[go: up one dir, main page]

CN115355935A - 一种基于倾斜光纤光栅的相变传感器件 - Google Patents

一种基于倾斜光纤光栅的相变传感器件 Download PDF

Info

Publication number
CN115355935A
CN115355935A CN202210979168.6A CN202210979168A CN115355935A CN 115355935 A CN115355935 A CN 115355935A CN 202210979168 A CN202210979168 A CN 202210979168A CN 115355935 A CN115355935 A CN 115355935A
Authority
CN
China
Prior art keywords
optical fiber
fiber
phase change
phase
fiber grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210979168.6A
Other languages
English (en)
Inventor
周艳
陈瑞品
周文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210979168.6A priority Critical patent/CN115355935A/zh
Publication of CN115355935A publication Critical patent/CN115355935A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于倾斜光纤光栅的相变传感器件,包括相变测量段光纤,所述相变测量段光纤的纤芯写入倾斜光纤光栅,所述倾斜光纤光栅所在的所述相变测量段光纤的一端端面镀有一层金属离子形成金属膜,所述倾斜光纤光栅的透射谱通过所述金属膜来实现,本发明将倾斜光纤光栅技术与相变传感技术相结合,实现了相变过程的实时测量,具有制作简单、体积小、结构坚固、成本较低等特点,可用于复杂环境中的相变测量。

Description

一种基于倾斜光纤光栅的相变传感器件
技术领域
本发明涉及传感器件领域,具体涉及到一种基于倾斜光纤光栅的相变传感器件。
背景技术
在工业中,预测和控制固相形成是至关重要的,尤其是在进行严密的过程控制时,相变开始的监测就必不可少。无论是预防相变发生,还是控制相变发生,对相变的深入认识在诸多领域都是非常重要的,比如能量存储系统、食物技术、生物医药、航空航天等超高精度安全监测领域。
相变在自然界是相当随机的,探测相变发生有利于确认和缓解生活以及工业中对预测的需求。传统的探测相变的技术包括差式扫描热法和示差热分析,这两者分别是测量热转换中和温度的差异,当相变发生时可以扫描到温度的变化。这些技术的确给出了重要的相变信息,但是实验装置复杂不适合工业应用,也没有考虑到样本或者反应器中特殊点位的测量。另外,还有一些相变探测是通过导电性的改变来完成探测,样品中通入电流,阻抗的增加显示了凝固结晶的程度。因为相变是放热或者吸热的,他们可以利用电子温度传感器测量局部温度进行探测。然而,这些传感器可能会成为热源而扰乱测量。对于透明材料,相变也可以视觉观察,但这就对容器的透明性有要求,而在实验装置或者反应器中透明容器并不经常可行。
近些年研究人员开发出光纤光学传感器探测相变,利用光纤传感探头,通过折射率的改变或者对应温度的改变,固体成型过程可以被直接监测。由于它们体积小,对测量的影响很小,即使在低温环境中,光纤传感器也能插入式探测被测物并且性能稳定。爱尔兰学者利用单模光纤与无芯光纤的熔接连结,结合十三甲烷折射率在固相时高于光纤而液相时低于光纤的特殊特性区分物质的状态。挪威学者利用单模光纤与细芯光纤熔接以及光纤光栅,监测水及其混合物的相变进程。澳大利亚学者根据增长的厚度可以衰减透射光利用裸露的光纤纤芯测量碳酸钙平面形成时晶体增长的速度。而这些传感结构皆对光纤进行复杂的机械加工,并且不同种类的光纤熔接在一起形成的结构对光路产生较大损耗。
在综上所述的研究中,现有的光纤相变传感器在性能和制作方法上都各有特点,但也都存在各自的缺点,集中体现在传感结构相对复杂,复杂结构坚固性偏低、使用寿命偏短,成本随之增加。
发明内容
为了克服上述现有技术中的缺陷,本发明提供了一种基于倾斜光纤光栅的相变传感器件,将倾斜光纤光栅与相变测量传感技术相结合,实现了相变的实时测量,具有制作简单、体积小、结构稳固、易于使用、成本较低等优点,可用于复杂环境中的相变测量。
技术方案
一种基于倾斜光纤光栅的相变传感器件,包括相变测量段光纤,所述相变测量段光纤的纤芯写入倾斜光纤光栅,所述倾斜光纤光栅所在的所述相变测量段光纤的一端端面镀有一层金属离子形成的金属膜,所述倾斜光纤光栅的透射谱通过所述金属膜来实现。
进一步的,所述相变测量段光纤经过光纤载氢预处理,所述相变测量段光纤为高参锗光敏光纤,所述光纤载氢预处理方法为:将所述高参锗光敏光纤放入充满氢气的容器中,设置温度和压强,在设定时间后使氢分子扩散到光纤的纤芯中。
进一步的,所述相变测量段光纤的纤芯写入所述倾斜光纤光栅的具体方式如下:紫外入射光经过聚焦透镜聚焦到相位掩膜板上,所述相位掩模板与载氢后的所述相变测量段光纤相平行,所述紫外入射光通过所述相位掩模版后照射在所述相变测量段光纤上,然后调节所述相位掩模板和所述紫外入射光的角度,形成所述倾斜光纤光栅。
进一步的,利用磁控溅射的方法,在所述倾斜光纤光栅的端面镀上所述金属膜,同时控制所述金属膜的厚度。
与现有技术相比,本发明具有的有益效果是:
将倾斜光纤光栅与相变测量传感技术相结合,实现了相变的实时测量,具有制作简单、体积小、结构稳固、易于使用、成本较低等优点,可用于复杂环境中的相变测量。
附图说明
图1是本发明一种基于倾斜光纤光栅相变传感器件的结构示意图;
图2是一种基于倾斜光纤光栅的相变传感器件的监测装置图。
图中:1、相变测量段光纤,2、金属膜,3、倾斜光纤光栅,4、基于倾斜光纤光栅的相变传感器件,5、耦合器,6、光源,7、探测仪器
具体实施方式
为更好地说明阐述本发明内容,下面结合附图和实施实例进行展开说明:
有图1-图2所示,本发明公开了一种基于倾斜光纤光栅的相变传感器件,包括相变测量段光纤1,所述相变测量段光纤1的纤芯写入倾斜光纤光栅3,所述倾斜光纤光栅3所在的所述相变测量段光纤1的一端端面镀有一层金属离子形成的金属膜2,所述倾斜光纤光栅3的透射谱通过所述金属膜2来实现。
进一步的,所述相变测量段光纤1经过光纤载氢预处理,所述相变测量段光纤1为高参锗光敏光纤,所述光纤载氢预处理方法为:将所述高参锗光敏光纤放入充满氢气的容器中,设置温度和压强,在设定时间后使氢分子扩散到光纤的纤芯中。
进一步的,所述相变测量段光纤1的纤芯写入所述倾斜光纤光栅3的具体方式如下:紫外入射光经过聚焦透镜聚焦到相位掩膜板上,所述相位掩模板与载氢后的所述相变测量段光纤1相平行,所述紫外入射光通过所述相位掩模版后照射在所述相变测量段光纤1上,然后调节所述相位掩模板和所述紫外入射光的角度,形成所述倾斜光纤光栅3。
进一步的,利用磁控溅射的方法,在所述倾斜光纤光栅3的端面镀上所述金属膜2,同时控制所述金属膜2的厚度。
一种基于倾斜光纤光栅的相变传感器件的基本工作原理:
扫描激光由相变测量段光纤1的自由端注入,TFBG将入射的芯模耦合成反射的芯模和大量的反射包层模,利用传感分析仪,监测包层模周围界面的不同入射角度下传输平面波,即可探测到被激发的包层模,这些包层模具有不同的有效折射率,通过对有效折射率的测算即可推算出相态改变的情况,被测物与相变测量段光纤1的交界处发生全反射,被测物的折射率可以通过全反射临界角进一步推算得出;
入射角小于全反射的临界角时形成漏模,漏模的有效折射率低于外界折射率;入射角大于全反射的临界角时形成导模,导模的有效折射率高于外界折射率,反射光将全部保留在光纤内部;入射角等于全反射临界角时,即为截止包层模,其有效折射率等于外界折射率,因此外界折射率可以通过等同大小的有效折射率所对应的谐振波长在光栅相位中的关系精确探测;
当一种基于倾斜光纤光栅的相变传感器件置于被测物中,相变发生则会引起周围折射率变化,利用传感分析技术测量出倾斜光纤光栅的光谱,进一步测得对应的折射率变化,从而实现相变进程的监测;
相变测量段光纤1长度为5cm,写入倾斜光纤光栅3为1cm,倾斜角度为6°,倾斜光纤光栅3离金属膜2端面2cm,布拉格谐振波长为1557nm,金属离子形成金属膜2是使用溅射镀膜机进行镀膜,金属膜2厚度为200nm;耦合器5是光纤耦合器;光源6为激光光源,扫描范围为1510nm-1590nm;探测仪器7为传感分析仪;
基于倾斜光纤光栅相变传感器件的监测装置有许多结构,下面列举较佳检测结构,但不仅限于此;
如图2所示,光源6和探测仪器7分别通过光纤连接至光纤耦合器5;基于倾斜光纤光栅的相变传感器件4连接至耦合器5,光源6的输出光经过耦合器5进入基于倾斜光纤光栅的相变传感器件4,由探测仪器7解调,通过所测得倾斜光纤光栅3的光谱,分析周围折射率的变化,监测对应的相变情况。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明技术方案进行了详细的说明,本领域的技术人员应当理解,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神与范围。

Claims (4)

1.一种基于倾斜光纤光栅的相变传感器件,其特征在于:包括相变测量段光纤(1),所述相变测量段光纤(1)的纤芯写入倾斜光纤光栅(3),所述倾斜光纤光栅(3)所在的所述相变测量段光纤(1)的一端端面镀有一层金属离子形成的金属膜(2),所述倾斜光纤光栅(3)的透射谱通过所述金属膜(2)来实现。
2.根据权利要求1所述的一种基于倾斜光纤光栅的相变传感器件,其特征在于:所述相变测量段光纤(1)经过光纤载氢预处理,所述相变测量段光纤(1)为高参锗光敏光纤,所述光纤载氢预处理方法为:将所述高参锗光敏光纤放入充满氢气的容器中,设置温度和压强,在设定时间后使氢分子扩散到光纤的纤芯中。
3.根据权利要求2所述的一种基于倾斜光纤光栅的相变传感器件,其特征在于:所述相变测量段光纤(1)的纤芯写入所述倾斜光纤光栅(3)的具体方式如下:紫外入射光经过聚焦透镜聚焦到相位掩膜板上,所述相位掩模板与载氢后的所述相变测量段光纤(1)相平行,所述紫外入射光通过所述相位掩模版后照射在所述相变测量段光纤(1)上,然后调节所述相位掩模板和所述紫外入射光的角度,形成所述倾斜光纤光栅(3)。
4.根据权利要求3所述的一种基于倾斜光纤光栅的相变传感器件,其特征在于:利用磁控溅射的方法,在所述倾斜光纤光栅(3)的端面镀上所述金属膜(2),同时控制所述金属膜(2)的厚度。
CN202210979168.6A 2022-08-16 2022-08-16 一种基于倾斜光纤光栅的相变传感器件 Pending CN115355935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210979168.6A CN115355935A (zh) 2022-08-16 2022-08-16 一种基于倾斜光纤光栅的相变传感器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210979168.6A CN115355935A (zh) 2022-08-16 2022-08-16 一种基于倾斜光纤光栅的相变传感器件

Publications (1)

Publication Number Publication Date
CN115355935A true CN115355935A (zh) 2022-11-18

Family

ID=84033970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210979168.6A Pending CN115355935A (zh) 2022-08-16 2022-08-16 一种基于倾斜光纤光栅的相变传感器件

Country Status (1)

Country Link
CN (1) CN115355935A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973279A (zh) * 2016-06-03 2016-09-28 安徽工业大学 一种单端反射式长周期光纤光栅传感器及其制作工艺
CN106896083A (zh) * 2016-07-14 2017-06-27 暨南大学 等离子体共振倾斜光纤光栅传感器、检测系统及方法
CN108844919A (zh) * 2018-04-25 2018-11-20 暨南大学 包层反射式倾斜光纤光栅折射率传感器及制作、测量方法
CN108878162A (zh) * 2018-06-19 2018-11-23 暨南大学 光纤超级电容器装置及其充放电状态自监测系统、方法
CN108872089A (zh) * 2018-06-12 2018-11-23 温州大学 含内包层调制倾斜光纤光栅折射率传感装置及方法
CN210603344U (zh) * 2019-10-21 2020-05-22 哈尔滨理工大学 一种反射式大角度倾斜光栅光纤传感器
CN112054254A (zh) * 2020-08-18 2020-12-08 暨南大学 电池光纤原位检测系统及方法
CN113340854A (zh) * 2021-06-07 2021-09-03 西安石油大学 基于反射式倾斜光纤光栅探针的生化传感器及制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973279A (zh) * 2016-06-03 2016-09-28 安徽工业大学 一种单端反射式长周期光纤光栅传感器及其制作工艺
CN106896083A (zh) * 2016-07-14 2017-06-27 暨南大学 等离子体共振倾斜光纤光栅传感器、检测系统及方法
CN108844919A (zh) * 2018-04-25 2018-11-20 暨南大学 包层反射式倾斜光纤光栅折射率传感器及制作、测量方法
CN108872089A (zh) * 2018-06-12 2018-11-23 温州大学 含内包层调制倾斜光纤光栅折射率传感装置及方法
CN108878162A (zh) * 2018-06-19 2018-11-23 暨南大学 光纤超级电容器装置及其充放电状态自监测系统、方法
CN210603344U (zh) * 2019-10-21 2020-05-22 哈尔滨理工大学 一种反射式大角度倾斜光栅光纤传感器
CN112054254A (zh) * 2020-08-18 2020-12-08 暨南大学 电池光纤原位检测系统及方法
CN113340854A (zh) * 2021-06-07 2021-09-03 西安石油大学 基于反射式倾斜光纤光栅探针的生化传感器及制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H SIN -YI WEN: "Sensors in Tilted Fiber Bragg Gratings via Spherical Metal - Reflective Ends", IEEE SENSORS JOURNAL, vol. 21, no. 3, 1 February 2021 (2021-02-01) *
MENG JIANG等: "Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror", OPTICS EXPRESS, vol. 17, no. 20, 28 September 2009 (2009-09-28) *

Similar Documents

Publication Publication Date Title
Qian et al. Review of salinity measurement technology based on optical fiber sensor
US5327225A (en) Surface plasmon resonance sensor
Tan et al. Theoretical model and design considerations of U-shaped fiber optic sensors: A review
Luo et al. Surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber with split cladding air holes
Zhang et al. A dual-channel surface plasmon resonance sensor for the liquid refractive index and temperature measurement based on hollow-core fiber
Ronot-Trioli et al. Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor
CN101769857A (zh) 基于环形芯波导的等离子体谐振式光纤生物传感器
CN104089682B (zh) 一种液位检测装置及其检测方法
Zhang et al. In situ determination of the complex permittivity of ultrathin H 2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared
CN106680740A (zh) 一种基于磁流体和倾斜光纤光栅的磁场强度传感系统
Zhang et al. High-sensitivity biconical optical fiber SPR salinity sensor with a compact size by fiber grinding technique
Ronot-Trioli et al. Fibre optic chemical sensor based on surface plasmon monochromatic excitation
Zhao et al. Monitoring technology of salinity in water with optical fiber sensor
CN108680531A (zh) 二氧化钛薄膜涂覆倾斜光纤光栅折射率传感器及检测系统
Zhang et al. Surface plasmon resonance sensor based on a D-shaped photonic crystal fiber for high and low refractive index detection
Teng et al. A high-sensitivity SPR sensor based on MMF-tapered HCF-MMF fiber structure for refractive index sensing
Fang et al. All-fiber temperature and refractive index sensor based on a cascaded tilted Bragg grating and a Bragg grating
CN111208087B (zh) 一种基于粗锥的光纤湿度传感器及其工作原理和制备方法
CN108181229B (zh) D形缠绕式聚合物光纤腐蚀传感器及其制备方法和应用
Philip-Chandy et al. A novel technique for on-line measurement of scaling using a multimode optical fibre sensor for industrial applications
Chauhan et al. Hydrothermally grown ZnO nanorods based optical fiber sensor for salinity detection
Lavers et al. Electrochemically-controlled waveguide-coupled surface plasmon sensing
CN113702339B (zh) 基于毛细管光纤的并联式spr传感器
CN115355935A (zh) 一种基于倾斜光纤光栅的相变传感器件
Ji et al. Ultrasensitive SPR sensor using PDMS-filled side-polished hollow-core fiber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination