型轻掺杂区,第二导电类型轻掺杂区位于第一沟槽底部中远离第一导电类型区的一侧。A lightly doped region of the second conductivity type is formed at the bottom of the first trench, and the lightly doped region of the second conductivity type is located on a side of the bottom of the first trench away from the region of the first conductivity type.
一种实施例中,厚栅介质层通过干湿干氧化形成,和/或,薄栅介质层采用干氧氧化形成。In one embodiment, the thick gate dielectric layer is formed by dry-wet-dry oxidation, and/or the thin gate dielectric layer is formed by dry oxygen oxidation.
根据第二方面,一种实施例中提供一种IGBT器件,采用第一方面所描述的制造方法制成。According to the second aspect, an embodiment provides an IGBT device manufactured by using the manufacturing method described in the first aspect.
根据第三方面,一种实施例中提供一种IGBT器件,包括至少一个元胞,元胞包括第一电极、第二电极以及位于第一电极和第二电极之间的半导体单元,半导体单元包括:According to a third aspect, an IGBT device is provided in an embodiment, including at least one cell, the cell includes a first electrode, a second electrode, and a semiconductor unit located between the first electrode and the second electrode, and the semiconductor unit includes :
漂移区,其具有第二导电类型,用于在IGBT器件处于正向耐压过程中作为耗尽层;The drift region, which has the second conductivity type, is used as a depletion layer when the IGBT device is in a forward withstand voltage process;
第一导电类型区,其具有第一导电类型,形成在漂移区中,第一导电类型区的底面远离漂移区的顶部,且靠近漂移区的底部或与漂移区的底部平齐;A first conductivity type region, which has a first conductivity type, is formed in the drift region, the bottom surface of the first conductivity type region is away from the top of the drift region, and is close to or flush with the bottom of the drift region;
基区,其具有第一导电类型;a base region having a first conductivity type;
沟槽栅,包括栅极以及包裹栅极的栅介质层,沟槽栅穿通基区并延伸到漂移区;栅介质层包括分别形成在栅极两侧的厚栅介质层以及薄栅介质层,厚栅介质层的厚度大于薄栅介质层的厚度;The trench gate includes a gate and a gate dielectric layer surrounding the gate. The trench gate penetrates the base region and extends to the drift region; the gate dielectric layer includes a thick gate dielectric layer and a thin gate dielectric layer respectively formed on both sides of the gate, The thickness of the thick gate dielectric layer is greater than the thickness of the thin gate dielectric layer;
抽取通道,其具有第一导电类型,第一电极通过抽取通道与第一导电类型区电连接;用于在IGBT器件处于关断状态时,第一电极通过抽取通道抽取沟槽栅底部的少数载流子;An extraction channel, which has a first conductivity type, and the first electrode is electrically connected to the region of the first conductivity type through the extraction channel; when the IGBT device is in an off state, the first electrode extracts the minority load at the bottom of the trench gate through the extraction channel Ryuko;
发射区,其具有第二导电类型,第一导电类型和第二导电类型属于不同的半导体导电类型,发射区和基区之间形成第一PN结,基区和发射区分别与第一电极电连接;The emitter region has a second conductivity type, the first conductivity type and the second conductivity type belong to different semiconductor conductivity types, a first PN junction is formed between the emitter region and the base region, and the base region and the emitter region are electrically connected to the first electrode respectively. connect;
抽取通道位于厚栅介质层的一侧,发射区位于薄栅介质层的一侧;The extraction channel is located on one side of the thick gate dielectric layer, and the emission area is located on one side of the thin gate dielectric layer;
集电区,其位于漂移区的下方,具有第一导电类型,集电区与第二电极电连接,用于在IGBT器件开态时提供载流子。The collector region, which is located below the drift region, has the first conductivity type, and is electrically connected to the second electrode for providing carriers when the IGBT device is in an on state.
一种实施例中,一个元胞包括两个沟槽栅,抽取通道形成在两个相邻的沟槽栅的厚栅介质层之间;和/或,抽取通道中间区域的受主掺杂浓度低于两端区域的受主掺杂浓度,或,抽取通道中间区域的施主掺杂浓度高于两端区域的施主掺杂浓度。In one embodiment, one cell includes two trench gates, and the extraction channel is formed between the thick gate dielectric layers of two adjacent trench gates; and/or, the acceptor doping concentration in the middle region of the extraction channel is The acceptor doping concentration is lower than the acceptor doping concentration in the regions at both ends, or the donor doping concentration in the middle region of the extraction channel is higher than the donor doping concentration in the two ends regions.
依据上述实施例的IGBT器件及其制造方法,沟槽栅的栅介质层包括薄栅介质层以及厚栅介质层,抽取通道形成在厚栅介质层一侧,不需要单独通过一个厚氧栅极来形成,抽取通道通过第一导电类型区在器件关态时抽取少子,只需要一种沟槽栅即可完成抽取少子以及完成栅极的导通效果,可以缩小元胞的横向尺寸,提高器件的电流能力。According to the IGBT device and its manufacturing method of the above-mentioned embodiments, the gate dielectric layer of the trench gate includes a thin gate dielectric layer and a thick gate dielectric layer, and the extraction channel is formed on the side of the thick gate dielectric layer, and does not need to pass through a thick gate dielectric layer alone. To form, the extraction channel extracts the minority carrier through the first conductivity type region when the device is off, only one kind of trench gate is needed to complete the extraction of the minority carrier and the conduction effect of the gate, which can reduce the lateral size of the cell and improve the device current capability.
附图说明Description of drawings
图1为现有技术的一种IGBT器件的结构示意图;Fig. 1 is the structural representation of a kind of IGBT device of prior art;
图2为一种实施例的一种IGBT器件的结构示意图(一);Fig. 2 is a schematic structural diagram (1) of an IGBT device of an embodiment;
图3为一种实施例的一种IGBT器件的结构示意图(二);Fig. 3 is a schematic structural diagram (2) of an IGBT device of an embodiment;
图4为一种实施例的一种IGBT器件的结构示意图(三);Fig. 4 is a schematic structural diagram (3) of an IGBT device of an embodiment;
图5为一种实施例的一种IGBT器件的制造方法的流程图;Fig. 5 is a flow chart of a method for manufacturing an IGBT device of an embodiment;
图6为一种实施例的一种IGBT器件的制造方法的过程示意图(一);Fig. 6 is a process schematic diagram (1) of a manufacturing method of an IGBT device according to an embodiment;
图7为一种实施例的一种IGBT器件的制造方法的过程示意图(二);Fig. 7 is a process schematic diagram (2) of a manufacturing method of an IGBT device according to an embodiment;
图8为一种实施例的一种IGBT器件的制造方法的过程示意图(三);Fig. 8 is a process schematic diagram (3) of a manufacturing method of an IGBT device according to an embodiment;
图9为一种实施例的一种IGBT器件的制造方法的过程示意图(四);FIG. 9 is a process schematic diagram (4) of a manufacturing method of an IGBT device according to an embodiment;
图10为一种实施例的一种IGBT器件的制造方法的过程示意图(五);Fig. 10 is a process schematic diagram (5) of a manufacturing method of an IGBT device according to an embodiment;
图11为一种实施例的一种IGBT器件的制造方法的过程示意图(六);Fig. 11 is a process schematic diagram (6) of a method for manufacturing an IGBT device according to an embodiment;
图12为一种实施例的一种IGBT器件的制造方法的过程示意图(七);Fig. 12 is a process schematic diagram (7) of a manufacturing method of an IGBT device according to an embodiment;
图13为一种实施例的基区与发射区的示意图;Fig. 13 is a schematic diagram of the base area and the emission area of an embodiment;
图14为一种实施例的抽取通道的结构示意图;Fig. 14 is a schematic structural diagram of an extraction channel of an embodiment;
图15为一种实施例的一种IGBT器件的制造方法的过程示意图(八)。FIG. 15 is a process schematic diagram (8) of a manufacturing method of an IGBT device according to an embodiment.
附图标记:1-漂移区;101-第一沟槽;2-第一导电类型区;3-第二导电类型区;4-沟槽栅;41-栅介质层;411-厚栅介质层;412-薄栅介质层;42-栅极;5-抽取通道;6-基区;7-发射区;8-第一电极;9-集电区;10-第二电极;11-缓冲层;12-少子势垒层;13-第二导电类型轻掺杂区。Reference signs: 1-drift region; 101-first trench; 2-first conductivity type region; 3-second conductivity type region; 4-trench gate; 41-gate dielectric layer; 411-thick gate dielectric layer ; 412-thin gate dielectric layer; 42-grid; 5-extraction channel; 6-base region; 7-emitter region; 8-first electrode; 9-collector region; ; 12-minority carrier barrier layer; 13-lightly doped region of the second conductivity type.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. Wherein, similar elements in different implementations adopt associated similar element numbers. In the following implementation manners, many details are described for better understanding of the present application. However, those skilled in the art can readily recognize that some of the features can be omitted in different situations, or can be replaced by other elements, materials, and methods. In some cases, some operations related to the application are not shown or described in the description, this is to avoid the core part of the application being overwhelmed by too many descriptions, and for those skilled in the art, it is necessary to describe these operations in detail Relevant operations are not necessary, and they can fully understand the relevant operations according to the description in the specification and general technical knowledge in the field.
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。In addition, the characteristics, operations or characteristics described in the specification can be combined in any appropriate manner to form various embodiments. At the same time, the steps or actions in the method description can also be exchanged or adjusted in a manner obvious to those skilled in the art. Therefore, various sequences in the specification and drawings are only for clearly describing a certain embodiment, and do not mean a necessary sequence, unless otherwise stated that a certain sequence must be followed.
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。The serial numbers assigned to components in this document, such as "first", "second", etc., are only used to distinguish the described objects, and do not have any sequence or technical meaning. The "connection" and "connection" mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
在本申请中,第一导电类型和第二导电类型属于不同的半导体导电类型,第一导电类型为N型或P型,第二导电类型为P型或N型;当第一导电类型为N型时,第二导电类型则为P型,反之亦然。在本申请中以第一导电类型为P型,第二导电类型为N型为例进行说明。In this application, the first conductivity type and the second conductivity type belong to different semiconductor conductivity types, the first conductivity type is N-type or P-type, and the second conductivity type is P-type or N-type; when the first conductivity type is N-type Type, the second conductivity type is P-type, and vice versa. In this application, the first conductivity type is P-type, and the second conductivity type is N-type as an example for illustration.
在本申请中,IGBT器件的衬底一般指硅片,但根据实际的器件应用也可以采用其他材料,如碳化硅、氮化镓等。衬底可以为N型、P型或无掺杂,用于器件制作过程的起始材料或起始结构层。衬底在对应不同的器件的类型时,在器件制作完毕后,可以作为器件的集电区、缓冲层或漂移区等结构。基底(或称基片)为对衬底进行掺杂、外延、热氧化等处理后得到的结构,外形结构还是以单晶硅为主体的片状结构,一般也可以称为晶圆或者硅片,或者依旧称为衬底。在批量化生产中,多种器件可能采用相同的衬底进行相同的处理,因此,可以形成标准化的基底用于生产,不需要从头对衬底处理,可以节省时间。具体对应IGBT器件的类型而定,IGBT器件可以为PT (punch through)型、NPT(non-punch through)型或FS(field stop)型IGBT器件。针对器件的类型可以选用不同的基底。In this application, the substrate of an IGBT device generally refers to a silicon wafer, but other materials, such as silicon carbide, gallium nitride, etc., can also be used according to actual device applications. The substrate can be N-type, P-type or undoped, and is used as the starting material or starting structure layer in the device manufacturing process. When the substrate corresponds to different device types, after the device is fabricated, it can be used as a structure such as a collector region, a buffer layer or a drift region of the device. The substrate (or substrate) is a structure obtained by doping, epitaxy, thermal oxidation, etc. on the substrate. The shape structure is still a sheet-like structure mainly composed of single crystal silicon, which can also be generally called wafer or silicon wafer. , or still referred to as the substrate. In mass production, multiple devices may use the same substrate for the same processing, therefore, a standardized substrate can be formed for production, and there is no need to process the substrate from scratch, which can save time. Depending on the type of corresponding IGBT device, the IGBT device can be a PT (punch through) type, NPT (non-punch through) type or FS (field stop) type IGBT device. Depending on the type of device, different substrates can be selected.
例如,IGBT器件为PT型IGBT器件时,基底可以包括集电区、缓冲层以及漂移区,衬底可以为高浓度的P型直拉单晶硅(作为后续器件的集电区),缓冲层可以为生长在衬底上的一层掺杂浓度较高的N型单晶硅,漂移区可以为淀积在缓冲层上的轻掺杂的N型外延层。For example, when the IGBT device is a PT-type IGBT device, the substrate may include a collector region, a buffer layer, and a drift region. It can be a layer of N-type single crystal silicon with higher doping concentration grown on the substrate, and the drift region can be a lightly doped N-type epitaxial layer deposited on the buffer layer.
又例如,IGBT器件为NPT型IGBT器件时,基底可以包括采用轻掺杂N型区熔单晶硅的硅片作为衬底(作为后续器件的漂移区),先在硅片的正面制作元胞并用钝化层保护好,之后再将硅片背面减薄到合适厚度。最后在减薄的硅片背面进行P型掺杂,形成集电区。For another example, when the IGBT device is an NPT type IGBT device, the substrate can include a silicon wafer using lightly doped N-type zone fused single crystal silicon as the substrate (as the drift region of the subsequent device), and the cell is first fabricated on the front side of the silicon wafer. And protect it with a passivation layer, and then thin the back of the silicon wafer to an appropriate thickness. Finally, P-type doping is performed on the back of the thinned silicon wafer to form a collector region.
再例如,IGBT器件为FS型IGBT器件时,基底可以包括漂移区或缓冲层以及漂移区。衬底可以采用轻掺杂N型区熔单晶硅的硅片,当基底只有漂移区时,完成正面元胞制作之后再进行背面工艺(硅片减薄、缓冲层以及集电区的形成)。当基底可以包括缓冲层以及漂移区时,采用N型硅片作为衬底(对应为器件的缓冲层),通过外延硅片的正面形成漂移区,完成正面元胞制作,硅片背面减薄之后,进行P型掺杂,形成集电区。For another example, when the IGBT device is an FS type IGBT device, the substrate may include a drift region or a buffer layer and a drift region. The substrate can be a silicon wafer with lightly doped N-type region fused single crystal silicon. When the substrate only has a drift region, the backside process (thinning of the silicon wafer, formation of a buffer layer and a collector area) is performed after the fabrication of the front cell is completed. . When the substrate can include a buffer layer and a drift region, an N-type silicon wafer is used as the substrate (corresponding to the buffer layer of the device), and the drift region is formed on the front side of the epitaxial silicon wafer to complete the fabrication of the front cell, and the back side of the silicon wafer is thinned , for P-type doping to form a collector region.
如图1所示,在现有专利CN202210453957.6中,为了解决IGBT器件在关断切换过程中存在的动态雪崩的技术问题,一方面引入超结结构(第一导电类型区),另一方面采用抽取通道配合超结结构工作,其中,现有专利中,至少存在两个问题。第一个问题,为了形成抽取通道,需要两个具有厚栅介质层且相邻的第二沟槽栅,在栅介质层热氧化的过程形成,这就导致器件的元胞在横向(图1的左右方向)的尺寸偏大,电流能力较低的问题。第二个问题,第一导电类型区通过刻蚀沟槽进行填充硅的方式形成,刻蚀形成的沟槽并不是严格垂直,存在角度,且刻蚀的深度不能太深,下面过窄会导致电离杂质太少影响电荷平衡。As shown in Figure 1, in the existing patent CN202210453957.6, in order to solve the technical problem of dynamic avalanche in the turn-off switching process of IGBT devices, on the one hand a super junction structure (first conductivity type region) is introduced, on the other hand The extraction channel is used to work with the superjunction structure, and there are at least two problems in the existing patents. The first problem is that in order to form the extraction channel, two adjacent second trench gates with a thick gate dielectric layer are required, which are formed during the thermal oxidation of the gate dielectric layer, which causes the cells of the device to be in the lateral direction (Figure 1 The left and right directions) are too large in size and the current capacity is low. The second problem is that the first conductivity type region is formed by etching trenches to fill silicon. The trenches formed by etching are not strictly vertical, and there are angles, and the depth of etching should not be too deep. If the bottom is too narrow, it will cause Too few ionized impurities affect the charge balance.
在本发明实施例中,针对第一个问题,提出一种IGBT器件,其中,沟槽栅4的栅介质层41包括薄栅介质层412以及厚栅介质层411,抽取通道5形成在厚栅介质层411一侧,不需要单独通过一个厚氧栅极(对应图1所示的第二沟槽栅)来形成,抽取通道5通过第一导电类型区2在器件关态时抽取少子,只需要一种沟槽栅4即可完成抽取少子以及完成栅极42的导通效果,可以缩小元胞的横向尺寸,提高器件的电流能力。针对第二个问题,通过提供一个IGBT器件的制造方法,通过多次离子注入与外延的方式形成第一导电类型区2,保证第一导电类型区2的宽度(图2中左右方向)上下一致以及整体区域的电离杂质的数量,电荷平衡问题能够保证稳定。In the embodiment of the present invention, aiming at the first problem, an IGBT device is proposed, wherein the gate dielectric layer 41 of the
如图2所示,以下以第一导电类型为P型,第二导电类型为N型为例说明,本申请一些实施例中提供一种IGBT器件,IGBT器件可以包括至少一个元胞,元胞可以包括第一电极8、第二电极10以及位于第一电极8和第二电极10之间的半导体单元,半导体单元可以包括:漂移区1、第一导电类型区2、基区6、沟槽栅4、抽取通道5、发射区7以及集电区9。As shown in FIG. 2 , the first conductivity type is P-type and the second conductivity type is N-type as an example. In some embodiments of the present application, an IGBT device is provided. The IGBT device may include at least one cell, cell It may include a
漂移区1可以具有第二导电类型,用于在IGBT器件处于正向耐压过程中作为耗尽层。在一些实施例中,漂移区1可以包括衬底的部分或全部,还可以包括外延形成在衬底上的外延层。The
第一导电类型区2可以具有第一导电类型,形成在漂移区1中,第一导电类型区2的底面远离漂移区1的顶部(或称上表面或正面),且靠近漂移区1的底部或与漂移区1的底部平齐。第一导电类型区2的宽度(图2中左右方向)小于高度/深度(图2中的上下方向)。The first
例如,第一导电类型区2可以为P型区(或可简称为P柱),在本申请中,可以是通过挖槽沉积单晶硅的方式形成,还可以是通过多次掺杂与外延形成。第一导电类型区2可以与缓冲层11接触;或者第一导电类型区2靠近缓冲层11,且第一导电类型区2的深度大于或等于漂移区1深度的2/3。For example, the
基区6可以具有第一导电类型。在本申请实施例中,基区6不包括如图1所示的深层基区。基区6的底面高于沟槽栅4的底面。The
沟槽栅4可以包括栅极42以及包裹栅极42的栅介质层41,沟槽栅4穿通基区6并延伸到漂移区1;如图11所示,栅介质层41可以包括分别形成在栅极42两侧的厚栅介质层411(可简称为厚氧)以及薄栅介质层412(可简称为薄氧),厚栅介质层411的厚度大于薄栅介质层412的厚度。The
在一些实施例中,厚栅介质层411可以通过采用热氧化形成在第一沟槽101上,薄栅介质层412可以是采用沉积或热氧化的方式形成在第一沟槽101上。其中,第一沟槽101的底部上形成的是厚栅介质层,缓解栅极底部电场集中效应。由于电场集中在这个位置,通常薄栅氧容易击穿,当厚度增加了,降落在单位栅氧厚度下的电势减少了,使单位栅氧厚度承受的电势减少,从而缓解电场尖峰,提高器件击穿能力。另外,由于栅极和集电极耦合电容的存在,增加该部分的厚度能够很大程度上减少栅极电荷,加强对器件开关过程中的dV/dt的控制。In some embodiments, the thick gate
抽取通道5可以具有第一导电类型,第一电极8通过抽取通道5与第一导电类型区2电连接;用于在IGBT器件处于关断状态时,第一电极8通过抽取通道5抽取沟槽栅4底部的少数载流子。The
一些实施例中,一个元胞可以包括两个沟槽栅4,抽取通道5形成在两个相邻的沟槽栅4的厚栅介质层411之间;和/或,当抽取通道5为P型时,抽取通道5中间区域的受主掺杂浓度低于两端区域的受主掺杂浓度,或,当抽取通道5为N型时,抽取通道5中间区域的施主掺杂浓度高于两端区域的施主掺杂浓度。In some embodiments, one cell may include two
在一些实施例中,如图2所示,抽取通道5的深度可以与沟槽栅4的深度相同;如图14所示,当抽取通道5为P型时,抽取通道5中间区域的P型掺杂浓度低于两端区域的P型掺杂浓度。当器件正向导通时,两边的栅极42加上正电压,沟道反型,反型载流子即为P型的少子(电子),中间的浓度高于两端。反向截止时,两边的栅极42加上负电压,P型的多子两端的浓度高于中间。In some embodiments, as shown in FIG. 2, the depth of the
当漂移区1为P型、基区6为N型、抽取通道5为N型时,抽取通道5中间区域的N型掺杂浓度高于两端区域的N型掺杂浓度。技术效果与当抽取通道5为P型相对应,不在此赘述。When the
在一些实施例中,如图9与12所示,通过热氧化形成厚栅介质层411,由于二氧化硅具有吸硼排磷的效应,以使得两个第一沟槽101之间的第一导电类型区2的硼元素减少,磷元素增加,最终使得两个第一沟槽101之间的第一导电类型区2的掺杂浓度降低(指硼元素的浓度),受到这个吸硼排磷的效应的第一导电类型区2的部分构成抽取通道5。同时,抽取通道5的中间受到吸硼排磷的效应更加显著,中间区域的最低,掺杂浓度从中间向两端(图示上下方向)增加。可见,采用图2的两个沟槽栅4相邻布置的结构,可以使得两个沟槽栅4之间的区域的掺杂浓度变化更加明显,该区域的中间位置的浓度更低,以使得更快的抽取少数载流子。In some embodiments, as shown in FIGS. 9 and 12 , the thick gate
进一步地,厚栅介质层411的厚度可以大于薄栅介质层412的厚度;厚度更厚的厚栅介质层411,通过热氧化消耗一部分单晶硅,以减少PMOS沟道(对应抽取通道5)的宽度,降低PMOS的沟道密度,少数载流子在底部累积时可以抑制漏电,减少器件的漏电。例如,当一个半导体单元具有两个沟槽栅4时,为了避免两个栅极42之间造成干扰,两者之间的距离不能过近,同时为了保证抽取通道5的沟道密度,两个栅极42之间的距离也不能过远,在本实施例中,抽取通道5的宽度可以为300A-1000A,抽取通道5的宽度与厚栅介质层411的宽度(介质层一般称为厚度)关联,按照比例约为1:10,对应厚栅介质层411的厚度为4000A-10000A。Further, the thickness of the thick gate
发射区7可以具有第二导电类型,发射区7和基区6之间形成第一PN结,基区6和发射区7分别与第一电极8电连接。抽取通道5位于厚栅介质层411的一侧,发射区7位于薄栅介质层412的一侧。The
集电区9其位于漂移区1的下方,可以具有第一导电类型,集电区9与第二电极10电连接,用于在IGBT器件开态时提供载流子。The
针对如图1所示的IGBT器件存在的横向尺寸大的问题,申请人通过研究发现,其横向尺寸大的原因有两方面,一方面是元胞设置有两种沟槽栅,另一方面是深层基区的原因,深层基区要包括第一沟槽栅的底部的部分,深层基区通过离子注入后横扩包裹第一沟槽栅,因此第一沟槽栅与第二沟槽栅之间也要保证一定的横向距离,避免第一沟槽栅的底部被完全包裹,避免失去控制器件导通的作用。Aiming at the problem of the large lateral size of the IGBT device shown in Figure 1, the applicant found through research that there are two reasons for the large lateral size, one is that the cells are provided with two types of trench gates, and the other is that The reason for the deep base area is that the deep base area should include the bottom part of the first trench gate, and the deep base area is spread across the first trench gate after ion implantation, so the gap between the first trench gate and the second trench gate is A certain lateral distance should also be ensured between them, so as to prevent the bottom of the first trench gate from being completely wrapped, and avoid losing the function of controlling the conduction of the device.
因此,在上述实施例中,一方面通过提供一个沟槽栅4,沟槽栅4的两侧具有厚薄不同的栅介质层41,使得一个沟槽栅4综合了图1中两种沟槽栅的技术效果,即同时兼具导通控制与抽取少子控制,在不需要两种沟槽栅以及深层基区的前提下,可以缩小元胞的横向尺寸,最终使得在相同的芯片尺寸下能够获得更低的导通压降,更大的电流能力,具有更低成本的优势。Therefore, in the above embodiment, on the one hand, by providing a
如图3所示,在上述这些实施例的基础上,本申请提供的IGBT器件还可以包括少子势垒层12以及第二导电类型轻掺杂区13,第二导电类型轻掺杂区13位于第一沟槽101底部中远离第一导电类型区2的一侧。少子势垒层12可以具有第二导电类型,少子势垒层12的底部高于沟槽栅4的底部并位于基区6的下方;抽取通道5穿通少子势垒层12与第一导电类型区2电连接。第二导电类型轻掺杂区13具有第二导电类型,其掺杂浓度小于漂移区1的掺杂浓度。As shown in FIG. 3 , on the basis of the above-mentioned embodiments, the IGBT device provided by the present application may further include a minority
较于如图1所示的深层基区,本申请提供的IGBT器件使用少子势垒层12以及第二导电类型轻掺杂区13具有相似或更好的技术效果,下面详细说明。Compared with the deep base region shown in FIG. 1 , the IGBT device provided by the present application uses the minority
以漂移区1为N型为例说明,少子势垒层12的作用不同于深层基区,只是降低器件工作状态下P型基区6下方外延层的电阻率,少子势垒层12的存在就是为了阻挡少数载流子从P型基区6流出,使该处的少子浓度堆积,从而降低导通压降Vcesat与导通损耗。Taking the N-
图1所示的深层基区作用是保护栅极42击穿薄弱点,降低栅极42底部的电场峰值,现在用栅极42底部的第二导电类型轻掺杂区13(N-区)获得相似的技术效果,以使得可以不使用深层基区。可以是在栅极42挖沟槽之后注入少量的硼离子,经过栅氧生长、P型基区6扩散等热过程之后,这些少量的硼离子被外延的背景杂质补偿,会形成与掺杂浓度较低的N-区。在器件反偏截止状态下,由EC≈4010ND 1/8,该处的临界电场得到提升,将缓解栅氧底部电场集中,分散电势,降低该处的电场峰值,提高击穿电压,抑制栅极42负电容,获得更好的开关可控性。The role of the deep base region shown in Figure 1 is to protect the
如图4所示,在一些实施例中,本申请提供的IGBT器件还可以包括第二导电类型区3(对应第一导电类型区2简称为P柱,其可以简称为N+柱),其具有第二导电类型且掺杂浓度大于漂移区1,第二导电类型区3与第一导电类型区2沿左右方向间隔设置,形成P-N-N+-N-P横向变化掺杂的超结外延,增加了空穴路径结构。如采用两次N外延注入交叠的部分形成N+柱(对应图15所示过程),因为交叠的部分不多,加上生长外延的过程中注入的离子也会横向扩散,所以N+柱的占比在整个N区中只有一小部分,也可以称该区域为N柱的N+区。但是由于注入的离子变多了,该区域的净掺杂将会增加,根据ρ=(qNμ)-1,电阻率ρ与净掺杂为反比,而根据欧姆定理,电流总是选择电阻最小的路径通过。As shown in Figure 4, in some embodiments, the IGBT device provided by the present application may also include a second conductivity type region 3 (corresponding to the first
所以,N+柱能够降低器件电流传导路径处的电阻率,对比图1所示的IGBT器件,在相同的芯片面积下,本申请将会提高器件的电流能力,从而降低导通压降Vcesat,减少开关损耗。Therefore, the N+ column can reduce the resistivity at the current conduction path of the device. Compared with the IGBT device shown in Figure 1, under the same chip area, this application will improve the current capability of the device, thereby reducing the conduction voltage drop Vcesat, reducing switching losses.
其中,而且相对于N+柱浓度较低的N柱(位于第一导电类型区2与第二导电类型区3之间的漂移区1的部分),在器件反向截止期间能够起到与P柱电荷平衡的效果,N柱与P柱形成的PN结反向偏置,形成较宽的耗尽区,建立垂直电场,同时使器件水平电场不产生突变,使器件在水平和垂直方向上的电场都处在一个接近临界的状态,增加耗尽区宽度,提高有效耐压面积。具体地,传统的器件(非超结器件)的主要空间电荷区是P基区与外延层之间PN结反偏耗尽产生的。达到击穿电压时,其电场峰值在该PN结附近,截止于FS层(截止层),形状为梯形,该电场图形对空间电荷区的积分即是器件的击穿电压。而N柱与P柱形成PN结,该PN结在电荷平衡的条件下,在反偏状态下将会耗尽,形成空间电荷区,这样就有两个不同的PN结耗尽,器件体内就会有两个不同耗尽方向的空间电荷区,也就会有两个不同方向的电场,一个电场方向垂直于超结外延与P基区的PN结,另一个垂直于超结外延N柱与P柱的pn结,在这两个不同方向的电场作用下可以使电场近似扩展为三维空间上的长方体形状,垂直方向的切面为近似长方形,其击穿电压为该图形的对外延厚度的积分。能够提高外延的有效耐压面积。Among them, the N column (the part of the
另外,在关断期间,第一导电类型区2(P柱)的存在,搭配正面结构的耗尽型PMOS结构,形成了非平衡少数载流子流出体内的路径,达到快速抽取N型漂移区1的非平衡少子的目的,抑制拖尾电流,从而减少关断损耗。由于在动态开关过程中,体内的非平衡少子达到背景掺杂浓度的量级甚至更多,材料的临界电场降低,超结结构N/P柱能够在此过程快速排出非平衡少子,抑制动态雪崩,抑制关断噪声的产生。In addition, during the turn-off period, the existence of the first conductivity type region 2 (P column), combined with the depletion-type PMOS structure of the front structure, forms a path for non-equilibrium minority carriers to flow out of the body, and achieves rapid extraction of the N-type drift region The purpose of the unbalanced minority carrier of 1 is to suppress the tail current, thereby reducing the turn-off loss. Since the non-equilibrium minority carriers in the body reach the level of the background doping concentration or even more during the dynamic switching process, the critical electric field of the material is reduced, and the N/P column of the superjunction structure can quickly discharge the non-equilibrium minority carriers in this process and suppress the dynamic avalanche , to suppress the generation of turn-off noise.
上面是本申请提供的IGBT器件的各个结构的具体说明,下面针对IGBT器件的制造方法进行展开说明,需要注意的是,本申请实施例以图4为例进行制造方法的说明,对应图2至图4所示的IGBT器件,可以有选择地减少以下一个或多个方法步骤,以获得图2至图4中任一种IGBT器件,并不是限制本申请提供的IGBT器件的制造方法对应的器件类型。The above is a specific description of each structure of the IGBT device provided by this application. The following is an expanded description of the manufacturing method of the IGBT device. It should be noted that the embodiment of this application uses Figure 4 as an example to describe the manufacturing method, corresponding to Figures 2 to 2. The IGBT device shown in Figure 4 can selectively reduce one or more of the following method steps to obtain any IGBT device in Figure 2 to Figure 4, which is not limited to the device corresponding to the manufacturing method of the IGBT device provided by this application type.
如图5所示,以下以第一导电类型为P型,第二导电类型为N型为例说明,本申请实施例提供的IGBT器件的制造方法,可以包括:As shown in FIG. 5, the following takes the first conductivity type as P-type and the second conductivity type as N-type as an example. The method for manufacturing an IGBT device provided in the embodiment of the present application may include:
步骤1、提供一衬底,衬底作为IGBT器件的漂移区1的部分或全部,衬底可以具有第二导电类型。例如,如图6中(A)所示,可以采用N型单晶硅衬底。
步骤2、在衬底的正面形成第一导电类型区2,或者,在衬底的正面形成第一导电类型区2和第二导电类型区3。
一些实施例中,如图2、图3与图6所示,IGBT器件可以只包括第一导电类型区2,此时,在衬底的正面形成第一导电类型区2,可以包括:In some embodiments, as shown in FIG. 2, FIG. 3 and FIG. 6, the IGBT device may only include the first
第一掺杂子步骤、如图6中(B)所示,对衬底的正面进行掺杂,形成第一导电类型区2;例如是,注入1e12cm-2-1e13cm-2,能量为40-100KeV的硼离子,以形成第一导电类型区2。The first doping sub-step, as shown in Figure 6(B), is to dope the front side of the substrate to form the first
外延子步骤、如图6中(C)所示,在衬底上形成外延层,外延层可以具有第二导电类型;每次外延的厚度可以是1um-10um。形成的外延层与漂移区1具有相同到导电类型,其掺杂浓度也可以是与漂移区1相同。In the sub-step of epitaxy, as shown in (C) of FIG. 6 , an epitaxial layer is formed on the substrate, and the epitaxial layer may have the second conductivity type; the thickness of each epitaxy may be 1um-10um. The formed epitaxial layer has the same conductivity type as that of the
外延掺杂子步骤、如图6中(D)所示,对外延层对应第一导电类型区2的位置进行掺杂,延长第一导电类型区2的深度。The sub-step of epitaxial doping, as shown in FIG. 6 (D), is to dope the position of the epitaxial layer corresponding to the first
依次重复上述外延子步骤与外延掺杂子步骤,直至第一导电类型区2的深度被延长至第一深度。此时,对应多层外延层的总厚度可以为50um-100um。The above-mentioned epitaxial sub-step and epitaxial doping sub-step are repeated in sequence until the depth of the first
一些实施例中,如图4与图7所示,IGBT器件可以包括第一导电类型区2以及第二导电类型区3,此时,在衬底的正面形成第一导电类型区2和第二导电类型区3,可以包括:In some embodiments, as shown in FIG. 4 and FIG. 7, the IGBT device may include a first
第一掺杂子步骤、如图7中(B)所示,对衬底的正面进行掺杂,形成第二导电类型区3。The first doping sub-step, as shown in FIG. 7(B), is to dope the front side of the substrate to form the second
第二掺杂子步骤、如图7中(B)所示,对衬底的正面进行掺杂,形成第一导电类型区2。上述第一掺杂子步骤与第二掺杂子步骤的顺序并不限制,例如是首先注入剂量为1e12-1e13cm-2,能量为40-100KeV的磷离子,得到第二导电类型区3,形成N-N+-N横向变化掺杂区,然后再注入1e12-1e13cm-2,能量为40-100KeV的硼离子,得到第一导电类型区2,形成P-N-N+-N-P横向变化掺杂的超结外延。The second doping sub-step, as shown in FIG. 7(B), is to dope the front side of the substrate to form the first
外延子步骤、如图7中(C)所示,在衬底上形成外延层,外延层可以具有第二导电类型。每次外延的厚度可以是1um-10um。形成的外延层与漂移区1具有相同到导电类型,其掺杂浓度也可以是与漂移区1相同。In the sub-step of epitaxy, as shown in (C) of FIG. 7 , an epitaxial layer is formed on the substrate, and the epitaxial layer may have the second conductivity type. The thickness of each epitaxy can be 1um-10um. The formed epitaxial layer has the same conductivity type as that of the
外延掺杂子步骤、如图7中(D)所示,分别对外延层对应第二导电类型区3以及第一导电类型区2的位置进行掺杂,延长第二导电类型区3以及第一导电类型区2的深度。The sub-step of epitaxial doping, as shown in (D) in Figure 7, is to dope the epitaxial layer corresponding to the second
在一些实施例中,形成第二导电类型区3以及第一导电类型区2的方式还可以采用如下方式。In some embodiments, the manner of forming the
首先,如图15所示,可以是先对一个区域进行一次N型掺杂(如图15中(A)左侧),再对另一个区域进行一次N型掺杂(如图15中(B)右侧),两次掺杂具有重叠区域,如图15中(C)所示,重叠区域对应形成第二导电类型区3。随后如图15中(D)所示,进行第一导电类型区2的掺杂。最后通过多次外延以及掺杂形成如图8所示的结构。First, as shown in Figure 15, one region can be N-type doped first (as shown in Figure 15 (A) on the left), and then another region is N-type doped (as shown in Figure 15 (B) ) on the right side), the double doping has an overlapping region, as shown in (C) in FIG. 15 , the overlapping region corresponds to the formation of the second
在一些实施例中,第二导电类型区3形成在每两个第一导电类型区2之间,且第一导电类型区2与第二导电类型区3之间还设有漂移区。In some embodiments, the second
如图8所示,依次重复上述外延子步骤与外延掺杂子步骤,直至第一导电类型区2的深度被延长至第一深度,第二导电类型区3的深度被延长至第二深度。重复上述过程,此时,对应多层外延层的总厚度可以为50um-100um。As shown in FIG. 8 , the above epitaxial sub-step and epitaxial doping sub-step are repeated in sequence until the depth of the first
步骤3、如图9所示,在衬底形成第一沟槽101,第一沟槽101穿通部分第一导电类型区2。
一些实施例中,如图10所示,在第一沟槽101上形成沟槽栅4之前,制造方法还可以包括:In some embodiments, as shown in FIG. 10 , before forming the
在第一沟槽101底部形成第二导电类型轻掺杂区13,第二导电类型轻掺杂区13位于第一沟槽101底部中远离第一导电类型区2的一侧。例如是,在完成刻蚀第一沟槽101后,可以生成一层1000A厚度的氧化层作为牺牲氧化层,减少因离子注入而引起的晶格损伤注入,再注入剂量为1e11-1e12cm-2,能量为20-60KeV的硼离子。A lightly doped
通过在N型的漂移区1注入少量硼离子形成N-区,降低栅极42电荷,抑制栅极42负电容,降低开关过程中产生的噪声,分散反偏电势,降低电场峰值,保护沟槽栅4拐角处易发生击穿的薄弱区域。其中,要控制注入剂量与能量,不能太多也不能太少。如果剂量和能量太高了,这里会变成P区,把栅极底部包围了,将会影响导通压降,增加导通的损耗,太少了效果又不会明显。By implanting a small amount of boron ions in the N-
步骤4、如图11所示,在第一沟槽101上形成沟槽栅4,沟槽栅4可以包括栅极42以及包裹栅极42的栅介质层41;栅介质层41可以包括分别形成的栅极42两侧的厚栅介质层411以及薄栅介质层412,厚栅介质层411的厚度大于薄栅介质层412的厚度;厚栅介质层411位于靠近第一导电类型区2的一侧并与第一导电类型区2接触;其中,在沟槽栅4形成的过程中,第一导电类型区2与厚栅介质层411接触的部分形成抽取通道5。
一些实施例中,在第一沟槽101上形成沟槽栅4,可以包括:In some embodiments, forming the
步骤401、如图11中(A)所示,通过热氧化在第一沟槽101上生长出第一厚度的二氧化硅层作为厚栅介质层411,在厚栅介质层411形成的过程中,一个抽取通道5形成在沟槽栅4一侧。一些实施例中,可以通过干-湿-干氧化方法生长一层4000A-10000A厚的栅氧,一部分用来刻蚀去除,一部分用来做PMOS的栅氧。其中由于生长氧化层过程中的吸硼排磷,PMOS沟道中间部分浓度将会降低。Step 401, as shown in (A) of FIG. 11 , a silicon dioxide layer of a first thickness is grown on the
步骤402、如图11中(B)所示,去除第一沟槽101远离第一导电类型区2的侧壁上的厚栅介质层411。例如,对第一沟道远离第一导电类型区2的侧壁部分的厚栅介质层411进行刻蚀,采用各向异性刻蚀。Step 402 , as shown in FIG. 11 (B), remove the thick gate
步骤403、如图11中(C)所示,通过热氧化在第一沟槽101上生长出第二厚度的二氧化硅层作为薄栅介质层412。例如是采用干氧氧化生成厚度为500-2000A的薄栅介质层412。Step 403 , as shown in (C) of FIG. 11 , a silicon dioxide layer with a second thickness is grown on the
步骤404、如图11中(D)所示,在第一沟槽101上进行多晶硅回填以及多晶硅刻蚀,得到栅极42。Step 404 , as shown in (D) of FIG. 11 , perform polysilicon backfilling and polysilicon etching on the
其中,因为厚栅介质层是干湿干氧化生成的,湿氧的速度快,但是生成的氧化层质量较差,缺陷较多一致性差(厚薄不一),干氧的致密性好,缺陷少,质量高,一致性好,但是速度慢,为了生产效率采用干湿干氧化生长厚的栅氧。Among them, because the thick gate dielectric layer is formed by dry-wet-dry oxidation, the speed of wet oxygen is fast, but the quality of the formed oxide layer is poor, with many defects and poor consistency (different thickness), and the density of dry oxygen is good, and there are few defects. , high quality, good consistency, but slow speed, for production efficiency, wet and dry oxidation is used to grow thick gate oxide.
因为阈值电压要与实际驱动电路做匹配,通常在2-6V左右,而阈值电压与栅氧厚度是正比的,在相同的P基区条件下,厚栅氧将会使阈值电压增加好几倍,使电子导电沟道难以反型,从而增加导通压降与导通损耗,因此需要采用薄栅介质层。薄栅介质层就是传统器件的厚度,能够匹配现有的P基区而不需要做改变。Because the threshold voltage needs to match the actual driving circuit, usually around 2-6V, and the threshold voltage is proportional to the thickness of the gate oxide. Under the same P base condition, the thick gate oxide will increase the threshold voltage several times. It is difficult to invert the electronic conduction channel, thereby increasing the conduction voltage drop and conduction loss, so a thin gate dielectric layer is required. The thin gate dielectric layer is the thickness of the traditional device, which can match the existing P-base region without changing it.
步骤5、如图12所示,对衬底的正面进行掺杂,形成基区6,基区6可以具有第一导电类型,基区6的底部高于沟槽栅4的底部。
一些实施例中,如图12所示,在基区6上形成发射区7之前,制造方法还可以包括:In some embodiments, as shown in FIG. 12, before forming the
在基区6下面形成少子势垒层12,少子势垒层12可以具有第二导电类型,少子势垒层12的底部高于沟槽栅4的底部;抽取通道5穿通少子势垒层12与第一导电类型区2电连接。A minority
例如是,对衬底的正面进行掺杂,分别进行P型基区6以及少子势垒层12的离子注入,基区6注入硼离子,剂量1e13-1e14,能量50-100KeV,少子势垒层12注入磷离子,剂量为1e13-1e14,能量150-300KeV,退火1100-1180℃,时间100-300分钟。通过控制注入能量来控制少子势垒层12与基区6的深度。其中,少子势垒层12的注入能量和剂量要控制好,该层次的浓度太高会导致击穿电压降低,太少则会增加导通压降。For example, the front side of the substrate is doped, and the ion implantation of the P-
步骤6、如图4所示,在基区6上形成发射区7,发射区7可以具有第二导电类型;发射区7位于沟槽栅4的薄栅介质层412的一侧并与薄栅介质层412接触。
一些实施例中,发射区7与基区6的结构关系可以如图13所示,可以是采用如图1与图13中(A)中所示的纵向发射区7结构(垂直图4的方向),一个发射区7位于两个沟槽栅4之间,纵向结构可以减少器件的横向尺寸,发射区7的长度(垂直图4的方向)与基区6的长度关系可以根据实际器件需要进行调整,发射区7长度短对短路有好处,发射区7长度长对导通压降有好处,在本实施例以两者相等为例(参见图13中(A))。或者是采用如图13中(B)所示的横向发射区7结构,一个发射区7对应一个沟槽栅4,如图13中(B)所示的发射区7,发射区7与第一电极8接触的面积可以进行调整,减少发射区7的图像面积可以对短路时间和雪崩测试有好处,增加则会降低导通压降。In some embodiments, the structural relationship between the
例如,N+注入磷离子,剂量3e15-1e16,能量50-100KeV,P+注入硼离子,剂量1e15-5e16,能量100-120KeV,950℃退火10-60min,其中,N+注入退火后形成发射区7,P+注入退火后做欧姆接触区。For example, N+ is implanted with phosphorous ions at a dose of 3e15-1e16 and energy is 50-100KeV, and P+ is implanted with boron ions at a dose of 1e15-5e16 with an energy of 100-120KeV and annealed at 950°C for 10-60min, wherein the
步骤7、如图4所示,在衬底的正面形成第一电极8,第一电极8分别与抽取通道5、基区6以及发射区7电连接;抽取通道5用于在IGBT器件处于关断状态时,第一电极8通过抽取通道5抽取沟槽栅4底部的少数载流子。
例如是,在沉积层间介质层,例如是淀积1000-3000A的USG和6000-11000A的BPSG,之后在950℃下退火30min。For example, after depositing an interlayer dielectric layer, for example, 1000-3000A of USG and 6000-11000A of BPSG are deposited, and then annealed at 950° C. for 30 minutes.
再进行接触孔刻蚀与注入,分别在NMOS与PMOS区域处刻蚀接触孔,注入硼离子,剂量1e15-1e16,能量20-100KeV,再淀积上金属,与金属形成欧姆接触,形成发射极(第一电极8)。Then conduct contact hole etching and implantation, respectively etch the contact holes in the NMOS and PMOS regions, implant boron ions, the dose is 1e15-1e16, the energy is 20-100KeV, and then deposit metal to form ohmic contact with the metal to form the emitter (first electrode 8).
步骤8、如图4所示,在衬底的背面形成集电区9,或者在衬底的背面形成缓冲层11以及集电区9;在集电区9上形成第二电极10,第二电极10与集电区9电连接,缓冲层11可以具有第二导电类型,集电区9可以具有第一导电类型,第一导电类型和第二导电类型属于不同的半导体导电类型。
在一些实施例中,在步骤8中,在衬底的背面形成缓冲层11,可以包括:In some embodiments, in
减薄衬底的背面至预设厚度,通过掺杂在衬底的背面形成缓冲层11,缓冲层11的掺杂浓度大于漂移区1的掺杂浓度;第一导电类型区2与缓冲层11接触,或者第一导电类型区2靠近缓冲层11,且第一导电类型区2的深度大于或等于漂移区1深度的2/3。Thinning the back of the substrate to a preset thickness, forming a
例如,将衬底的背面进行减薄处理,减薄至漂移区1厚度为50-100微米,先采用磷元素进行缓冲层11的掺杂,形成N型的缓冲层11,使得第一导电类型区2的底部靠近或与缓冲层11接触。然后对缓冲层11进行硼元素掺杂,形成P型的集电区9。或者是,直接对减薄后的漂移区1进行硼元素掺杂,形成P型的集电区9。最后在集电区9的表面形成第二电极10。For example, the back side of the substrate is thinned to a thickness of 50-100 microns in the
通过上述实施例的制造方法,制造形成的IGBT器件至少具有以下技术效果。Through the manufacturing method of the above embodiment, the IGBT device manufactured and formed has at least the following technical effects.
第一、为了平衡饱和压降与关断损耗,本申请采用超结工艺,并增加空穴路径结构。外延层采用多次注入生长方式,形成P-N-N+-N-P横向变化掺杂的超结外延。横向变化掺杂的超结外延的N+柱能够降低器件电流传导路径处的电阻率,提高电流能力,减少导通压降,降低导通损耗。而且相对于N+柱较低的N柱,在器件反向截止期间能够起到与P柱电荷平衡的效果,N柱与P柱形成的PN结反向偏置,形成较宽的耗尽区,建立垂直电场,同时使器件水平电场不产生突变,使器件在水平和垂直方向上的电场都处在一个接近临界的状态,增加耗尽区宽度,提高有效耐压面积。First, in order to balance the saturation voltage drop and turn-off loss, this application adopts a super-junction process and adds a hole path structure. The epitaxial layer adopts multiple injection growth methods to form super junction epitaxy with P-N-N+-N-P lateral change doping. The laterally variable doped superjunction epitaxial N+ column can reduce the resistivity at the current conduction path of the device, improve the current capability, reduce the conduction voltage drop, and reduce the conduction loss. Moreover, compared with the N+ column, the lower N column can achieve the effect of charge balance with the P column during the reverse cut-off period of the device. The PN junction formed by the N column and the P column is reversely biased to form a wider depletion region. The vertical electric field is established, and at the same time, the horizontal electric field of the device does not produce a sudden change, so that the electric field of the device in the horizontal and vertical directions is in a state close to the critical state, increasing the width of the depletion region and improving the effective withstand voltage area.
第二、在关断期间,P柱的存在,搭配正面结构的耗尽型PMOS结构,形成了非平衡少数载流子流出体内的路径,达到快速抽取N型漂移区1的非平衡少子的目的,抑制拖尾电流,从而减少关断损耗。由于在动态开关过程中,体内的非平衡少子达到背景掺杂浓度的量级甚至更多,材料的临界电场降低,超结结构N/P柱能够在此过程快速排出非平衡少子,抑制动态雪崩,抑制关断噪声的产生。Second, during the turn-off period, the existence of the P column, combined with the depletion-type PMOS structure of the front structure, forms a path for the non-equilibrium minority carriers to flow out of the body, and achieves the purpose of quickly extracting the non-equilibrium minority carriers in the N-
在本申请结构中,存在增强型的NMOS与耗尽型PMOS,形成互补MOS结构。IGBT开通时NMOS导通而PMOS截止,在关断时,NMOS截止而PMOS导通,实现空穴的快速抽取,以降低关断损耗。其中,增强型的NMOS指薄氧化层侧的发射极、基区以及漂移区的整体结构。In the structure of this application, there are enhancement-type NMOS and depletion-type PMOS, forming a complementary MOS structure. When the IGBT is turned on, the NMOS is turned on and the PMOS is turned off. When it is turned off, the NMOS is turned off and the PMOS is turned on, so as to realize the rapid extraction of holes and reduce the turn-off loss. Among them, the enhanced NMOS refers to the overall structure of the emitter, the base region and the drift region on the side of the thin oxide layer.
第三、电场集中的弛豫与高空穴排除是抑制动态雪崩的重要因素,本申请的IGBT结构中加厚的底部栅氧、沟槽栅4底部的N-区和耗尽型PMOS共同起到了这两种作用,并且能够在较低的动态电场下实现高dV/dt的关断操作,因此能够在相同的条件下实现更低的关断损耗。Third, the relaxation of electric field concentration and the elimination of high holes are important factors to suppress dynamic avalanche. In the IGBT structure of the present application, the thickened bottom gate oxide, the N-region at the bottom of the
第四、本申请与图1所示的现有IGBT器件的结构相比,加厚栅极42底部氧化层,在沟槽刻蚀厚注入与衬底多数载流子相反的离子形成N-区,让栅极42下方电势分散,降低该处的电场峰值,抑制动态雪崩,减少栅极42电荷,抑制栅极42负电容,获得更好的开关可控性。Fourth, compared with the structure of the existing IGBT device shown in Figure 1, this application thickens the oxide layer at the bottom of the
第五、本申请的器件与图1所示的现有IGBT器件的结构相比,本申请采用了少子载流子作为势垒层,该势垒层能够帮助器件在导通期间阻挡非平衡少子,使少子载流子下方的非平衡少子堆积,增强器件的注入增强(IE)效应,其目的是实现更低的导通压降和更小的导通损耗,具有更小的单位元胞宽度,在相同的芯片尺寸下能够获得更低的导通压降,更大的电流能力,具有更低成本的优势。Fifth, compared with the structure of the existing IGBT device shown in Figure 1, the device of this application uses minority carrier carriers as a barrier layer, which can help the device block non-equilibrium minority carriers during conduction , so that the non-equilibrium minority carrier accumulation under the minority carrier enhances the injection enhancement (IE) effect of the device, and its purpose is to achieve lower conduction voltage drop and smaller conduction loss, with a smaller unit cell width , under the same chip size, lower on-voltage drop, higher current capability, and lower cost can be obtained.
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。This document is described with reference to various exemplary embodiments. However, those skilled in the art will recognize that changes and modifications can be made to the exemplary embodiments without departing from the scope herein. For example, the various operational steps, as well as the components used to perform the operational steps, may be implemented in different ways depending on the particular application or considering any number of cost functions associated with the operation of the system (e.g., one or more steps may be deleted, modified or incorporated into other steps).
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。While the principles herein have been shown in various embodiments, many modifications in structure, arrangement, proportions, elements, materials and components, particularly suited to particular circumstances and operational requirements may be made without departing from the principles and scope of this disclosure use. The above modifications and other changes or amendments are intended to be included within the scope of this document.
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。The foregoing detailed description has been described with reference to various embodiments. However, those skilled in the art will recognize that various modifications and changes can be made without departing from the scope of the present disclosure. Accordingly, the disclosure is to be considered in an illustrative rather than a restrictive sense, and all such modifications are intended to be embraced within its scope. Also, advantages, other advantages and solutions to problems have been described above with respect to various embodiments. However, neither benefits, advantages, solutions to problems, nor any elements that lead to these, or make the solutions more definite, should be construed as critical, required, or necessary. As used herein, the term "comprises" and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device. Additionally, the term "coupled" and any other variations thereof, as used herein, refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应仅由权利要求确定。Those skilled in the art will recognize that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. Accordingly, the scope of the invention should be determined only by the claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211314368.6A CN115376918A (en) | 2022-10-26 | 2022-10-26 | A kind of IGBT device and its manufacturing method |
CN202320345320.5U CN219513110U (en) | 2022-10-26 | 2023-02-21 | A kind of IGBT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211314368.6A CN115376918A (en) | 2022-10-26 | 2022-10-26 | A kind of IGBT device and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115376918A true CN115376918A (en) | 2022-11-22 |
Family
ID=84073387
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211314368.6A Pending CN115376918A (en) | 2022-10-26 | 2022-10-26 | A kind of IGBT device and its manufacturing method |
CN202320345320.5U Active CN219513110U (en) | 2022-10-26 | 2023-02-21 | A kind of IGBT device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320345320.5U Active CN219513110U (en) | 2022-10-26 | 2023-02-21 | A kind of IGBT device |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN115376918A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116884996A (en) * | 2023-09-08 | 2023-10-13 | 深圳芯能半导体技术有限公司 | An IGBT chip that reduces turn-off loss and its manufacturing method |
CN117174757A (en) * | 2023-11-02 | 2023-12-05 | 深圳芯能半导体技术有限公司 | Super-junction trench gate silicon carbide MOSFET and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118248724B (en) * | 2024-05-24 | 2024-09-27 | 江苏东海半导体股份有限公司 | A vehicle-grade high-power IGBT device and its manufacturing process |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106057905A (en) * | 2016-08-16 | 2016-10-26 | 上海华虹宏力半导体制造有限公司 | Trench gate field effect transistor and manufacturing method |
CN106129105A (en) * | 2016-06-28 | 2016-11-16 | 上海华虹宏力半导体制造有限公司 | Groove power MOSFET and manufacture method |
CN107591453A (en) * | 2017-10-24 | 2018-01-16 | 贵州芯长征科技有限公司 | Groove grid super node MOSFET device and preparation method thereof |
US20180286943A1 (en) * | 2017-04-03 | 2018-10-04 | Fuji Electric Co., Ltd. | Semiconductor device |
CN108767000A (en) * | 2018-08-16 | 2018-11-06 | 无锡新洁能股份有限公司 | A kind of insulated gate bipolar semiconductor devices and its manufacturing method |
CN108899370A (en) * | 2018-08-22 | 2018-11-27 | 江苏中科君芯科技有限公司 | The VDMOS device in integrated resistor area |
US20210273091A1 (en) * | 2020-02-27 | 2021-09-02 | Semiconductor Components Industries, Llc | Split trench gate super junction power device |
CN113838918A (en) * | 2021-09-23 | 2021-12-24 | 电子科技大学 | Super-junction IGBT device structure with carrier concentration enhancement and manufacturing method |
CN114551577A (en) * | 2022-04-28 | 2022-05-27 | 深圳市美浦森半导体有限公司 | IGBT device and manufacturing method thereof |
-
2022
- 2022-10-26 CN CN202211314368.6A patent/CN115376918A/en active Pending
-
2023
- 2023-02-21 CN CN202320345320.5U patent/CN219513110U/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129105A (en) * | 2016-06-28 | 2016-11-16 | 上海华虹宏力半导体制造有限公司 | Groove power MOSFET and manufacture method |
CN106057905A (en) * | 2016-08-16 | 2016-10-26 | 上海华虹宏力半导体制造有限公司 | Trench gate field effect transistor and manufacturing method |
US20180286943A1 (en) * | 2017-04-03 | 2018-10-04 | Fuji Electric Co., Ltd. | Semiconductor device |
CN107591453A (en) * | 2017-10-24 | 2018-01-16 | 贵州芯长征科技有限公司 | Groove grid super node MOSFET device and preparation method thereof |
CN108767000A (en) * | 2018-08-16 | 2018-11-06 | 无锡新洁能股份有限公司 | A kind of insulated gate bipolar semiconductor devices and its manufacturing method |
CN108899370A (en) * | 2018-08-22 | 2018-11-27 | 江苏中科君芯科技有限公司 | The VDMOS device in integrated resistor area |
US20210273091A1 (en) * | 2020-02-27 | 2021-09-02 | Semiconductor Components Industries, Llc | Split trench gate super junction power device |
CN113838918A (en) * | 2021-09-23 | 2021-12-24 | 电子科技大学 | Super-junction IGBT device structure with carrier concentration enhancement and manufacturing method |
CN114551577A (en) * | 2022-04-28 | 2022-05-27 | 深圳市美浦森半导体有限公司 | IGBT device and manufacturing method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116884996A (en) * | 2023-09-08 | 2023-10-13 | 深圳芯能半导体技术有限公司 | An IGBT chip that reduces turn-off loss and its manufacturing method |
CN117174757A (en) * | 2023-11-02 | 2023-12-05 | 深圳芯能半导体技术有限公司 | Super-junction trench gate silicon carbide MOSFET and preparation method thereof |
CN117174757B (en) * | 2023-11-02 | 2024-03-26 | 深圳芯能半导体技术有限公司 | Super-junction trench gate silicon carbide MOSFET and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN219513110U (en) | 2023-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN219513110U (en) | A kind of IGBT device | |
CN111081759B (en) | Enhanced silicon carbide MOSFET device and manufacturing method thereof | |
KR20150031198A (en) | Insulated gate bipolar transistor with mesa sections between cell trench structures and method of manufacturing | |
CN103094324B (en) | Trench-type insulated gate bipolar transistor and preparation method thereof | |
CN103000667B (en) | The method of semiconductor device and this semiconductor device of manufacture | |
CN109192772A (en) | A kind of groove-shaped insulated gate bipolar transistor and preparation method thereof | |
CN106997899B (en) | A kind of IGBT device and preparation method thereof | |
CN214848639U (en) | Cell structure of semiconductor device and semiconductor device | |
CN110518058B (en) | A lateral trench type insulated gate bipolar transistor and method of making the same | |
CN104347689A (en) | Dual trench-gate IGBT structure | |
CN109801958A (en) | A kind of silicon carbide trench schottky diode device and preparation method thereof | |
CN111211168A (en) | RC-IGBT chip and manufacturing method thereof | |
CN114005877A (en) | Ultrathin super-junction IGBT device and preparation method | |
CN110504260A (en) | A kind of lateral trench IGBT with self-biased PMOS and preparation method thereof | |
CN115440589B (en) | IGBT device and manufacturing method thereof | |
CN106409895B (en) | Insulated gate bipolar transistor and method of making the same | |
CN113193039A (en) | Manufacturing method of trench type IGBT (insulated gate bipolar transistor) cell structure and trench type IGBT cell structure | |
CN110473905B (en) | A split gate TIGBT with self-biased PMOS and method of making the same | |
CN118156130A (en) | IGBT device preparation method and IGBT device | |
CN216871974U (en) | Multi-channel super-junction IGBT device | |
CN113921595B (en) | Semiconductor structures and methods of forming them | |
CN105702720B (en) | A kind of turn-off performance method for improving of insulated gate bipolar transistor | |
CN112018188B (en) | Trench gate MOSFET device and manufacturing method thereof | |
CN210607263U (en) | Insulated gate bipolar transistor with latch-up immunity function | |
CN115064584A (en) | A trench gate IGBT device with carrier storage layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221122 |