CN115373345A - Method and system for intelligent processing - Google Patents
Method and system for intelligent processing Download PDFInfo
- Publication number
- CN115373345A CN115373345A CN202110556050.8A CN202110556050A CN115373345A CN 115373345 A CN115373345 A CN 115373345A CN 202110556050 A CN202110556050 A CN 202110556050A CN 115373345 A CN115373345 A CN 115373345A
- Authority
- CN
- China
- Prior art keywords
- processing
- information
- parameter
- image
- processed object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 203
- 238000000034 method Methods 0.000 title claims description 46
- 230000007547 defect Effects 0.000 claims abstract description 66
- 238000005259 measurement Methods 0.000 claims abstract description 57
- 238000012937 correction Methods 0.000 claims abstract description 34
- 238000003672 processing method Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000012544 monitoring process Methods 0.000 claims description 43
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 238000003384 imaging method Methods 0.000 claims description 17
- 238000005457 optimization Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 16
- 238000013461 design Methods 0.000 claims description 15
- 238000007689 inspection Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000011179 visual inspection Methods 0.000 claims description 10
- 238000013528 artificial neural network Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 6
- 239000002932 luster Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 238000013527 convolutional neural network Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012797 qualification Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Automation & Control Theory (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明系关于一种自动化加工流程之优化,特别是一种智慧化加工之方法与系统。The present invention relates to the optimization of an automated processing flow, in particular to a method and system for intelligent processing.
背景技术Background technique
生产制程从加工、检测、校正加工机台等过程乃是环环相扣,任一步骤失误终将导致产品良率不足、产能下降等问题。而上述生产制程过去常会被切割成不同专责部门进行,在人工沟通或配合上亦容易浪费许多时间成本。例如:透过自动光学检测产品时,尽管可以取代人工执行普检,但发现瑕疵产品时,仍需要人工再进行复检,以量测以及辨识瑕疵,并再将瑕疵数据交予生产单位,生产单位再校正生产机台的参数。而上述流程不但不连贯且旷日废时,且大多数的情况是无法藉由一次性校正机台之参数,立刻获得理想的良率,实际上是需要多次的校正。The production process is closely linked from processing, testing, and calibration of processing machines. Any mistake in any step will eventually lead to problems such as insufficient product yield and reduced production capacity. In the past, the above-mentioned production process was often divided into different specialized departments, and it was easy to waste a lot of time and cost in manual communication or cooperation. For example, although automatic optical inspection of products can replace manual general inspection, when defective products are found, manual re-inspection is still required to measure and identify defects, and then hand over the defect data to the production unit for production The unit recalibrates the parameters of the production machine. The above-mentioned process is not only incoherent and time-consuming, but also in most cases, it is impossible to obtain the ideal yield immediately by calibrating the parameters of the machine once, and actually requires multiple calibrations.
随着技术的不断发展,「工业4.0」一词在2011年已被提出,主要精神为智慧化在自动化之生产流程,并可以主动排除生产时的问题。With the continuous development of technology, the term "Industry 4.0" was proposed in 2011. The main spirit is to automate the production process intelligently and actively eliminate production problems.
因此,为解决上述的问题,所属领域应开发符合「工业4.0」精神的加工方法与系统,以提升生产制程之效率,并不断提升产品的良率。Therefore, in order to solve the above problems, the field should develop processing methods and systems in line with the spirit of "Industry 4.0" to improve the efficiency of the production process and continuously improve the yield of products.
发明内容Contents of the invention
为解决上述问题,本发明之实施例发展出一种智能化加工之方法与系统,上述系统整合产品溯源、光学仪器初检、基于人工智能复检、虚拟量测、自动优化参数等技术。本发明申请人参考过去所申请之专利案,包括:TW109132726、TW109124011、TW110107077、TW109212512以及TW109136592,作为本发明技术之参考。In order to solve the above problems, the embodiment of the present invention develops a method and system for intelligent processing. The above system integrates technologies such as product traceability, optical instrument initial inspection, artificial intelligence-based re-inspection, virtual measurement, and automatic parameter optimization. The applicant of the present invention refers to the patents filed in the past, including: TW109132726, TW109124011, TW110107077, TW109212512 and TW109136592, as a reference for the technology of the present invention.
具体而言,本发明之实施例提供一种智能化加工系统,上述智能化加工系统应用于至少一个加工装置,上述加工装置根据加工参数对待加工物进行加工,并产生被加工物。上述智能化加工系统包括至少一个标示装置、粗判装置、精判装置、加工信息获取装置以及量测/参数校正装置。Specifically, an embodiment of the present invention provides an intelligent processing system, the above-mentioned intelligent processing system is applied to at least one processing device, and the above-mentioned processing device processes the object to be processed according to the processing parameters and generates the object to be processed. The above-mentioned intelligent processing system includes at least one marking device, a rough judgment device, a fine judgment device, a processing information acquisition device and a measurement/parameter correction device.
依据又一实施例,上述标示装置,于上述被加工物上标示加工信息,其中上述加工信息包括至少一个上述加工参数。上述标示装置之加工信息之记录方式包括文字、数字、符号以及图码,其中上述图码包括一维条形码以及二维条形码。上述标示装置之加工信息更包括制造批次、产品型号以及制造日期。According to yet another embodiment, the above-mentioned marking device marks processing information on the above-mentioned workpiece, wherein the above-mentioned processing information includes at least one of the above-mentioned processing parameters. The recording methods of the processing information of the above-mentioned marking device include characters, numbers, symbols and image codes, wherein the above-mentioned image codes include one-dimensional barcodes and two-dimensional barcodes. The processing information of the above-mentioned marking device further includes manufacturing batch, product model and manufacturing date.
依据又一实施例,上述粗判装置,系为初检上述被加工物是否具有至少一个瑕疵处,并产生至少一个被加工物影像,其中上述粗判装置系为自动视觉检测装置。上述自动视觉检测装置的初检方法包括轮廓比对、位置坐标比对、3D轮廓比对、色泽比对以及亮度比对。上述自动视觉检测装置组成包括至少一个取像单元、至少一个测距单元、计算单元以及数据库。上述测距单元,用以产生撷取该被加工物之一取像距离信息。上述数据库,系为储存复数个标准尺寸信息,每一个上述标准尺寸信息分别包括单位面积之分辨率、取像距离、对应之画素矩阵以及对应的实际尺寸与膜厚高度。上述计算单元根据上述被加工物影像之分辨率信息以及上述取像距离信息,比对上述数据库中之上述标准尺寸信息,计算产生具有实际尺寸信息之上述被加工物影像。上述数据库中之上述标准尺寸信息例如可为二维尺寸或三维尺寸,并进一步由上述计算单元计算出具有二维尺寸或三维尺寸之上述实际尺寸。上述被加工物影像可为2D或3D。According to yet another embodiment, the rough judging device is for initially checking whether the processed object has at least one defect and generating at least one image of the processed object, wherein the rough judging device is an automatic visual inspection device. The preliminary inspection method of the above-mentioned automatic visual inspection device includes contour comparison, position coordinate comparison, 3D contour comparison, color luster comparison and brightness comparison. The above-mentioned automatic visual inspection device comprises at least one imaging unit, at least one distance measuring unit, a computing unit and a database. The above distance measuring unit is used to generate information on the imaging distance for capturing the processed object. The above-mentioned database is for storing a plurality of standard size information, and each of the above-mentioned standard size information includes the resolution per unit area, the imaging distance, the corresponding pixel matrix, and the corresponding actual size and film thickness. The calculation unit compares the standard size information in the database according to the resolution information of the processed object image and the imaging distance information, and calculates and generates the processed object image with actual size information. The above-mentioned standard size information in the above-mentioned database can be, for example, a two-dimensional size or a three-dimensional size, and the above-mentioned actual size having a two-dimensional size or a three-dimensional size is further calculated by the above-mentioned calculation unit. The image of the workpiece can be 2D or 3D.
依据又一实施例,上述精判装置,讯号连接上述粗判装置,系为复检上述被加工物影像是否具有至少一个瑕疵处,并辨识上述被加工物影像中所含的瑕疵类型,并产生辨识结果。上述精判装置更包括分类模块,上述分类模块系为应用人工神经网络执行辨识上述瑕疵类型。上述分类模块之训练数据报括上述辨识结果以及人工复判结果。According to yet another embodiment, the above-mentioned fine judging device is connected to the above-mentioned rough judging device for re-checking whether the image of the processed object has at least one defect, and identifying the type of defect contained in the image of the processed object, and generating Identification result. The fine-judgment device further includes a classification module, and the classification module is used to identify the type of the defect by using an artificial neural network. The training data of the above-mentioned classification module includes the above-mentioned recognition results and manual re-judgment results.
依据又一实施例,上述加工信息获取装置,讯号连接上述精判装置,系为辨识上述被加工物影像之上述加工信息,并产生上述加工参数。According to yet another embodiment, the above-mentioned processing information acquisition device is connected to the above-mentioned precise judging device with a signal to identify the above-mentioned processing information of the above-mentioned processed object image, and generate the above-mentioned processing parameters.
依据又一实施例,上述量测/参数校正装置,讯号连接上述精判装置,系为量测上述被加工物影像之瑕疵处,并产生瑕疵尺寸,再根据上述瑕疵尺寸以及上述加工参数,计算上述加工参数之最佳结果,进而产生校正加工参数,并传输上述校正加工参数至上述加工装置。上述量测/参数校正装置更包括参数优化模块,上述参数优化模块系为应用算法计算上述加工参数之最佳结果。上述瑕疵尺寸例如可为二维尺寸或三维尺寸。According to yet another embodiment, the above-mentioned measurement/parameter correction device is connected to the above-mentioned fine-judgment device for measuring the defect of the image of the processed object, and generates the size of the defect, and then calculates according to the size of the defect and the above-mentioned processing parameters. The optimal result of the above-mentioned processing parameters, and then generate the corrected processing parameters, and transmit the above-mentioned corrected processing parameters to the above-mentioned processing device. The above-mentioned measurement/parameter correction device further includes a parameter optimization module, and the above-mentioned parameter optimization module is to calculate the best result of the above-mentioned processing parameters by applying an algorithm. The above-mentioned flaw size may be, for example, a two-dimensional size or a three-dimensional size.
依据又一实施例,上述量测/参数校正装置,系当上述被加工物具有设计图,可进一步将上述设计图与上述被加工物影像叠合,产生一叠合影像,以作为量测该瑕疵尺寸之依据。According to yet another embodiment, the above-mentioned measurement/parameter correction device, when the above-mentioned processed object has a design drawing, can further superimpose the above-mentioned design drawing and the above-mentioned processed object image to generate a superimposed image as a measure of the The basis for the size of the defect.
依据又一实施例,上述量测/参数校正装置更包括提供事先设定上述设计图中至少一处监测量测区域,并再对上述叠合影像之上述监测量测区域进行量测,并产生监测尺寸信息。而上述监测量测区域在图像处理上可视为一种感兴趣区域或重点区域(Region ofinterest;简称ROI)。According to yet another embodiment, the above measurement/parameter correction device further includes providing at least one monitoring measurement area in the above design drawing in advance, and then measuring the above monitoring measurement area of the above superimposed image, and generating Monitor size information. The above-mentioned monitoring measurement area can be regarded as a region of interest or a key region (Region of interest; ROI for short) in terms of image processing.
依据又一实施例,上述量测/参数校正装置,可进一步将上述监测尺寸信息经统计产生监测统计信息,且上述监测统计信息将作为计算上述加工参数之计算数据。上述监测尺寸信息例如可为二维尺寸或三维尺寸的信息。According to yet another embodiment, the measurement/parameter correction device can further generate monitoring statistical information through statistics of the monitoring size information, and the monitoring statistical information will be used as calculation data for calculating the processing parameters. The above-mentioned monitoring size information may be, for example, two-dimensional or three-dimensional information.
依据又一实施例,根据上述加工参数进行加工时,可透过上述精判装置所发现的瑕疵处的数量,进一步计算出上述加工参数所对应之生产良率。According to yet another embodiment, when processing according to the above-mentioned processing parameters, the production yield corresponding to the above-mentioned processing parameters can be further calculated through the number of defects found by the above-mentioned precise judging device.
依据又一实施例,上述生产良率的合格标准可依使用者需求调整,若上述加工参数所产生的良率已符合上述合格标准,上述加工参数可进一步作为执行虚拟量测(VirtualMetrology;简称VM)之参考参数。上述虚拟量测系指透过加工参数推估生产的结果(或质量),以达到全检的目的。According to yet another embodiment, the qualification standard of the above-mentioned production yield rate can be adjusted according to the needs of users. If the yield rate generated by the above-mentioned processing parameters meets the above-mentioned standard, the above-mentioned processing parameters can be further used as a virtual metrology (Virtual Metrology; VM for short) ) reference parameters. The above-mentioned virtual measurement refers to estimating the production result (or quality) through processing parameters to achieve the purpose of full inspection.
依据又一实施例,上述量测/参数校正装置,系当上述瑕疵尺寸超出预设的阈值时,上述量测/参数校正装置将停止自动更正上述加工参数,并产生警示通知。According to yet another embodiment, the measurement/parameter correction device is configured to stop automatically correcting the processing parameters and generate a warning notification when the size of the defect exceeds a preset threshold.
依据又一实施例,上述该精判装置接收到上述警示通知,将不会将上述警示通知所对应之辨识结果作为训练上述分类模块之上述训练数据。According to yet another embodiment, upon receiving the warning notification, the above-mentioned fine judgment device will not use the identification result corresponding to the warning notification as the training data for training the classification module.
依据又一实施例,上述警示通知,可透过简讯或邮件,实时通知系统管理人员。According to yet another embodiment, the above-mentioned warning notification can be notified to the system management personnel in real time through text messages or emails.
本发明之实施例更提供一种智能化加工方法,包括以下步骤。于加工装置默认加工参数;对待加工物进行加工,并产生被加工物;于上述被加工物上标示加工信息,上述加工信息包括上述加工参数;以粗判装置对上述被加工物进行初检,并撷取至少一个被加工物影像以及取像距离信息,其中该粗判装置系可为自动视觉检测装置;再透过上述粗判装置所载之多个标准尺寸信息,比对上述取像距离信息,产生上述被加工物影像之实际尺寸信息;以精判装置进行复检,并应用分类模块辨识上述被加工物影像中所含的瑕疵类型,并产生辨识结果,其中上述分类模块系应用人工神经网络执行上述辨识瑕疵类型;将上述被加工物的设计图与上述被加工物影像叠合,产生叠合影像,再对上述叠合影像执行量测瑕疵处,并产生瑕疵尺寸;辨识上述加工信息,产生上述加工参数;以量测/参数校正装置透过参数优化模块,根据上述瑕疵尺寸与上述加工参数,计算该加工参数之最佳结果,并产生校正加工参数,并传输至上述加工装置,其中上述参数优化模块系应用人工神经网络执行加工参数优化。An embodiment of the present invention further provides an intelligent processing method, including the following steps. Default processing parameters in the processing device; process the object to be processed and produce the processed object; mark the processing information on the above-mentioned processed object, the above-mentioned processing information includes the above-mentioned processing parameters; use the rough judgment device to perform a preliminary inspection on the above-mentioned processed object, And capture at least one processed object image and imaging distance information, wherein the rough judging device can be an automatic visual inspection device; then compare the above-mentioned imaging distance through the multiple standard size information carried by the rough judging device Information, to generate the actual size information of the image of the processed object; re-inspect with the precise judgment device, and use the classification module to identify the type of defects contained in the image of the processed object, and generate the identification result, wherein the above classification module is applied artificially The neural network performs the above-mentioned identification of defect types; superimposes the design drawing of the above-mentioned processed object with the above-mentioned image of the processed object to generate a superimposed image, and then performs measurement of the defect on the above-mentioned superimposed image to generate the size of the defect; identifies the above-mentioned processing information to generate the above-mentioned processing parameters; use the measurement/parameter correction device through the parameter optimization module to calculate the best result of the processing parameters based on the above-mentioned defect size and the above-mentioned processing parameters, and generate corrected processing parameters, and transmit them to the above-mentioned processing device , wherein the above-mentioned parameter optimization module uses an artificial neural network to perform processing parameter optimization.
依据又一实施例,根据上述方法更包括质量监测之步骤,系事先透过上述量测/参数校正装置中设定上述被加工物的设计图中至少一处监测量测区域,并再对上述叠合影像之上述监测量测区域进行量测,并产生监测尺寸信息。According to yet another embodiment, the above method further includes the step of quality monitoring, which is to set at least one monitoring measurement area in the design drawing of the above-mentioned processed object in the above-mentioned measurement/parameter correction device in advance, and then perform the above-mentioned The above-mentioned monitoring measurement area of the superimposed image is measured, and the monitoring size information is generated.
依据又一实施例,根据上述方法上述量测/参数校正装置,可进一步将上述监测尺寸信息经统计产生监测统计信息,且上述监测统计信息将作为计算上述加工参数之计算数据。According to yet another embodiment, according to the above-mentioned measurement/parameter correction device, the above-mentioned monitoring size information can be further calculated to generate monitoring statistical information, and the above-mentioned monitoring statistical information will be used as calculation data for calculating the above-mentioned processing parameters.
依据又一实施例,根据上述方法并可依上述加工参数进行加工时,透过上述精判装置所发现的瑕疵处的数量,进一步计算出上述加工参数所对应之生产良率。According to yet another embodiment, when processing according to the above-mentioned method and the above-mentioned processing parameters, the production yield corresponding to the above-mentioned processing parameters is further calculated through the number of defects found by the above-mentioned precise judging device.
依据又一实施例,根据上述方法上述生产良率的合格标准可依使用者需求调整,若上述加工参数所产生的良率已符合上述合格标准,上述加工参数可进一步作为执行虚拟量测(Virtual Metrology;简称VM)之参考参数。上述虚拟量测系指透过加工参数推估生产的结果(或质量),以达到全检的目的。According to yet another embodiment, according to the above-mentioned method, the qualification standard of the above-mentioned production yield rate can be adjusted according to the needs of users. If the yield rate produced by the above-mentioned processing parameters meets the above-mentioned standard, the above-mentioned processing parameters can be further used as a virtual measurement (Virtual Measurement) Metrology; referred to as VM) reference parameters. The above-mentioned virtual measurement refers to estimating the production result (or quality) through processing parameters to achieve the purpose of full inspection.
依据又一实施例,根据上述方法之上述分类模块之训练数据报括上述辨识结果以及人工复判结果。According to yet another embodiment, the training data of the above-mentioned classification module according to the above-mentioned method includes the above-mentioned recognition results and manual re-judgment results.
依据又一实施例,根据上述方法之上述瑕疵尺寸超出阈值时,上述量测/参数校正装置将停止自动更正该加工参数,并产生警示通知。According to yet another embodiment, when the defect size exceeds a threshold according to the above method, the measurement/parameter correction device will stop automatically correcting the processing parameters and generate a warning notification.
依据又一实施例,根据上述方法之上述精判装置接收到上述警示通知,将不会将上述警示通知所对应之辨识结果作为训练上述分类模块之上述训练数据。According to yet another embodiment, upon receiving the warning notification, the fine judgment device according to the above method will not use the identification result corresponding to the warning notification as the training data for training the classification module.
依据又一实施例,根据上述方法之上述粗判装置的初步检测方法包括3D轮廓比对、位置坐标比对、色泽比对以及亮度比对。According to yet another embodiment, the preliminary detection method of the rough judgment device according to the above method includes 3D contour comparison, position coordinate comparison, color luster comparison and brightness comparison.
依据又一实施例,根据上述方法之上述多个标准尺寸信息分别包括单位面积之分辨率、取像距离、对应之画素矩阵以及对应的实际尺寸与膜厚高度。According to yet another embodiment, the plurality of standard size information according to the above method respectively include resolution per unit area, imaging distance, corresponding pixel matrix, and corresponding actual size and film thickness.
依据又一实施例,根据上述方法之上述加工信息之记录方式包括文字、数字、符号以及图码,其中上述图码包括一维条形码以及二维条形码。According to yet another embodiment, the recording method of the processing information according to the above method includes characters, numbers, symbols and image codes, wherein the image codes include one-dimensional barcodes and two-dimensional barcodes.
综合上述实施例之技术特征,因此可具体主张以下功效。Based on the technical features of the above-mentioned embodiments, the following effects can be specifically claimed.
(1)本系统应用在加工制程上,达到智能化与全自动化的功效,并可同时串连数个加工站点的加工设备,以自动执行各站点之加工设备之被加工物的初判与复判检测。(1) This system is applied in the processing process to achieve the effect of intelligence and full automation. It can also connect processing equipment of several processing stations in series at the same time, so as to automatically perform the initial judgment and re-judgment of the processed objects of the processing equipment of each station. Judgment detection.
(2)透过本系统加工的产品,均可藉由产品上的加工信息,实时溯源各站点加工参数,可快速厘清造成产品良率不足的来自于哪些站点。(2) For products processed through this system, the processing information on the product can be used to trace the processing parameters of each site in real time, which can quickly clarify which sites cause the insufficient yield rate of the product.
(3)本系统根据上述初判与复判检测结果,并透过人工神经网络,可自动分类瑕疵种类以及对该瑕疵执行量测,并获得瑕疵尺寸的信息。(3) The system can automatically classify the type of defect and perform measurement on the defect based on the above-mentioned preliminary judgment and re-judgment detection results, and through the artificial neural network, and obtain information on the size of the defect.
(4)本系统在收集上述加工参数与瑕疵尺寸后,可进一步透过算法计算上述加工参数之最佳结果,并产生校正加工参数,再将该校正加工参数回传至上述加工设备,达到实时优化加工参数之功效。(4) After the system collects the above-mentioned processing parameters and defect sizes, it can further calculate the optimal result of the above-mentioned processing parameters through an algorithm, and generate corrected processing parameters, and then send the corrected processing parameters back to the above-mentioned processing equipment to achieve real-time The effect of optimizing processing parameters.
附图说明Description of drawings
为让本发明之上述和其他目的、特征、优点与实施例能更明显易懂,所附附图之说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1所绘为根据本发明之一实施例之一种智能化加工系统之装置示意图。FIG. 1 is a device schematic diagram of an intelligent processing system according to an embodiment of the present invention.
图2所绘为根据本发明之一实施例之一种智能化加工系统应用于多个加工设备之装置示意图。FIG. 2 is a schematic diagram of an intelligent processing system applied to multiple processing equipment according to an embodiment of the present invention.
图3所绘为根据本发明之一实施例之一种智能化加工系统之流程图。FIG. 3 is a flowchart of an intelligent processing system according to an embodiment of the present invention.
图4所绘为根据本发明之一实施例之一种智能化加工系统之质量监测流程图。FIG. 4 is a flowchart of quality monitoring of an intelligent processing system according to an embodiment of the present invention.
具体实施方式Detailed ways
为更具体说明本发明之各实施例,以下辅以附图进行说明。In order to describe various embodiments of the present invention in more detail, the following description is supplemented with accompanying drawings.
请参阅图1,图1所绘为根据本发明之一实施例之一种智能化加工系统之装置示意图。在图1中,依据一实施例,提供一种智能化加工系统100。上述智能化加工系统100应用于至少一个加工装置110,上述加工装置110根据加工参数对待加工物200进行加工,并产生被加工物220,上述系统100包括:标示装置120、粗判装置130、精判装置140、加工信息获取装置160以及量测/参数校正装置180。上述智能化加工系统100中的每个组件都可以是透过软件加上硬件来实现,或者透过纯硬件来实现,且本发明不以此为限制。Please refer to FIG. 1 . FIG. 1 is a device schematic diagram of an intelligent processing system according to an embodiment of the present invention. In FIG. 1 , an
上述标示装置120,于上述被加工物220上标示加工信息,其中上述加工信息包括至少一个上述加工参数。上述标示装置120之加工信息之记录方式包括文字、数字、符号以及图码,其中上述图码包括一维条形码以及二维条形码。上述标示装置120之加工信息更包括制造批次、产品型号以及制造日期。例如:于印刷电路板成品或半成品上印制二维图码,并可提供日后透过扫描或辨识该二维图码,即可产生历史加工参数纪录。The marking
上述粗判装置130,系为初检上述被加工物220是否具有至少一个瑕疵处,并产生至少一个被加工物影像,其中上述粗判装置系为自动视觉检测装置。上述自动视觉检测装置的初检方法包括3D轮廓比对、位置坐标比对、色泽比对以及亮度比对。本系统之粗判装置130于初判标准通常较严谨,以避免忽略真正具有瑕疵的产品,但常会有误判的情形发生,例如印刷电路板中某处出现细微灰尘,即判定为瑕疵,如此虽可确保产品之良率,相对容易判别出假瑕疵。在过去将仅能再透过人工复判的方式排除上述的假瑕疵,而在本发明则可透过上述精判装置140进行瑕疵的复判与瑕疵分类,可大幅减少假瑕疵以及需人工复判的数量。The rough judging device 130 is for initially checking whether the processed
根据本发明之另一实施例,上述自动视觉检测装置组成包括至少一个取像单元、至少一个测距单元、计算单元以及数据库。上述测距单元,用以产生撷取该被加工物之一取像距离信息。上述数据库,系为储存复数个标准尺寸信息,每一个上述标准尺寸信息分别包括单位面积之分辨率、取像距离、对应之画素矩阵以及对应的实际尺寸与膜厚高度。上述计算单元根据上述被加工物220的影像之分辨率信息以及上述取像距离信息,比对上述数据库中之上述标准尺寸信息,计算产生具有实际尺寸信息之上述被加工物影像。上述粗判装置130例如可为配合影像辨识设备之计算器设备(具备CPU以及GPU)。According to another embodiment of the present invention, the above-mentioned automatic visual inspection device comprises at least one imaging unit, at least one distance measuring unit, a computing unit and a database. The above distance measuring unit is used to generate information on the imaging distance for capturing the processed object. The above-mentioned database is for storing a plurality of standard size information, and each of the above-mentioned standard size information includes the resolution per unit area, the imaging distance, the corresponding pixel matrix, and the corresponding actual size and film thickness. The calculation unit compares the standard size information in the database according to the resolution information of the image of the processed
上述精判装置140,讯号连接上述粗判装置130,系为复检上述被加工物影像是否具有至少一个瑕疵处,并辨识上述被加工物影像中所含的瑕疵类型,并产生辨识结果。上述精判装置更包括分类模块142,上述分类模块142系为应用人工神经网络执行辨识上述瑕疵类型。上述分类模块142之训练数据报括上述辨识结果以及人工复判结果。上述分类模块142所应用之人工神经网络包括卷积神经网络模型(Convolutional Neural Network;简称CNN)。上述CNN模型更可选自包括R-CNN(Region-based Convolutional Neural Network)、Fast R-CNN、Faster R-CNN、RPN(Region Proposal Network)以及Mask R-CNN、FCN(FullyConvolutional Network)之一种进行瑕疵辨识与分类。另外,精判装置140除了可使用卷积神经网络模型来实现之外,其他对影像中部件分类的精密算法也可以拿来用于实现精判装置140,且本发明不以精判装置140的实现方式为限制。上述精判装置140可有效降低假瑕疵的数量以及需人工复判的数量,是否需要人工复判可藉由上述量测/参数校正装置180默认之阈值判定。上述假瑕疵以印刷电路板为例可包括:板边假点、细微板屑、灰尘以及待测子板与母板相异。上述精判装置140例如可为具有运算能力之计算器(具备CPU)。The
上述加工信息获取装置160,讯号连接上述精判装置140,系为辨识上述被加工物影像之上述加工信息,并产生上述加工参数。其辨识的方法可为文字辨识、图码辨识以及RFID等感应标签。上述加工信息获取装置160例如可为配合影像辨识设备之计算器设备(具备CPU以及GPU)。The processing
上述量测/参数校正装置180,讯号连接上述精判装置140,系为量测上述被加工物影像之瑕疵处,并产生瑕疵尺寸,再根据上述瑕疵尺寸以及上述加工参数,计算上述加工参数之最佳结果,进而产生校正加工参数,并传输上述校正加工参数至上述加工装置110。上述量测/参数校正装置180更包括参数优化模块182,上述参数优化模块182系为应用算法计算上述加工参数之最佳结果。上述参数优化模块182所应用之算法可应用任何可计算或归纳上述加工参数之最佳结果的算法,该算法例如可为:梯度下降法、牛顿法、共轭梯度法、线性搜寻、置信域方法、神经网络、微粒群算法、模拟退火、支持向量机、蚁群算法、差分进化算法、K-近邻算法(K-nearest neighbor)。上述量测/参数校正装置180例如可为具有运算能力之计算器(具备CPU)。The measurement/
根据本发明之另一实施例,上述量测/参数校正装置180,当上述被加工物220具有设计图,可进一步将上述设计图与上述被加工物220的影像叠合,系可作为量测上述瑕疵尺寸之依据。According to another embodiment of the present invention, the measurement/
根据本发明之另一实施例,上述量测/参数校正装置180更具有执行质量监测之流程,系事先透过上述量测/参数校正装置中设定上述被加工物的设计图中至少一处监测量测区域,并再对上述叠合影像之上述监测量测区域进行量测,并产生监测尺寸信息。其中上述质量监测之流程可为普检或抽检的方式执行。其中以印刷电路板检测为例,上述监测量测区域可针对印刷电路板特定的焊接位置进行框选。According to another embodiment of the present invention, the above-mentioned measurement/
根据本发明之另一实施例,上述监测尺寸信息可再透过上述量测/参数校正装置180,经统计产生监测统计信息。且上述监测统计信息将作为计算上述加工参数之计算的数据。According to another embodiment of the present invention, the above-mentioned monitoring size information can be passed through the above-mentioned measurement/
根据本发明之另一实施例,上述瑕疵尺寸超出一阈值时,上述量测/参数校正装置180将停止自动更正上述加工参数,并产生警示通知。According to another embodiment of the present invention, when the size of the defect exceeds a threshold, the measurement/
依据又一实施例,其中上述精判装置140接收到上述警示通知,将不会将上述警示通知所对应之辨识结果作为训练上述分类模块之上述训练数据。According to yet another embodiment, the above-mentioned
依据又一实施例,上述警示通知,可透过简讯或邮件,实时通知系统管理人员,并提醒上述系统管理人员,上述警示通知所对应之辨识结果将需要人工复判。例如:发现印刷电路板上露镍的面积大于1.0cm2,如根据此瑕疵尺寸调整上述加工参数幅度可能会调整过多,将严重影响后续加工流程。因此不以此笔超过阈值之瑕疵尺寸作为调整上述加工参数与上述训练数据之数据源。According to yet another embodiment, the above-mentioned warning notification can notify the system management personnel in real time through text messages or emails, and remind the above-mentioned system management personnel that the identification results corresponding to the above-mentioned warning notification will need manual re-judgment. For example, if it is found that the exposed nickel area on the printed circuit board is greater than 1.0cm2, if the above-mentioned processing parameters are adjusted according to the defect size, the adjustment may be too much, which will seriously affect the subsequent processing process. Therefore, the defect size exceeding the threshold is not used as a data source for adjusting the above-mentioned processing parameters and the above-mentioned training data.
依据又一实施例,本发明可应用在各阶段的加工制程中,并请参阅图2,图2所绘为根据本发明之一实施例之一种智能化加工系统应用于多个加工设备之装置示意图。According to yet another embodiment, the present invention can be applied in various stages of the processing process, and please refer to FIG. 2, which shows an intelligent processing system applied to multiple processing equipment according to an embodiment of the present invention Schematic diagram of the device.
根据本发明的实施方式,请参阅图3,图3所绘为根据本发明之一实施例之一种智能化加工系统之流程图。According to the embodiment of the present invention, please refer to FIG. 3 , which is a flowchart of an intelligent processing system according to an embodiment of the present invention.
在图3中,步骤300为开始加工。In FIG. 3,
在步骤302中,设定加工装置110之加工参数。In
在步骤304中,加工装置110执行加工作业,并产生被加工物220。In
在步骤306中,于被加工物220标示加工信息。上述加工信息之记录方式包括文字、数字、符号以及图码,其中该图码包括一维条形码以及二维条形码。In
在步骤308中,被加工物220透过粗判装置130进行初判,如判别被加工物220具有至少一个瑕疵处,则撷取上述被加工物220之影像,产生至少一个被加工物影像。粗判装置130可进一步计算上述被加工物影像之实际尺寸信息,上述计算方法如前文所述,在此不再赘述。In
在步骤310中,经粗判装置130进行初判判定上述被加工物220至少具有一个瑕疵处,并判定为瑕疵物,则继续步骤312。若粗判装置130初判无发现瑕疵处,则跳至步骤322。In
在步骤312中,上述被加工物影像透过精判装置140进行复判,并辨识瑕疵类型。In
在步骤314中,经精判装置140进行复判判定上述被加工物影像确实具有至少一个瑕疵后,并进一步辨识该瑕疵的类型,上述辨识瑕疵的方法如前文所述,在此不再赘述。若精判装置140复判判定上述被加工物影像无瑕疵,则跳至步骤322,表示上述粗判装置130之判定之上述瑕疵处为假瑕疵。In
在步骤316a中,透过量测/参数校正装置180进行瑕疵处的量测,并产生瑕疵尺寸,上述量测的方法如前文所述,在此不再赘述。In step 316a, the measurement/
在步骤316b中,透过加工信息获取装置160,辨识上述加工信息,并产生上述加工参数,上述辨识加工信息的方法如前文所述,在此不再赘述。In
在步骤318中,透过量测/参数校正装置180之算法根据上述瑕疵尺寸以及上述加工参数,计算校正上述加工参数之最佳结果,产生校正加工参数,并传输上述校正加工参数至上述加工装置。In
在步骤320中,加工设备110根据上述校正加工参数,调整原加工参数,并跳回步骤304继续进行加工。In
在步骤322中,系在粗判装置130之初判或精判装置140之精判均无发现被加工品上220,至少具有一个瑕疵处,故持续加工。In
根据本发明另一实施方式,请参阅图4,图4所绘为根据本发明之一实施例之一种智能化加工系统之质量监测流程图。According to another embodiment of the present invention, please refer to FIG. 4 , which is a flow chart of quality monitoring of an intelligent processing system according to an embodiment of the present invention.
本发明图3之实施例的流程可配合图4之实施例的质量监测流程以增加计算上述校正加工参数的准确性,其中图3与图4实施例之流程可同步或分别执行。The process of the embodiment in FIG. 3 of the present invention can cooperate with the quality monitoring process in the embodiment of FIG. 4 to increase the accuracy of calculating the above-mentioned corrected processing parameters, wherein the processes in the embodiments of FIG. 3 and FIG. 4 can be executed simultaneously or separately.
在步骤402中,事先于量测/参数校正装置180中设定(或框选)被加工物220的设计图中欲监测的量测区域。In
在步骤404中,透过粗判装置130撷取被加工物220之影像。In
在步骤406中,将被加工物220的设计图与加工后的影像叠合,产生叠合影像。In step 406 , the design drawing of the
在步骤408中,于上述叠合影像上量测事先设定的监测量测区域之尺寸。In
在步骤410中,根据量测结果产生监测尺寸信息,并进一步计算监测统计信息。In
在步骤412中,上述监测统计信息可作为上述量测/参数校正装置180计算校正加工参数之计算的数据。In
根据本发明另一实施方式,在步骤414中,透过上述步骤402-412所调整的加工参数,可同时对应上述步骤300-314所发现瑕疵物的数量,进一步计算上述加工参数所对应之生产良率。并可检视上述生产良率是否符合使用者订定合格标准(例如良率需达到95.0%)According to another embodiment of the present invention, in
在步骤416中,可将上述加工参数进一步透过虚拟量测(Virtual Metrology;简称VM)以增加上述生产良率。例如:透过虚拟量测计算,在制作印刷电路板时于基板布建金属铜层流程中,将硫酸铜浴电镀之时间下调0.5秒,可使电路产生短路的发生机率降低1%。因此,透过虚拟量测调整生产参数,可再进一步增加生产良率。透过上述虚拟量测可不需再透过上述步骤402-412,对监测量测区域进行量测,取而代之的是由虚拟量测计算产品的良率,以达到全检的目的。In
综合上述,本发明之实施例一种智慧化加工的方法与系统,具有实时处理产线之加工以及检测。并进一步以自动化执行溯源、瑕疵判定以及校正加工设备。To sum up the above, the embodiment of the present invention is a method and system for intelligent processing, which can process the processing and detection of the production line in real time. And further implement traceability, defect determination and calibration of processing equipment with automation.
本发明在本文中仅以较佳实施例揭露,然任何熟习本技术领域者应能理解的是,上述实施例仅用于描述本发明,并非用以限定本发明所主张之专利权利范围。举凡与上述实施例均等或等效之变化或置换,皆应解读为涵盖于本发明之精神或范畴内。因此,本发明之保护范围应以下述之申请专利范围所界定者为准。The present invention is only disclosed in preferred embodiments herein, but anyone skilled in the art should understand that the above embodiments are only used to describe the present invention, and are not intended to limit the scope of patent rights claimed by the present invention. All changes or substitutions that are equal or equivalent to the above-mentioned embodiments should be interpreted as falling within the spirit or scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the following patent application.
符号说明Symbol Description
100:智能化加工系统、110:加工装置、120:标示装置、130:粗判装置、140:精判装置、142:分类模块、160:加工信息获取装置、180:量测/参数校正装置、182:参数优化模块、200:待加工物、220:被加工物、300-322:步骤、402-416:步骤。100: Intelligent processing system, 110: Processing device, 120: Marking device, 130: Rough judgment device, 140: Fine judgment device, 142: Classification module, 160: Processing information acquisition device, 180: Measurement/parameter correction device, 182: parameter optimization module, 200: object to be processed, 220: object to be processed, 300-322: steps, 402-416: steps.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110556050.8A CN115373345A (en) | 2021-05-21 | 2021-05-21 | Method and system for intelligent processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110556050.8A CN115373345A (en) | 2021-05-21 | 2021-05-21 | Method and system for intelligent processing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115373345A true CN115373345A (en) | 2022-11-22 |
Family
ID=84058866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110556050.8A Pending CN115373345A (en) | 2021-05-21 | 2021-05-21 | Method and system for intelligent processing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115373345A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07333197A (en) * | 1994-06-09 | 1995-12-22 | Nippon Steel Corp | Automatic surface flaw detector |
TWM550465U (en) * | 2017-06-30 | 2017-10-11 | 中華大學 | Semiconductor wafer analyzing system |
CN108227664A (en) * | 2018-02-05 | 2018-06-29 | 华侨大学 | Control of product quality equipment and method of quality control based on sample data training |
CN111208140A (en) * | 2020-01-03 | 2020-05-29 | 武汉精立电子技术有限公司 | Defect rechecking system and method |
CN112577969A (en) * | 2019-09-27 | 2021-03-30 | 南通深南电路有限公司 | Defect detection method and defect detection system based on machine vision |
-
2021
- 2021-05-21 CN CN202110556050.8A patent/CN115373345A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07333197A (en) * | 1994-06-09 | 1995-12-22 | Nippon Steel Corp | Automatic surface flaw detector |
TWM550465U (en) * | 2017-06-30 | 2017-10-11 | 中華大學 | Semiconductor wafer analyzing system |
CN108227664A (en) * | 2018-02-05 | 2018-06-29 | 华侨大学 | Control of product quality equipment and method of quality control based on sample data training |
CN112577969A (en) * | 2019-09-27 | 2021-03-30 | 南通深南电路有限公司 | Defect detection method and defect detection system based on machine vision |
CN111208140A (en) * | 2020-01-03 | 2020-05-29 | 武汉精立电子技术有限公司 | Defect rechecking system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111537517B (en) | An Unmanned Intelligent Stamping Defect Identification Method | |
CN101576508B (en) | Chip appearance defect automatic detection device and detection method | |
EP3282248B1 (en) | Inspection apparatus and quality control system for surface mounting line | |
CN106934800B (en) | Metal plate strip surface defect detection method and device based on YOLO9000 network | |
CN104992449B (en) | Information identification and surface defect online test method based on machine vision | |
CN109142383B (en) | Character defect detection method based on morphology | |
CN108710876A (en) | A kind of battery surface mark defect inspection method and system based on machine vision | |
CN107797517B (en) | Method and system for realizing inspection of steel strip punching by machine vision | |
CN112200776A (en) | Chip packaging defect detection method and detection device | |
CN118348023B (en) | Electronic paper master AOI flaw detection system based on data analysis | |
CN117974629B (en) | Online defect detection method and device for copper-clad plate production line, storage medium and product | |
CN113030123B (en) | AOI detection feedback system based on Internet of things | |
CN118190959A (en) | Engine part misplacement detection method based on visual detection | |
CN115993366B (en) | Workpiece surface detection method and system based on sensing equipment | |
CN119658151B (en) | Coding quality control method and system of laser vision coding machine | |
CN118330029A (en) | Flaw detection system and flaw detection method for metal bar | |
CN119379701B (en) | Shaving board quality detection method and system based on image recognition | |
CN117314829A (en) | Industrial part quality inspection method and system based on computer vision | |
CN119574571B (en) | Automobile body weld joint detection method and system based on machine vision | |
CN113793321B (en) | Casting surface defect dynamic detection method and device based on machine vision | |
Wang et al. | Circular saw core localization in the quenching process using machine vision | |
TWM619409U (en) | Intelligent processing system | |
TWI782539B (en) | Intelligent processing method and system | |
CN115373345A (en) | Method and system for intelligent processing | |
CN117522876A (en) | Defect detection method based on color and area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |