CN115356271A - Device and method for detecting ice and snow on metal surface based on polarization detection - Google Patents
Device and method for detecting ice and snow on metal surface based on polarization detection Download PDFInfo
- Publication number
- CN115356271A CN115356271A CN202211283895.5A CN202211283895A CN115356271A CN 115356271 A CN115356271 A CN 115356271A CN 202211283895 A CN202211283895 A CN 202211283895A CN 115356271 A CN115356271 A CN 115356271A
- Authority
- CN
- China
- Prior art keywords
- polarization
- snow
- wave plate
- rotating
- rotating shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010287 polarization Effects 0.000 claims abstract description 151
- 239000002184 metal Substances 0.000 claims abstract description 97
- 238000001514 detection method Methods 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000002955 isolation Methods 0.000 abstract description 4
- 230000006386 memory function Effects 0.000 abstract description 2
- 239000013589 supplement Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004397 blinking Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N2021/216—Polarisation-affecting properties using circular polarised light
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于偏振探测的金属物表面冰雪探测装置及方法,属于偏振探测领域,装置主要包括协同作业的激光发射系统、偏振探测图像接收系统、旋转控制系统、偏振图像处理系统和偏振图像显示系统,利用圆偏振光来检测金属物,采用光线的隔离和非隔离方式来对冰雪进行检测,是对传统偏振传输探测的有益补充,利用了圆偏振光的记忆功能来提高图像的对比度,使得金属表面冰雪介质信息在偏振探测图像信息处理后,在显示屏上显示长亮状态,其偏振信息反映了冰雪介质的图像信息,利用本发明提出的基于偏振探测的金属物表面冰雪探测装置及方法能够有效地对金属物表面的冰雪进行目标探测的工作,为偏振传输及探测提供了可靠的技术支撑。
The invention discloses a device and method for detecting ice and snow on the surface of metal objects based on polarization detection, which belongs to the field of polarization detection. The image display system uses circularly polarized light to detect metal objects, and uses light isolation and non-isolation methods to detect ice and snow. It is a useful supplement to traditional polarization transmission detection, and uses the memory function of circularly polarized light to improve image contrast. , so that the ice and snow medium information on the metal surface is displayed on the display screen after the polarization detection image information is processed, and the polarization information reflects the image information of the ice and snow medium, and the metal surface ice and snow detection device based on polarization detection proposed by the present invention is used The method and method can effectively detect ice and snow on the surface of metal objects, and provide reliable technical support for polarization transmission and detection.
Description
技术领域technical field
本发明属于偏振探测领域,具体地,涉及一种基于偏振探测的金属物表面冰雪探测装置及方法。The invention belongs to the field of polarization detection, and in particular relates to a device and method for detecting ice and snow on the surface of metal objects based on polarization detection.
背景技术Background technique
在恶劣天气情况下,飞机是无法正常起飞的,而且在飞机机身上还会因为存在冰雪介质而影响飞机的行驶,飞机起飞的跑道地面存在冰雪也会给起飞带来安全隐患,此时就需要机场工作人员对飞机及跑道上的冰雪来进行处理,但目前机场航空部门主要依赖于使用除冰液来进行除冰,这不但浪费人力劳动资源,而且还可能存在飞机表面遗漏冰雪区域的情况,因此在不是很理想的观察条件下,积累的冰块所带来安全隐患不容小觑。因此,研究存在冰雪情况下的偏振冰雪探测的需求变得极为迫切。In bad weather, the plane cannot take off normally, and the presence of ice and snow on the fuselage will affect the driving of the plane. The presence of ice and snow on the runway where the plane takes off will also bring safety hazards to takeoff. Airport staff are required to deal with the ice and snow on the plane and the runway, but at present, the airport aviation department mainly relies on the use of deicing fluid for deicing, which not only wastes human labor resources, but also may miss the ice and snow area on the surface of the plane , so under less than ideal observation conditions, the safety hazards caused by the accumulated ice cannot be underestimated. Therefore, the need to study polarized ice and snow detection in the presence of ice and snow has become extremely urgent.
发明内容Contents of the invention
本发明的目的是针对飞机表面上存在冰雪介质且不易被发现等问题,而提供了一种基于偏振探测的金属物表面冰雪探测装置,能够有效地对飞机表面的冰雪介质进行目标探测,从而对飞机表面除冰提供了可靠的技术支撑,本发明的另一目的是提供了一种基于偏振探测的金属物表面冰雪探测方法。The purpose of the present invention is to solve the problem that there is ice and snow medium on the surface of the aircraft and it is difficult to be found, and provides a metal surface ice and snow detection device based on polarization detection, which can effectively detect the ice and snow medium on the surface of the aircraft, thereby The deicing of the aircraft surface provides reliable technical support, and another object of the present invention is to provide a method for detecting ice and snow on the surface of metal objects based on polarization detection.
本发明为实现上述目的采用的技术方案是:The technical scheme that the present invention adopts for realizing the above object is:
基于偏振探测的金属物表面冰雪探测装置,包括装置外壳和装置升降平台,所述装置外壳具有出射光学窗口和入射光学窗口,所述装置升降平台装配在装置外壳下方,其特征在于,还包括激光发射系统、偏振探测图像接收系统、旋转控制系统、偏振图像处理系统和偏振图像显示系统,其中激光发射系统、偏振探测图像接收系统、旋转控制系统和偏振图像处理系统设置在装置外壳内部,偏振图像显示系统固定安装在装置外壳的外壁上;所述激光发射系统包括沿着光的传播方向依次设置的激光器、旋转偏振器件和扩束镜,激光发射系统被配置为用于向金属物目标体按照预设频率交替发射垂直线偏振光和圆偏振光,金属物目标体的表面具有冰雪区域;所述偏振探测图像接收系统位于金属物目标体的反射光光路上,偏振探测图像接收系统包括沿金属物目标体反射光光路依次布置的旋转检偏器件、成像透镜和偏振相机,金属物目标体所反射的反射光经过旋转检偏器件和成像透镜后成像于偏振相机,偏振相机用于捕获目标偏振探测图像,其中旋转检偏器件配置为按照预设频率旋转,以使目标偏振探测图像中金属物目标体的金属区域呈闪烁状态而冰雪区域呈长亮状态;所述旋转控制系统分别与旋转偏振器件和旋转检偏器件连接,用于控制旋转偏振器件和旋转检偏器件按照预设频率同步旋转;所述偏振图像处理系统的输入侧与偏振相机连接,输出侧与偏振图像显示系统连接,偏振图像处理系统用于接收所述偏振相机捕获到的目标偏振探测图像并将其显示在偏振图像显示系统上。The device for detecting ice and snow on the surface of metal objects based on polarization detection includes a device casing and a device lifting platform, the device casing has an outgoing optical window and an incident optical window, and the device lifting platform is assembled under the device casing, and it is characterized in that it also includes a laser The emission system, the polarization detection image receiving system, the rotation control system, the polarization image processing system and the polarization image display system, wherein the laser emission system, the polarization detection image reception system, the rotation control system and the polarization image processing system are arranged inside the device housing, and the polarization image The display system is fixedly installed on the outer wall of the device housing; the laser emitting system includes a laser, a rotating polarizer and a beam expander arranged in sequence along the propagation direction of the light, and the laser emitting system is configured to project the metal object according to the The preset frequency alternately emits vertical linearly polarized light and circularly polarized light, and the surface of the metal object has an ice and snow region; the polarization detection image receiving system is located on the reflected light optical path of the metal object, and the polarization detection image receiving system includes A rotating analyzer, an imaging lens and a polarization camera are arranged sequentially in the reflected light path of the object. The reflected light reflected by the metal object is imaged on the polarization camera after passing through the rotating analyzer and the imaging lens. The polarization camera is used to capture the polarization of the target. The detection image, wherein the rotating polarizer is configured to rotate according to a preset frequency, so that the metal area of the metal object in the target polarization detection image is in a blinking state, and the ice and snow area is in a constant bright state; the rotation control system is respectively connected with the rotating polarization The device is connected to the rotating polarizing device, and is used to control the rotating polarizing device and the rotating analyzing device to rotate synchronously according to the preset frequency; the input side of the polarization image processing system is connected to the polarization camera, and the output side is connected to the polarization image display system, and the polarization The image processing system is used to receive the target polarization detection image captured by the polarization camera and display it on the polarization image display system.
进一步,所述旋转偏振器件包括第一1/4波片、第二垂直线偏振片、第一转轴、第二转轴、第一垂直线偏振片和第二1/4波片,第一1/4波片和第一垂直线偏振片固定在第一转轴上下两侧,第二垂直线偏振片和第二1/4波片固定在第二转轴上下两侧,在旋转控制系统的控制下第一转轴和第二转轴能够按照预设频率同步旋转,以使旋转偏振器件按照所述预设频率在第一状态和第二状态之间切换,在第一状态下,沿着光的传播方向第一垂直线偏振片和第二1/4波片顺次置于激光器出射光路上;在第二状态下,沿着光的传播方向第一1/4波片和第二垂直线偏振片顺次置于激光器出射光路上;所述旋转检偏器件包括第三垂直线偏振片、第四1/4波片、第三转轴、第四转轴、第三1/4波片和第四垂直线偏振片,第三垂直线偏振片和第三1/4波片固定在第三转轴上下两侧,第四1/4波片和第四垂直线偏振片固定在第四转轴上下两侧,在旋转控制系统的控制下第三转轴和第四转轴能够按照预设频率同步旋转,以使旋转检偏器件按照所述预设频率在第一状态和第二状态之间切换,在第一状态下,第三垂直线偏振片和第四1/4波片置于金属物目标体的反射光光路上,且第四1/4波片靠近金属物目标体侧;在第二状态下,第三1/4波片和第四垂直线偏振片置于金属物目标体的反射光光路上,且第四垂直线偏振片靠近金属物目标体侧。Further, the rotating polarizing device includes a first 1/4 wave plate, a second vertical linear polarizer, a first rotation axis, a second rotation axis, a first vertical linear polarization plate and a second 1/4 wave plate, and the first 1/4 The 4 wave plates and the first vertical linear polarizer are fixed on the upper and lower sides of the first rotating shaft, the second vertical linear polarizing plate and the second 1/4 wave plate are fixed on the upper and lower sides of the second rotating shaft, and the second vertical polarizing plate is fixed under the control of the rotation control system. The first rotating shaft and the second rotating shaft can be rotated synchronously according to a preset frequency, so that the rotating polarization device can be switched between a first state and a second state according to the preset frequency. In the first state, along the propagation direction of light, the second A vertical linear polarizer and the second 1/4 wave plate are sequentially placed on the outgoing light path of the laser; in the second state, the first 1/4 wave plate and the second vertical linear polarizer are sequentially placed along the light propagation direction Placed on the outgoing optical path of the laser; the rotating analyzer includes a third vertical linear polarizer, a fourth 1/4 wave plate, a third rotation axis, a fourth rotation axis, a third 1/4 wave plate and a fourth vertical linear polarization plate, the third vertical linear polarizer and the third 1/4 wave plate are fixed on the upper and lower sides of the third rotation axis, the fourth 1/4 wave plate and the fourth vertical linear polarizer are fixed on the upper and lower sides of the fourth rotation axis, and rotate Under the control of the control system, the third rotating shaft and the fourth rotating shaft can rotate synchronously according to the preset frequency, so that the rotating polarization analyzer can switch between the first state and the second state according to the preset frequency. In the first state, The third vertical linear polarizer and the fourth 1/4 wave plate are placed on the reflected light optical path of the metal object object, and the fourth 1/4 wave plate is close to the metal object object side; in the second state, the third 1/4 wave plate The /4 wave plate and the fourth vertical linear polarizer are placed on the optical path of the reflected light of the metal object, and the fourth vertical linear polarizer is close to the side of the metal object.
进一步,所述旋转控制系统分别与第一转轴、第二转轴、第三转轴和第四转轴连接,用于控制第一转轴、第二转轴、第三转轴和第四转轴同步按照预设的频率旋转。Further, the rotation control system is respectively connected with the first rotating shaft, the second rotating shaft, the third rotating shaft and the fourth rotating shaft, and is used to control the synchronization of the first rotating shaft, the second rotating shaft, the third rotating shaft and the fourth rotating shaft according to the preset frequency rotate.
进一步,所述旋转控制系统包括驱动电机和电机控制器,所述驱动电机的数量为四个,四个驱动电机的输出端分别与所述第一转轴、第二转轴、第三转轴和第四转轴传动连接,所述电机控制器和四个所述驱动电机电性连接,用于控制四个所述驱动电机。Further, the rotation control system includes a driving motor and a motor controller, the number of the driving motors is four, and the output ends of the four driving motors are connected to the first rotating shaft, the second rotating shaft, the third rotating shaft and the fourth rotating shaft respectively. The rotating shaft is connected by transmission, and the motor controller is electrically connected to the four driving motors for controlling the four driving motors.
进一步,所述装置升降平台的底部安装有移动滚轮。Further, moving rollers are installed on the bottom of the lifting platform of the device.
基于偏振探测的金属物表面冰雪探测方法,其特征在于,所述方法利用所述的基于偏振探测的金属物表面冰雪探测装置进行冰雪探测,具体包括以下步骤,且以下步骤顺次进行:The method for detecting ice and snow on the surface of metal objects based on polarization detection is characterized in that the method utilizes the device for detecting ice and snow on the surface of metal objects based on polarization detection to detect ice and snow, specifically comprising the following steps, and the following steps are performed in sequence:
步骤一、调整装置升降平台,使激光发射系统发射的激光光束能够照射到金属物目标体,并使偏振探测图像接收系统获取的目标偏振探测图像完全显示于偏振图像显示系统的显示屏中央位置;Step 1. Adjust the lifting platform of the device so that the laser beam emitted by the laser emitting system can irradiate the metal object, and the target polarization detection image acquired by the polarization detection image receiving system is completely displayed on the central position of the display screen of the polarization image display system;
步骤二、设定旋转偏振器件和旋转检偏器件的初始状态,旋转偏振器件处于初始状态时,旋转偏振器件中的第一垂直线偏振片和第二1/4波片置于激光器出射光路上,且第一垂直线偏振片靠近激光器侧;旋转检偏器件处于初始状态时,旋转检偏器件中的第三垂直线偏振片和第四1/4波片置于金属物目标体的反射光光路上,且第四1/4波片靠近金属物目标体侧;
步骤三、开启激光发射系统中的激光器,激光器发射的激光光束依次经过第一垂直线偏振片和第二1/4波片后形成圆偏振光,并从出射光学窗口射出,照射到金属物目标体上;
步骤四、所述圆偏振光经金属物目标体反射后通过入射光学窗口进入偏振探测图像接收系统,经由第四1/4波片和第三垂直线偏振片调制后,再经成像透镜成像于偏振相机,偏振相机捕获目标偏振探测图像,并传递给偏振图像处理系统,偏振图像处理系统接收所述偏振相机捕获到的目标偏振探测图像并将其显示在偏振图像显示系统上;Step 4: The circularly polarized light enters the polarization detection image receiving system through the incident optical window after being reflected by the metal object, modulated by the fourth 1/4 wave plate and the third vertical linear polarizer, and then imaged by the imaging lens on a polarization camera, the polarization camera captures the target polarization detection image and transmits it to the polarization image processing system, the polarization image processing system receives the target polarization detection image captured by the polarization camera and displays it on the polarization image display system;
步骤五、开启旋转控制系统,旋转偏振器件和旋转检偏器件按照预设频率同步旋转,使得偏振图像显示系统的显示屏上金属物目标体的金属区域闪烁而冰雪区域长亮;Step 5, turn on the rotation control system, the rotating polarizer and the rotating analyzer rotate synchronously according to the preset frequency, so that the metal area of the metal object on the display screen of the polarization image display system flickers and the ice and snow area is always bright;
步骤六、测试结束
将装置升降平台调整到原始位置。Adjust the lifting platform of the device to the original position.
通过上述设计方案,本发明可以带来如下有益效果:本发明提供的基于偏振探测的金属物表面冰雪探测装置及方法,利用圆偏振光来检测金属物,采用光线的隔离和非隔离方式来对冰雪进行检测,是对传统偏振传输探测的有益补充,利用了圆偏振光的记忆功能来提高图像的对比度,使得金属表面冰雪介质信息在偏振探测图像信息处理后,在偏振图像显示系统的显示屏上显示长亮状态,其偏振信息反映了冰雪介质的图像信息,能够有效地对金属物表面的冰雪进行目标探测的工作,为偏振传输及探测提供了可靠的技术支撑。Through the above design scheme, the present invention can bring the following beneficial effects: The device and method for detecting ice and snow on the surface of metal objects based on polarization detection provided by the present invention uses circularly polarized light to detect metal objects, and adopts light isolation and non-isolation methods to detect The detection of ice and snow is a beneficial supplement to the traditional polarization transmission detection. The memory function of circularly polarized light is used to improve the contrast of the image, so that the information of the ice and snow medium on the metal surface is displayed on the display screen of the polarization image display system after the polarization detection image information is processed. It shows a long bright state, and its polarization information reflects the image information of the ice and snow medium, which can effectively detect the ice and snow on the surface of metal objects, and provides reliable technical support for polarization transmission and detection.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明示意性实施例及其说明用于理解本发明,并不构成本发明的不当限定,在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention and constitute a part of the application. The schematic embodiments of the present invention and their descriptions are used to understand the present invention and do not constitute improper limitations of the present invention. In the accompanying drawings:
图1为本发明实施例中基于偏振探测的金属物表面冰雪探测装置的结构示意图;Fig. 1 is a schematic structural view of a metal object surface ice and snow detection device based on polarization detection in an embodiment of the present invention;
图2为本发明实施例中旋转偏振器件和旋转检偏器件处于第一状态下激光入射至金属物目标体表面的内部结构示意图;2 is a schematic diagram of the internal structure of the laser incident on the surface of the metal object when the rotating polarizer and the rotating analyzer are in the first state in the embodiment of the present invention;
图3为本发明实施例中旋转偏振器件和旋转检偏器件处于第一状态下激光入射至冰雪区域表面的内部结构示意图;3 is a schematic diagram of the internal structure of the laser incident on the surface of the ice and snow region when the rotating polarizer and the rotating analyzer are in the first state in the embodiment of the present invention;
图4为本发明实施例中旋转偏振器件和旋转检偏器件处于第二状态下激光入射至金属物目标体表面的内部结构示意图;4 is a schematic diagram of the internal structure of the laser incident on the surface of the metal object when the rotating polarizer and the rotating analyzer are in the second state in the embodiment of the present invention;
图5为本发明实施例中旋转偏振器件和旋转检偏器件处于第二状态下激光入射至冰雪区域表面的内部结构示意图;5 is a schematic diagram of the internal structure of the laser incident on the surface of the ice and snow region when the rotating polarizer and the rotating analyzer are in the second state in the embodiment of the present invention;
图中各标记如下:1-激光发射系统、2-偏振探测图像接收系统、3-旋转控制系统、4-偏振图像处理系统、5-偏振图像显示系统、6-激光器、7-第一1/4波片、8-第二垂直线偏振片、9-第一转轴、10-第二转轴、11-第一垂直线偏振片、12-第二1/4波片、13-扩束镜、14-出射光学窗口、15-偏振相机、16-成像透镜、17-第三垂直线偏振片、18-第四1/4波片、19-第三转轴、20-第四转轴、21-第三1/4波片、22-第四垂直线偏振片、23-入射光学窗口、24-冰雪区域、25-金属物目标体、26-装置外壳、27-装置升降平台、28-冰雪区域图像、29-金属区域图像、30-显示屏。The marks in the figure are as follows: 1-laser emission system, 2-polarization detection image receiving system, 3-rotation control system, 4-polarization image processing system, 5-polarization image display system, 6-laser, 7-first 1/ 4-wave plate, 8-second vertical linear polarizer, 9-first rotation axis, 10-second rotation axis, 11-first vertical linear polarizer, 12-second 1/4 wave plate, 13-beam expander, 14-exit optical window, 15-polarization camera, 16-imaging lens, 17-third vertical linear polarizer, 18-fourth 1/4 wave plate, 19-third rotation axis, 20-fourth rotation axis, 21-th Three 1/4 wave plates, 22-the fourth vertical linear polarizer, 23-incident optical window, 24-ice and snow area, 25-metal object target, 26-device shell, 27-device lifting platform, 28-image of ice and snow area , 29-metal area image, 30-display screen.
具体实施方式Detailed ways
为使得本发明的目的、特征、优点能够更加的明显和易懂,下面结合本发明的实施例中的附图,对本发明中的技术方案进行清楚完整地描述。显然,本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。In order to make the purpose, features, and advantages of the present invention more obvious and understandable, the technical solutions in the present invention are clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the present invention is not limited by the following examples, and the specific implementation manner can be determined according to the technical solutions of the present invention and actual conditions. In order to avoid obscuring the essence of the present invention, well-known methods, procedures, procedures, components and circuits have not been described in detail.
基于偏振探测的金属物表面冰雪探测装置,如图1所示,包括装置外壳26、装置升降平台27、激光发射系统1、偏振探测图像接收系统2、旋转控制系统3、偏振图像处理系统4和偏振图像显示系统5,装置外壳26具有出射光学窗口14和入射光学窗口23;装置升降平台27装配在装置外壳26下方,装置升降平台27用于对整个金属物表面冰雪探测装置进行高度调节;激光发射系统1、偏振探测图像接收系统2、旋转控制系统3和偏振图像处理系统4设置在装置外壳26内部,偏振图像显示系统5固定安装在装置外壳26的外壁上,同时偏振探测图像接收系统2、偏振图像处理系统4和偏振图像显示系统5顺次电学连接。The ice and snow detection device on the surface of metal objects based on polarization detection, as shown in Figure 1, includes a
所述激光发射系统1包括激光器6、第一1/4波片7、第二垂直线偏振片8、第一转轴9、第二转轴10、第一垂直线偏振片11、第二1/4波片12和扩束镜13,激光发射系统1被配置为用于向金属物目标体25按照预设频率交替发射垂直线偏振光和圆偏振光,金属物目标体25的表面具有冰雪区域24,第一1/4波片7和第一垂直线偏振片11固定在第一转轴9上,第二垂直线偏振片8和第二1/4波片12固定在第二转轴10上,当激光发射系统1配置为发射圆偏振光时,沿着光的传播方向,所述激光器6、第一垂直线偏振片11、第二1/4波片12、扩束镜13和出射光学窗口14同轴依次排列;当激光发射系统1配置为发射垂直线偏振光时,沿着光的传播方向,所述激光器6、第一1/4波片7、第二垂直线偏振片8、扩束镜13和出射光学窗口14同轴依次排列。The laser emitting system 1 includes a
所述偏振探测图像接收系统2包括偏振相机15、成像透镜16、第三垂直线偏振片17、第四1/4波片18、第三转轴19、第四转轴20、第三1/4波片21和第四垂直线偏振片22,当激光发射系统1配置为发射圆偏振光时,对应偏振探测图像接收系统2中的偏振相机15、成像透镜16、第三垂直线偏振片17、第四1/4波片18和入射光学窗口23同轴依次排列;当激光发射系统1配置为发射垂直线偏振光时,对应偏振探测图像接收系统2中的偏振相机15、成像透镜16、第三1/4波片21、第四垂直线偏振片22和入射光学窗口23同轴依次排列。The polarization detection
所述旋转控制系统3分别与第一转轴9、第二转轴10、第三转轴19和第四转轴20连接,用于控制第一转轴9、第二转轴10、第三转轴19和第四转轴20同步按照预设的频率旋转,进一步,所述旋转控制系统3包括驱动电机和电机控制器,所述驱动电机的数量为四个,四个驱动电机的输出端分别与所述第一转轴9、第二转轴10、第三转轴19和第四转轴20传动连接,所述电机控制器和四个所述驱动电机电性连接,用于控制四个所述驱动电机,通过旋转控制系统3使四个转轴同步每0.5秒旋转一次,实现每0.5秒垂直线偏振片和与其固定在同一转轴上的1/4波片位置互换1次且保持通电期间连续互换。The
所述激光发射系统1内部通过激光器6发射激光,激光依次穿过第一垂直线偏振片11和第二1/4波片12变成圆偏振光后,再通过扩束镜13和出射光学窗口14,激光沿着发射路径发射到所要探测的金属物目标体25上,经由金属物目标体25的金属区域和冰雪区域24反射,由于金属物目标体25的金属区域会发生镜面反射,而冰雪区域24不具有反射特性且会破坏偏振特性,当激光器6发射出的激光为右旋圆偏振光且照射在金属物目标体25的金属区域时,如图2所示,激光经过第一垂直线偏振片11后变为垂直线偏振光,接着经过第二1/4波片12后变为右旋圆偏振光,右旋圆偏振光经过扩束镜13后穿过出射光学窗口14,使得整个激光发射系统1更有助于远距离测量,激光传输经过金属物目标体25的金属区域发生镜面反射后变成左旋圆偏振光,因此偏振探测图像接收系统2通过入射光学窗口23接收到的激光为左旋圆偏振光,反射后的左旋圆偏振光穿过第四1/4波片18后,激光不再是圆偏振光而是变成水平方向的线偏振光出射,所以它不再透过第三垂直线偏振片17,没有镜面反射的光会通过成像透镜16进入偏振相机15,因此第四1/4波片18被用作光学隔离器,即来自激光器6的激光通过这一过程之后被金属物目标体25的金属区域反射,但是光源不能在激光反射路径方向上返回到达偏振相机15,因此返回图像效果暗淡。当照射表面是金属物目标体25的冰雪区域24时,如图3所示,该冰雪区域24的覆盖而使得表面为无光泽的白色物质,则入射到冰雪区域24上的圆偏振光不会使其偏振特性反转,但是它会破坏偏振特性,使得激光反射路径的光线为非偏振的,并且经过入射光学窗口23、第四1/4波片18和第三垂直线偏振片17后变为垂直线偏振光,然后传递到偏振相机15,因此返回图像效果明亮。The laser emitting system 1 emits laser light through the
利用所述旋转控制系统3来对第一转轴9、第二转轴10、第三转轴19和第四转轴20进行旋转控制,使得位于同一转轴上的1/4波片和垂直线偏振片位置互换,且每0.5秒偏振片互换1次并保持通电期间连续互换,即互换后使第一1/4波片7靠近激光器6,第二垂直线偏振片8靠近出射光学窗口14,第三1/4波片21靠近偏振相机15,第四垂直线偏振片22靠近入射光学窗口23,并使得激光器6、第一1/4波片7、第二垂直线偏振片8、扩束镜13、出射光学窗口14同轴依次排列,使得偏振相机15、成像透镜16、第三1/4波片21、第四垂直线偏振片22和入射光学窗口23同轴依次排列。激光光束以非偏振形式从激光器6发射,通过第一1/4波片7,不改变激光光束的任何偏振特性,故穿过第一1/4波片7的激光依旧为非偏振光束,再穿过第二垂直线偏振片8后变成垂直线偏振光,继续穿过扩束镜13和出射光学窗口14到达所要探测的金属物目标体25表面,当激光入射到金属物目标体25的金属区域时,如图4所示,金属物目标体25的金属区域通过镜面反射相同偏振特性的垂直线偏振光,该垂直偏振光沿着激光反射路径经过第四垂直线偏振片22后依旧为垂直线偏振光,再经过第三1/4波片21后为圆偏振光,所以在此过程光强几乎没有损失,返回图像的效果明亮,整个过程体现的是偏振器件所组成而表现的非隔离状态。当光束照射到冰雪区域24时,如图5所示,激光器6发射激光至第一1/4波片7且光束为非偏振光,接着经过第二垂直线偏振片8后变成垂直线偏振光,然后穿过扩束镜13和出射光学窗口14后照射到金属物目标体25的冰雪区域24,由于冰雪区域24不具有反射特性且会破坏偏振特性,所以使得反射后的光线为非偏振的,并且经过入射光学窗口23和第四垂直线偏振片22得到垂直线偏振光,然后继续通过第三1/4波片21变成圆偏振光后,透过成像透镜16传递到偏振相机15,这时返回的图像效果明亮。Utilize described
所述偏振图像处理系统4设置在装置外壳26内部,偏振图像处理系统4通过数据线分别与偏振相机15和偏振图像显示系统5电学连接,用于对成像信息进行探测,并分析偏振图像信息的数据,此处属于现有技术,不再赘述。The polarization
所述偏振图像显示系统5包括显示屏30,并设置在装置外壳26表面,且与偏振图像处理系统4电学连接;所述显示屏30显示出目标偏振探测图像。由于旋转控制系统3的控制,使得每0.5秒四个转轴同步扭转1次且保持通电期间连续扭转,所以所得到的目标偏振探测图像为对应金属物目标体25的金属区域闪烁而冰雪区域24长亮,所以在显示屏30上观察到的图像表现形式为:显示屏30中的金属区域图像29闪烁,显示屏30中的冰雪区域图像28长亮。The polarization image display system 5 includes a
在本发明的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,限定有“第一”、“第二”、“第三”、“第四”的特征并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。In the description of the present invention, it should be understood that the terms "first", "second", "third", and "fourth" are only used for description purposes, and are limited to "first", "second", The characteristics of "third" and "fourth" do not indicate any order, quantity or importance, but are only used to distinguish different components.
本发明提出的基于偏振探测的金属物表面冰雪探测装置将各个元器件有机的集成、整合成一个整体。需要强调的是,上述各个元器件就单体而言,其实现各自应实现功能的具体结构在现有技术中已经存在。The device for detecting ice and snow on the surface of metal objects based on polarization detection proposed by the present invention organically integrates various components and devices into a whole. It should be emphasized that, as far as the individual components are concerned, the specific structures for realizing their respective functions already exist in the prior art.
基于偏振探测的金属物表面冰雪探测方法,所述方法利用所述的基于偏振探测的金属物表面冰雪探测装置对金属表面冰雪物质探测,具体包括以下步骤,且以下步骤顺次进行:The method for detecting ice and snow on the surface of metal objects based on polarization detection, the method uses the described device for detecting ice and snow on the surface of metal objects based on polarization detection to detect ice and snow substances on the metal surface, specifically comprising the following steps, and the following steps are carried out in sequence:
步骤一、调整装置升降平台27,使激光发射系统1发射的激光光束能够照射到金属物目标体25,并使偏振探测图像接收系统2获取的目标偏振探测图像完全显示于偏振图像显示系统5的显示屏30中央位置;Step 1, adjust the
步骤二、设定旋转偏振器件和旋转检偏器件的初始状态,旋转偏振器件处于初始状态时,旋转偏振器件中的第一垂直线偏振片11和第二1/4波片12置于激光器6出射光路上,且第一垂直线偏振片11靠近激光器6侧;旋转检偏器件处于初始状态时,旋转检偏器件中的第三垂直线偏振片17和第四1/4波片18置于金属物目标体25的反射光光路上,且第四1/4波片18靠近金属物目标体25侧;
步骤三、开启激光发射系统1中的激光器6,激光器6发射的激光光束依次经过第一垂直线偏振片11和第二1/4波片12后形成圆偏振光,并从出射光学窗口14射出,照射到金属物目标体25上;Step 3: Turn on the
步骤四、所述圆偏振光经金属物目标体25反射后通过入射光学窗口23进入偏振探测图像接收系统2,经由第四1/4波片18和第三垂直线偏振片17调制后,再经成像透镜16成像于偏振相机15,偏振相机15捕获目标偏振探测图像,并传递给偏振图像处理系统4,偏振图像处理系统4接收所述偏振相机15捕获到的目标偏振探测图像并将其显示在偏振图像显示系统5上;
步骤五、开启旋转控制系统3,旋转偏振器件和旋转检偏器件按照预设频率同步旋转,使得偏振图像显示系统5的显示屏30上金属物目标体25的金属区域闪烁而冰雪区域24长亮;Step 5, turn on the
步骤六、测试结束
将装置升降平台27调整到原始位置。The
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。It can be understood that the present invention is described through some embodiments, and those skilled in the art know that various changes or equivalent substitutions can be made to these features and embodiments without departing from the spirit and scope of the present invention. In addition, the features and examples may be modified to adapt a particular situation and material to the teachings of the invention without departing from the spirit and scope of the invention. Therefore, the present invention is not limited by the specific embodiments disclosed here, and all embodiments falling within the scope of the claims of the present application belong to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211283895.5A CN115356271A (en) | 2022-10-20 | 2022-10-20 | Device and method for detecting ice and snow on metal surface based on polarization detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211283895.5A CN115356271A (en) | 2022-10-20 | 2022-10-20 | Device and method for detecting ice and snow on metal surface based on polarization detection |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115356271A true CN115356271A (en) | 2022-11-18 |
Family
ID=84008720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211283895.5A Pending CN115356271A (en) | 2022-10-20 | 2022-10-20 | Device and method for detecting ice and snow on metal surface based on polarization detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115356271A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994009463A1 (en) * | 1992-10-20 | 1994-04-28 | Robotic Vision Systems, Inc. | System for detecting ice on metal surface |
US20100141939A1 (en) * | 2006-06-21 | 2010-06-10 | University Of Dayton | Methods of polarization engineering and their applications |
CN102230884A (en) * | 2011-03-29 | 2011-11-02 | 南京大学 | Detection method for accumulated water and accumulated ice on road surface based on polarization measurement, and apparatus thereof |
CN102460270A (en) * | 2009-05-22 | 2012-05-16 | 瑞尔D股份有限公司 | Polarization modulation wheel |
CN102901489A (en) * | 2011-07-25 | 2013-01-30 | 中兴通讯股份有限公司 | Pavement water accumulation and ice accumulation detection method and apparatus thereof |
CN108982373A (en) * | 2018-06-12 | 2018-12-11 | 华南师范大学 | A kind of label-free Stokes parameter polarization confocal micro imaging system and method for latent fingerprint |
CN111141390A (en) * | 2020-02-20 | 2020-05-12 | 长春理工大学 | Dual-band polarization characteristic test system based on sea fog multilayer medium environment |
CN111328370A (en) * | 2019-04-23 | 2020-06-23 | 合刃科技(深圳)有限公司 | Surface defect detection system and method |
CN113777767A (en) * | 2021-09-14 | 2021-12-10 | 北京大学长三角光电科学研究院 | Optical tomography microscopic imaging system and method for rapidly and continuously rotating sample |
-
2022
- 2022-10-20 CN CN202211283895.5A patent/CN115356271A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994009463A1 (en) * | 1992-10-20 | 1994-04-28 | Robotic Vision Systems, Inc. | System for detecting ice on metal surface |
US5475370A (en) * | 1992-10-20 | 1995-12-12 | Robotic Vision Systems, Inc. | System for detecting ice or snow on surface which specularly reflects light |
US20100141939A1 (en) * | 2006-06-21 | 2010-06-10 | University Of Dayton | Methods of polarization engineering and their applications |
CN102460270A (en) * | 2009-05-22 | 2012-05-16 | 瑞尔D股份有限公司 | Polarization modulation wheel |
CN102230884A (en) * | 2011-03-29 | 2011-11-02 | 南京大学 | Detection method for accumulated water and accumulated ice on road surface based on polarization measurement, and apparatus thereof |
CN102901489A (en) * | 2011-07-25 | 2013-01-30 | 中兴通讯股份有限公司 | Pavement water accumulation and ice accumulation detection method and apparatus thereof |
CN108982373A (en) * | 2018-06-12 | 2018-12-11 | 华南师范大学 | A kind of label-free Stokes parameter polarization confocal micro imaging system and method for latent fingerprint |
CN111328370A (en) * | 2019-04-23 | 2020-06-23 | 合刃科技(深圳)有限公司 | Surface defect detection system and method |
CN111141390A (en) * | 2020-02-20 | 2020-05-12 | 长春理工大学 | Dual-band polarization characteristic test system based on sea fog multilayer medium environment |
CN113777767A (en) * | 2021-09-14 | 2021-12-10 | 北京大学长三角光电科学研究院 | Optical tomography microscopic imaging system and method for rapidly and continuously rotating sample |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW449848B (en) | Apparatus and method for inspecting defects on wafer periphery | |
WO2007050598A2 (en) | Terahertz imaging non-destructive inspection system and method | |
US9513499B2 (en) | Laser repairing apparatus | |
WO2018041169A1 (en) | Automatic optical inspection device and inspection method | |
CN206756711U (en) | A kind of photovoltaic glass corner detection means | |
CN108072665A (en) | Machine Vision Detection experiment porch | |
KR20120031835A (en) | Apparatus for inspecting defects | |
CN108872311A (en) | A kind of workpiece automation infrared nondestructive detection device | |
JP2000346796A (en) | Gas visualizing apparatus and method | |
KR101180835B1 (en) | Apparatus for inspecting defects | |
CN115356271A (en) | Device and method for detecting ice and snow on metal surface based on polarization detection | |
CN217931451U (en) | Rotary arc-shaped light source system for detecting defects of spherical lens | |
JP5946993B2 (en) | Liquid oil leak detection device | |
CN106290289A (en) | A kind of time resolving fluoroimmunoassay instrument and detection method | |
CN111239192A (en) | Device and method for detecting internal debonding defects of engine blades by scanning halogen lamp | |
CN101776614A (en) | Defect inspection device | |
CN110677569A (en) | Visual device for detecting inside of high-temperature narrow cavity | |
CN211825803U (en) | Device for detecting debonding defect inside engine blade by scanning halogen lamp | |
JPH06242410A (en) | Lcd display body inspecting device | |
CN111103711B (en) | A method for optical detection of liquid crystal module | |
CN111122565A (en) | Device and method for simultaneously shooting multiple surfaces of object and detection system | |
CN211352275U (en) | Vision device for inspection inside high temperature narrow cavity | |
CN108362667A (en) | A kind of Medium Optics parameter estimation apparatus and method | |
JP3255709B2 (en) | Board appearance inspection device | |
CN107390392A (en) | Array substrate detection equipment and array base palte detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |