CN115344122B - Acoustic non-invasive brain-computer interface and control method - Google Patents
Acoustic non-invasive brain-computer interface and control method Download PDFInfo
- Publication number
- CN115344122B CN115344122B CN202210976256.0A CN202210976256A CN115344122B CN 115344122 B CN115344122 B CN 115344122B CN 202210976256 A CN202210976256 A CN 202210976256A CN 115344122 B CN115344122 B CN 115344122B
- Authority
- CN
- China
- Prior art keywords
- blood flow
- cerebral blood
- control signal
- flow imaging
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003727 cerebral blood flow Effects 0.000 claims abstract description 179
- 238000003384 imaging method Methods 0.000 claims abstract description 167
- 230000000638 stimulation Effects 0.000 claims abstract description 111
- 238000004458 analytical method Methods 0.000 claims abstract description 68
- 230000009471 action Effects 0.000 claims abstract description 50
- 210000004556 brain Anatomy 0.000 claims abstract description 38
- 230000004044 response Effects 0.000 claims abstract description 32
- 238000000605 extraction Methods 0.000 claims description 18
- 238000007781 pre-processing Methods 0.000 claims description 17
- 238000013145 classification model Methods 0.000 claims description 8
- 238000002604 ultrasonography Methods 0.000 claims description 5
- 230000002490 cerebral effect Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 3
- 230000001537 neural effect Effects 0.000 abstract description 33
- 230000000694 effects Effects 0.000 abstract description 6
- 238000000537 electroencephalography Methods 0.000 description 47
- 230000000875 corresponding effect Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 210000005036 nerve Anatomy 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 206010015037 epilepsy Diseases 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 230000003925 brain function Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000004497 NIR spectroscopy Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 3
- 238000002582 magnetoencephalography Methods 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 206010010904 Convulsion Diseases 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 208000028329 epileptic seizure Diseases 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 210000001951 dura mater Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008035 nerve activity Effects 0.000 description 1
- 230000003767 neural control Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Theoretical Computer Science (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Human Computer Interaction (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Dermatology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及脑机接口技术领域,尤其涉及一种声波无创脑机接口及控制方法。The present invention relates to the technical field of brain-computer interface, and in particular to an acoustic wave non-invasive brain-computer interface and a control method thereof.
背景技术Background technique
脑机接口(brain-computer interface,BCI)是通过在大脑内部神经与具有高生物相容性的外部设备间建立直接连接通路,实现脑与机之间信息交互与功能整合的人工智能技术。Brain-computer interface (BCI) is an artificial intelligence technology that achieves information interaction and functional integration between the brain and the computer by establishing a direct connection pathway between the nerves inside the brain and external devices with high biocompatibility.
目前,高分辨率的脑机接口使用电极阵列,通过脑部手术打开硬脑膜,并将电极直接植入大脑,存在高风险的问题。非植入性的脑机接口可以使用脑电图、脑磁图、功能近红外光谱以及功能性核磁共振成像等采集大脑电信号。但是,脑电图中的脑电信号存在信噪比和时空分辨率低的问题,脑磁图和功能性核磁共振成像存在系统体积大、价格昂贵以及操作复杂的问题,功能近红外光谱则存在信号延迟,导致实时性差的问题。At present, high-resolution brain-computer interfaces use electrode arrays, open the dura mater through brain surgery, and implant electrodes directly into the brain, which poses a high risk. Non-implantable brain-computer interfaces can use electroencephalography, magnetoencephalography, functional near-infrared spectroscopy, and functional magnetic resonance imaging to collect brain electrical signals. However, the EEG signals have problems with low signal-to-noise ratio and spatiotemporal resolution, magnetoencephalography and functional magnetic resonance imaging have problems with large system size, high price, and complex operation, and functional near-infrared spectroscopy has signal delays, resulting in poor real-time performance.
发明内容Summary of the invention
本发明提供了一种声波无创脑机接口及控制方法,以实现提高脑机接口的实时性以及准确性、降低脑机接口的风险、提高对大脑内部神经元进行刺激的时空分辨率以及识别大脑内部神经活动的时空分辨率的效果。The present invention provides an acoustic wave non-invasive brain-computer interface and a control method, so as to improve the real-time and accuracy of the brain-computer interface, reduce the risk of the brain-computer interface, improve the spatiotemporal resolution of stimulating neurons inside the brain, and improve the spatiotemporal resolution of identifying neural activities inside the brain.
根据本发明的一方面,提供了一种声波无创脑机接口,该脑机接口包括:超声脑血流成像模块、解析控制模块以及执行设备;其中,According to one aspect of the present invention, there is provided an acoustic wave non-invasive brain-computer interface, the brain-computer interface comprising: an ultrasonic cerebral blood flow imaging module, an analysis control module and an execution device; wherein:
所述超声脑血流成像模块,用于无创实时获取目标对象的初始脑血流成像信息,并将所述脑血流成像信息发送至所述解析控制模块;The ultrasonic cerebral blood flow imaging module is used to non-invasively acquire the initial cerebral blood flow imaging information of the target object in real time, and send the cerebral blood flow imaging information to the analysis control module;
所述解析控制模块,与所述超声脑血流成像模块相连接,用于获取所述初始脑血流成像信息,根据所述初始脑血流成像信息确定控制信号,并将所述控制信号发送至所述执行设备;其中,所述执行设备包括动作设备和/或超声刺激设备;The analysis control module is connected to the ultrasonic cerebral blood flow imaging module, and is used to obtain the initial cerebral blood flow imaging information, determine a control signal according to the initial cerebral blood flow imaging information, and send the control signal to the execution device; wherein the execution device includes an action device and/or an ultrasonic stimulation device;
所述执行设备,与所述解析控制模块相连接,用于接收所述控制信号,并根据所述控制信号执行响应动作。The execution device is connected to the analysis control module, and is used to receive the control signal and execute a response action according to the control signal.
根据本发明的另一方面,提供了一种声波无创脑机接口的控制方法,该方法包括:According to another aspect of the present invention, a control method for an acoustic wave non-invasive brain-computer interface is provided, the method comprising:
基于超声脑血流成像模块,获取目标对象的初始脑血流成像信息,并将所述初始脑血流成像信息发送至解析控制模块;Based on the ultrasonic cerebral blood flow imaging module, initial cerebral blood flow imaging information of the target object is acquired, and the initial cerebral blood flow imaging information is sent to the analysis control module;
基于所述解析控制模块,获取所述初始脑血流成像信息,根据所述初始脑血流成像信息确定控制信号,并将所述控制信号发送至执行设备;其中,所述执行设备包括动作设备和/或超声刺激设备;Based on the analysis control module, the initial cerebral blood flow imaging information is obtained, a control signal is determined according to the initial cerebral blood flow imaging information, and the control signal is sent to an execution device; wherein the execution device includes an action device and/or an ultrasonic stimulation device;
基于所述执行设备,接收所述控制信号,并根据所述控制信号执行响应动作。Based on the execution device, the control signal is received, and a response action is executed according to the control signal.
本发明实施例的技术方案,基于超声脑血流成像模块获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块,基于解析控制模块获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备,基于执行设备接收控制信号,并根据控制信号执行响应动作,解决了有创脑机接口风险大、实时性差以及准确率低的问题,实现了提高脑机接口的实时性以及准确性、降低脑机接口的风险、提高对大脑内部神经元进行刺激的时空分辨率以及识别大脑内部神经活动的时空分辨率的效果。The technical solution of the embodiment of the present invention obtains initial cerebral blood flow imaging information of the target object based on the ultrasonic cerebral blood flow imaging module, and sends the initial cerebral blood flow imaging information to the analysis control module, obtains the initial cerebral blood flow imaging information based on the analysis control module, determines a control signal according to the initial cerebral blood flow imaging information, and sends the control signal to the execution device, receives the control signal based on the execution device, and executes a response action according to the control signal, which solves the problems of high risk, poor real-time performance and low accuracy of invasive brain-computer interface, and achieves the effect of improving the real-time performance and accuracy of brain-computer interface, reducing the risk of brain-computer interface, and improving the spatiotemporal resolution of stimulating neurons in the brain and identifying the spatiotemporal resolution of neural activities in the brain.
应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。It should be understood that the contents described in this section are not intended to identify the key or important features of the embodiments of the present invention, nor are they intended to limit the scope of the present invention. Other features of the present invention will become easily understood through the following description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本发明实施例一所提供的一种声波无创脑机接口的结构示意图;FIG1 is a schematic diagram of the structure of an acoustic wave non-invasive brain-computer interface provided by Embodiment 1 of the present invention;
图2为本发明实施例二所提供的一种声波无创脑机接口的结构示意图;FIG2 is a schematic diagram of the structure of an acoustic wave non-invasive brain-computer interface provided by Embodiment 2 of the present invention;
图3为本发明实施例二所提供的另一种声波无创脑机接口的结构示意图;FIG3 is a schematic diagram of the structure of another acoustic wave non-invasive brain-computer interface provided by Embodiment 2 of the present invention;
图4为本发明实施例二所提供的另一种声波无创脑机接口的结构示意图;FIG4 is a schematic diagram of the structure of another acoustic wave non-invasive brain-computer interface provided by Embodiment 2 of the present invention;
图5为本发明实施例三所提供的一种声波无创脑机接口的控制方法的流程示意图。FIG5 is a flow chart of a control method for an acoustic non-invasive brain-computer interface provided in Embodiment 3 of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the scheme of the present invention, the technical scheme in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work should fall within the scope of protection of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“初始”、“目标”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "initial", "target", etc. in the specification and claims of the present invention and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchanged where appropriate, so that the embodiments of the present invention described herein can be implemented in an order other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions, for example, a process, method, system, product or device that includes a series of steps or units is not necessarily limited to those steps or units that are clearly listed, but may include other steps or units that are not clearly listed or inherent to these processes, methods, products or devices.
可以理解的是,本技术方案所涉及的数据(包括但不限于数据本身、数据的获取或使用)应当遵循相应法律法规及相关规定的要求。It is understandable that the data involved in this technical solution (including but not limited to the data itself, the acquisition or use of the data) shall comply with the requirements of relevant laws, regulations and relevant provisions.
实施例一Embodiment 1
图1为本发明实施例一所提供的一种声波无创脑机接口的结构示意图,本实施例可适用于通过超声刺激进行神经调控,进而控制执行设备执行响应动作的情况,该脑机接口可以执行声波无创脑机接口的控制方法,该声波无创脑机接口可以采用硬件和/或软件的形式实现,该声波无创脑机接口可配置于电子设备中。Figure 1 is a schematic diagram of the structure of an acoustic wave non-invasive brain-computer interface provided in Example 1 of the present invention. This embodiment can be applied to situations where neural regulation is performed through ultrasonic stimulation, and then the execution device is controlled to perform a response action. The brain-computer interface can execute the control method of the acoustic wave non-invasive brain-computer interface. The acoustic wave non-invasive brain-computer interface can be implemented in the form of hardware and/or software, and the acoustic wave non-invasive brain-computer interface can be configured in an electronic device.
如图1所示,该脑机接口包括:超声脑血流成像模块1、解析控制模块2以及执行设备3。As shown in FIG1 , the brain-computer interface includes: an ultrasonic cerebral blood flow imaging module 1 , an analysis control module 2 and an execution device 3 .
其中,超声脑血流成像模块1,用于实时获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块2;解析控制模块2,与超声脑血流成像模块1相连接,用于获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备3;其中,执行设备3包括动作设备31和/或超声刺激设备32;执行设备3,与解析控制模块2相连接,用于接收控制信号,并根据控制信号执行响应动作。Among them, the ultrasonic cerebral blood flow imaging module 1 is used to obtain the initial cerebral blood flow imaging information of the target object in real time, and send the initial cerebral blood flow imaging information to the analysis control module 2; the analysis control module 2 is connected to the ultrasonic cerebral blood flow imaging module 1, and is used to obtain the initial cerebral blood flow imaging information, determine the control signal according to the initial cerebral blood flow imaging information, and send the control signal to the execution device 3; wherein the execution device 3 includes an action device 31 and/or an ultrasonic stimulation device 32; the execution device 3 is connected to the analysis control module 2, and is used to receive the control signal and perform a response action according to the control signal.
超声脑血流成像模块1,用于实时获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块2。The ultrasonic cerebral blood flow imaging module 1 is used to obtain the initial cerebral blood flow imaging information of the target object in real time, and send the initial cerebral blood flow imaging information to the analysis control module 2.
其中,目标对象可以是通过神经控制执行设备3执行响应动作的对象,也可以理解为进行后续进行超声神经调控的对象,可以是人或动物等。动作意图可以是控制执行设备5进行的后续动作。初始脑血流成像信息可以是通过超声无创脑功能成像,如多普勒成像或者超分辨成像等,采集得到的三维脑血流图的相关信息。The target object may be an object that performs a response action through the neural control execution device 3, and may also be understood as an object that performs subsequent ultrasonic neural regulation, which may be a person or an animal, etc. The action intention may be a subsequent action performed by the control execution device 5. The initial cerebral blood flow imaging information may be related information of a three-dimensional cerebral blood flow map acquired through ultrasonic non-invasive brain function imaging, such as Doppler imaging or super-resolution imaging.
具体的,可以通过无创超声脑功能成像采集和读取目标对象的脑血流成像信息,即为初始脑血流成像信息。进而,将初始脑血流成像信息发送至解析控制模块2,以进行进一步的解析和处理。Specifically, the cerebral blood flow imaging information of the target object can be collected and read by non-invasive ultrasonic brain function imaging, that is, the initial cerebral blood flow imaging information. Then, the initial cerebral blood flow imaging information is sent to the analysis control module 2 for further analysis and processing.
解析控制模块2,用于获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备3。The analysis control module 2 is used to obtain initial cerebral blood flow imaging information, determine a control signal according to the initial cerebral blood flow imaging information, and send the control signal to the execution device 3.
其中,执行设备3可以是用于响应控制信号执行响应动作的设备,执行设备3包括动作设备31和/或超声刺激设备32。动作设备31可以是语音设备、机械臂以及轮椅中的至少一种。超声刺激设备32可以是用于触发后续超声神经调控的动作的设备。控制信号可以是用于控制执行设备3进行响应动作的信号,可以是对初始脑血流成像信息进行转化得到的信号。Among them, the execution device 3 can be a device for performing a response action in response to the control signal, and the execution device 3 includes an action device 31 and/or an ultrasonic stimulation device 32. The action device 31 can be at least one of a voice device, a mechanical arm, and a wheelchair. The ultrasonic stimulation device 32 can be a device for triggering subsequent ultrasonic nerve regulation actions. The control signal can be a signal for controlling the execution device 3 to perform a response action, and can be a signal obtained by converting the initial cerebral blood flow imaging information.
需要说明的是,语音设备可以是能够输出语音信息的设备。机械臂可以是机械手臂,通常是可编程的、具有人的手臂类似功能的设备。轮椅可以是电动轮椅,可以根据外部的控制信号进行移动的设备。It should be noted that the voice device may be a device capable of outputting voice information. The robot arm may be a robot arm, which is usually a programmable device having similar functions to a human arm. The wheelchair may be an electric wheelchair, which may be a device that moves according to an external control signal.
具体的,解析控制模块2可以接收超声脑血流成像模块1发送的初始脑血流成像信息。进而,解析控制模块2可以对初始脑血流成像信息进行分析,例如可以通过预先建立的解析模型等对初始脑血流成像信息进行处理,得到控制信号,并将控制信号发送至执行设备3,以控制执行设备3执行响应动作。Specifically, the analysis control module 2 can receive the initial cerebral blood flow imaging information sent by the ultrasonic cerebral blood flow imaging module 1. Furthermore, the analysis control module 2 can analyze the initial cerebral blood flow imaging information, for example, it can process the initial cerebral blood flow imaging information through a pre-established analysis model, etc., to obtain a control signal, and send the control signal to the execution device 3 to control the execution device 3 to execute a response action.
示例性的,可以对初始脑血流成像信息进行处理,例如:通过预处理提高信噪比,通过特征提取获取特征值等。通过机器学习或人工智能预先建立用于识别脑血流信号与控制信号之间的关系的模型,将初始脑血流成像信息输入至该模型中,可以得到与初始脑血流成像信息相对应的控制信号。Exemplarily, the initial cerebral blood flow imaging information may be processed, for example, by improving the signal-to-noise ratio through preprocessing, obtaining characteristic values through feature extraction, etc. A model for identifying the relationship between cerebral blood flow signals and control signals is pre-established through machine learning or artificial intelligence, and the initial cerebral blood flow imaging information is input into the model, so that a control signal corresponding to the initial cerebral blood flow imaging information can be obtained.
执行设备3,用于接收控制信号,并根据控制信号执行响应动作。The execution device 3 is used to receive the control signal and execute a response action according to the control signal.
其中,响应动作可以是执行设备3执行的动作。The response action may be an action executed by the execution device 3 .
具体的,执行设备3可以接收解析控制模块2发送的控制信号,并对控制信号进行响应,在这种情况下,执行设备3可以执行控制信号所对应的响应动作。Specifically, the execution device 3 may receive the control signal sent by the analysis control module 2 and respond to the control signal. In this case, the execution device 3 may execute the response action corresponding to the control signal.
可选的,在执行设备3为超声刺激设备32的情况下,超声刺激设备32用于:Optionally, when the execution device 3 is an ultrasonic stimulation device 32, the ultrasonic stimulation device 32 is used to:
接收控制信号,根据控制信号,确定与控制信号对应的超声刺激参数,并根据超声刺激参数对目标对象进行超声刺激。A control signal is received, an ultrasonic stimulation parameter corresponding to the control signal is determined according to the control signal, and ultrasonic stimulation is performed on the target object according to the ultrasonic stimulation parameter.
其中,超声刺激参数包括超声频率,脉冲长度,脉冲重复频率,占空比,声压,刺激时间等。Among them, the ultrasonic stimulation parameters include ultrasonic frequency, pulse length, pulse repetition frequency, duty cycle, sound pressure, stimulation time, etc.
具体的,超声刺激设备32可以接收解析控制模块2发送的控制信号。进而,根据控制信号确定出待进行的超声刺激所需的超声刺激参数,可以按照超声刺激参数对目标对象进行超声刺激,以通过超声刺激来调控大脑神经活动。Specifically, the ultrasonic stimulation device 32 can receive the control signal sent by the analysis control module 2. Then, the ultrasonic stimulation parameters required for the ultrasonic stimulation to be performed are determined according to the control signal, and the target object can be ultrasonically stimulated according to the ultrasonic stimulation parameters to regulate brain nerve activity through ultrasonic stimulation.
本发明实施例的技术方案,基于超声脑血流成像模块获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块,基于解析控制模块获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备,基于执行设备接收控制信号,并根据控制信号执行响应动作,解决了有创脑机接口风险大、实时性差以及准确率低的问题,实现了提高脑机接口的实时性以及准确性、降低脑机接口的风险、提高对大脑内部神经元进行刺激的时空分辨率以及识别大脑内部神经活动的时空分辨率的效果。The technical solution of the embodiment of the present invention obtains initial cerebral blood flow imaging information of the target object based on the ultrasonic cerebral blood flow imaging module, and sends the initial cerebral blood flow imaging information to the analysis control module, obtains the initial cerebral blood flow imaging information based on the analysis control module, determines a control signal according to the initial cerebral blood flow imaging information, and sends the control signal to the execution device, receives the control signal based on the execution device, and executes a response action according to the control signal, which solves the problems of high risk, poor real-time performance and low accuracy of invasive brain-computer interface, and achieves the effect of improving the real-time performance and accuracy of brain-computer interface, reducing the risk of brain-computer interface, and improving the spatiotemporal resolution of stimulating neurons in the brain and identifying the spatiotemporal resolution of neural activities in the brain.
实施例二Embodiment 2
图2为本发明实施例二所提供的一种声波无创脑机接口的结构示意图,在前述实施例的基础上,可以通过脑电信息采集模块采集对目标对象的初始脑电信息,以便根据参数脑电信号控制执行设备动作,其具体的实施方式可以参见本技术方案的详细阐述。其中,与上述各实施例相同或相应的术语的解释在此不再赘述。FIG2 is a schematic diagram of the structure of an acoustic non-invasive brain-computer interface provided by the second embodiment of the present invention. On the basis of the above-mentioned embodiment, the initial EEG information of the target object can be collected by the EEG information collection module so as to control the execution of the device action according to the parameter EEG signal. The specific implementation method can refer to the detailed description of the technical solution. The explanation of the terms that are the same or corresponding to the above-mentioned embodiments will not be repeated here.
如图2所示,该脑机接口包括:超声脑血流成像模块1、解析控制模块2以及执行设备3,还包括:脑电信息采集模块4。As shown in FIG. 2 , the brain-computer interface includes: an ultrasonic cerebral blood flow imaging module 1 , an analysis control module 2 , and an execution device 3 , and also includes: an electroencephalogram information acquisition module 4 .
其中,脑电信息采集模块4,用于获取目标对象的初始脑电信息,并将初始脑电信息发送至解析控制模块2。The EEG information acquisition module 4 is used to obtain the initial EEG information of the target object and send the initial EEG information to the analysis control module 2 .
其中,初始脑电信息可以是通过脑电设备采集得到的脑电信号的相关信息,可以是通过脑电设备采集得到的脑电信号的相关信息。The initial EEG information may be information related to EEG signals collected by an EEG device, or may be information related to EEG signals collected by an EEG device.
具体的,可以通过脑电信息采集模块4采集和读取目标对象的脑电信号,得到初始脑电信息。进而,可以将初始脑电信息发送至解析控制模块2,以通过解析控制模块2对初始脑电信息进行解析和后续控制。Specifically, the EEG information acquisition module 4 can acquire and read the EEG signal of the target object to obtain the initial EEG information, and then send the initial EEG information to the analysis control module 2 so that the analysis control module 2 can analyze and subsequently control the initial EEG information.
需要说明的是,还可以通过脑磁图、功能近红外光谱以及功能性核磁共振成像等来获取大脑神经活动的相关信息,其过程与获取初始脑血流成像信息和初始脑电信息类似,因此,在本实施例中不做具体说明。It should be noted that relevant information on brain neural activity can also be obtained through magnetoencephalography, functional near-infrared spectroscopy, and functional magnetic resonance imaging, and the process is similar to obtaining initial cerebral blood flow imaging information and initial EEG information. Therefore, it is not specifically described in this embodiment.
相应的,解析控制模块2还用于:Correspondingly, the analysis control module 2 is also used for:
获取初始脑电信息,根据初始脑电信息确定控制信号,并将控制信号发送至执行设备3。Acquire initial EEG information, determine a control signal based on the initial EEG information, and send the control signal to the execution device 3.
具体的,解析控制模块2可以接收脑电信息采集模块4发送的初始脑电信息。进一步的,可以对初始脑电信息进行处理,例如:通过预处理提高信噪比,通过特征提取获取特征值等。通过机器学习或人工智能预先建立用于识别脑电信号与动作意图之间的关系的模型,将处理结果输入至该模型中,可以得到初始脑电信息相对应的控制信号。进而,将控制信号发送至执行设备3,以控制执行设备3执行响应动作。Specifically, the analysis control module 2 can receive the initial EEG information sent by the EEG information acquisition module 4. Further, the initial EEG information can be processed, for example: improving the signal-to-noise ratio through preprocessing, obtaining feature values through feature extraction, etc. A model for identifying the relationship between EEG signals and action intentions is pre-established through machine learning or artificial intelligence, and the processing results are input into the model to obtain a control signal corresponding to the initial EEG information. Then, the control signal is sent to the execution device 3 to control the execution device 3 to perform a response action.
在上述示例的基础上,解析控制模块2在获取初始脑电信息之后,还可以综合初始脑电信息和初始脑血流成像信息,以得到更准确的控制信号,解析控制模块2还用于:Based on the above example, after acquiring the initial EEG information, the analysis control module 2 can also integrate the initial EEG information and the initial cerebral blood flow imaging information to obtain a more accurate control signal. The analysis control module 2 is also used to:
获取初始脑血流成像信息以及初始脑电信息,根据初始脑血流成像信息以及初始脑电信息确定控制信号,并将控制信号发送至执行设备3。Initial cerebral blood flow imaging information and initial electroencephalogram information are obtained, a control signal is determined according to the initial cerebral blood flow imaging information and the initial electroencephalogram information, and the control signal is sent to the execution device 3.
具体的,解析控制模块2可以接收超声脑血流成像模块1发送的参数脑血流成像信息,并接收脑电信息采集模块4发送的初始脑电信息,对初始脑血流成像信息和初始脑电信息进行综合分析,例如可以通过预先建立的解析模型等对初始脑血流成像信息和初始脑电信息进行联合处理,得到控制信号,并将控制信号发送至执行设备3,以控制执行设备3执行响应动作。Specifically, the analysis control module 2 can receive the parameter cerebral blood flow imaging information sent by the ultrasonic cerebral blood flow imaging module 1, and receive the initial EEG information sent by the EEG information acquisition module 4, and perform a comprehensive analysis on the initial cerebral blood flow imaging information and the initial EEG information. For example, the initial cerebral blood flow imaging information and the initial EEG information can be jointly processed through a pre-established analysis model, etc., to obtain a control signal, and the control signal is sent to the execution device 3 to control the execution device 3 to perform a response action.
图3为本发明实施例二所提供的另一种声波无创脑机接口的结构示意图,在前述实施例的基础上,针对解析控制模块和超声刺激设备的具体结构可以参见本技术方案的详细阐述。其中,与上述各实施例相同或相应的术语的解释在此不再赘述。FIG3 is a schematic diagram of the structure of another acoustic non-invasive brain-computer interface provided by the second embodiment of the present invention. Based on the above embodiment, the specific structure of the analysis control module and the ultrasonic stimulation device can refer to the detailed description of the technical solution. The explanations of the terms that are the same or corresponding to the above embodiments are not repeated here.
如图3所示,该脑机接口包括:超声脑血流成像模块1、解析控制模块2以及执行设备3,解析控制模块2包括:预处理和特征提取单元21、控制信号确定单元22以及控制信号输出单元23。As shown in FIG3 , the brain-computer interface includes: an ultrasonic cerebral blood flow imaging module 1, an analysis control module 2 and an execution device 3. The analysis control module 2 includes: a preprocessing and feature extraction unit 21, a control signal determination unit 22 and a control signal output unit 23.
预处理和特征提取单元21,用于获取初始脑血流成像信息,对初始脑血流成像信息进行预处理,并对预处理后的初始脑血流成像信息进行特征提取,确定与初始脑血流成像信息对应的特征信息,并将特征信息发送至控制信号确定单元22。The preprocessing and feature extraction unit 21 is used to obtain initial cerebral blood flow imaging information, preprocess the initial cerebral blood flow imaging information, perform feature extraction on the preprocessed initial cerebral blood flow imaging information, determine feature information corresponding to the initial cerebral blood flow imaging information, and send the feature information to the control signal determination unit 22.
其中,特征信息可以是对参数脑血流成像信息进行特征提取后得到的特征值,用于描述目标对象的大脑神经运动。The characteristic information may be a characteristic value obtained by extracting the characteristic of parameter cerebral blood flow imaging information, and is used to describe the brain nerve movement of the target object.
具体的,预处理和特征提取单元21可以对接收到的参数脑血流成像信息进行预处理,以去除伪迹、去除工频等,具体可以是放大、滤波、模数转换等处理,得到预处理后的初始脑血流成像信息。进一步的,可以通过时域、频域、空域等特征提取方式对预处理后的初始脑血流成像信息进行特征提取,得到特征信息,并将特征信息发送至控制信号确定单元22。Specifically, the preprocessing and feature extraction unit 21 can preprocess the received parameter cerebral blood flow imaging information to remove artifacts, remove power frequency, etc., which can be amplification, filtering, analog-to-digital conversion, etc., to obtain preprocessed initial cerebral blood flow imaging information. Further, feature extraction can be performed on the preprocessed initial cerebral blood flow imaging information through feature extraction methods such as time domain, frequency domain, and spatial domain to obtain feature information, and the feature information is sent to the control signal determination unit 22.
控制信号确定单元22,与预处理和特征提取单元21相连接,用于获取特征信息,并将特征信息输入至预先建立的脑血流信号分类模型中,得到与初始脑血流成像信息相对应的初始控制信号,并将初始控制信号发送至控制信号输出单元23。The control signal determination unit 22 is connected to the preprocessing and feature extraction unit 21, and is used to obtain feature information, and input the feature information into a pre-established cerebral blood flow signal classification model to obtain an initial control signal corresponding to the initial cerebral blood flow imaging information, and send the initial control signal to the control signal output unit 23.
其中,脑血流信号分类模型可以是用于分析脑血流图像信息的特征信息对应的控制信号的模型,可以是机器学习模型、深度学习模型、人工智能模型等。需要说明的是,脑血流信号分类模型可以是基于样本脑血流图像信息、样本脑血流图像信息对应的特征信息和样本脑血流图像信息对应的控制信号训练得到的模型,以通过脑血流信号分类模型对特征信息进行识别分类,确定特征信息对应的控制信号,即初始控制信号。初始控制信号可以是脑血流信号分类模型输出的信号,用于表示控制意图,而非不同类型的执行设备3能够识别的控制信号。Among them, the cerebral blood flow signal classification model can be a model for analyzing the control signal corresponding to the characteristic information of the cerebral blood flow image information, and can be a machine learning model, a deep learning model, an artificial intelligence model, etc. It should be noted that the cerebral blood flow signal classification model can be a model trained based on sample cerebral blood flow image information, characteristic information corresponding to the sample cerebral blood flow image information, and control signals corresponding to the sample cerebral blood flow image information, so as to identify and classify the characteristic information through the cerebral blood flow signal classification model, and determine the control signal corresponding to the characteristic information, that is, the initial control signal. The initial control signal can be a signal output by the cerebral blood flow signal classification model, which is used to indicate the control intention, rather than a control signal that can be recognized by different types of execution devices 3.
具体的,控制信号确定单元22可以接收预处理和特征提取单元21发送的特征信息,并将特征信息输入至预先建立的脑血流信号分类模型中,得到输出结果,即为与初始脑血流成像信息相对应的初始控制信号。进而,将初始控制信号发送至控制信号输出单元23。Specifically, the control signal determination unit 22 can receive the feature information sent by the preprocessing and feature extraction unit 21, and input the feature information into a pre-established cerebral blood flow signal classification model to obtain an output result, which is an initial control signal corresponding to the initial cerebral blood flow imaging information. Then, the initial control signal is sent to the control signal output unit 23.
控制信号输出单元23,与控制信号确定单元22相连接,用于接收初始控制信号,将初始控制信号转换为执行设备3对应的目标控制信号,并将目标控制信号发送至执行设备3。The control signal output unit 23 is connected to the control signal determination unit 22 , and is used to receive the initial control signal, convert the initial control signal into a target control signal corresponding to the execution device 3 , and send the target control signal to the execution device 3 .
其中,目标控制信号可以是根据初始控制信号确定出的用于控制执行设备3执行响应动作的信号,可以理解为控制执行设备3的具体指令,可以被执行设备3所识别。示例性的,执行设备3为机械臂,初始控制信号为向上,那么,目标控制信号可以是控制机械臂向上抬起的指令信号。The target control signal may be a signal determined according to the initial control signal for controlling the execution device 3 to execute a response action, which may be understood as a specific instruction for controlling the execution device 3 and may be recognized by the execution device 3. For example, the execution device 3 is a robotic arm, and the initial control signal is upward, then the target control signal may be an instruction signal for controlling the robotic arm to lift upward.
具体的,控制信号输出单元23可以接收控制信号确定单元22发送的初始控制信号,并根据初始控制信号确定用于控制执行设备3进行动作的目标控制信号,具体可以是根据预先建立的初始控制信号和目标控制信号的对应关系确定。进而,将目标控制信号发送至执行设备3,以控制执行设备3执行响应动作。Specifically, the control signal output unit 23 may receive the initial control signal sent by the control signal determination unit 22, and determine the target control signal for controlling the execution device 3 to perform an action according to the initial control signal, which may be determined according to the pre-established correspondence between the initial control signal and the target control signal. Then, the target control signal is sent to the execution device 3 to control the execution device 3 to perform a response action.
可选的,如图3所示,执行设备3包括超声刺激设备32,超声刺激设备32包括:超声刺激参数确定单元321以及超声发射器322。Optionally, as shown in FIG. 3 , the execution device 3 includes an ultrasonic stimulation device 32 , and the ultrasonic stimulation device 32 includes: an ultrasonic stimulation parameter determination unit 321 and an ultrasonic transmitter 322 .
超声刺激参数确定单元321,用于接收控制信号,并根据预先建立的控制信号与超声刺激参数的对应关系,确定与控制信号相对应的超声刺激参数,并根据超声刺激参数对超声发射器322进行参数设置。The ultrasonic stimulation parameter determination unit 321 is used to receive the control signal, and determine the ultrasonic stimulation parameters corresponding to the control signal according to the pre-established correspondence between the control signal and the ultrasonic stimulation parameters, and set the parameters of the ultrasonic transmitter 322 according to the ultrasonic stimulation parameters.
需要说明的是,可以预先建立控制信号和超声刺激参数的对应关系,例如,可以建立控制信号与超声频率的对应关系,还可以建立用于进行超声刺激时所使用的脉冲长度,脉冲重复频率,占空比,声压,刺激时间等,以便通过超声刺激对大脑神经活动进行更好调控。It should be noted that a correspondence between control signals and ultrasonic stimulation parameters can be established in advance. For example, a correspondence between control signals and ultrasonic frequencies can be established. The pulse length, pulse repetition frequency, duty cycle, sound pressure, stimulation time, etc. used for ultrasonic stimulation can also be established so as to better regulate brain neural activity through ultrasonic stimulation.
具体的,超声刺激参数确定单元321可以接收解析控制模块2发送的控制信号,并根据预先建立的控制信号与超声刺激参数的对应关系,确定与控制信号对应的超声刺激参数,以便后续根据该超声刺激参数对目标对象进行超声刺激。进而,可以按照超声刺激参数对超声发射器322进行参数设置,以使超声发射器322发出的超声波与需求相一致。Specifically, the ultrasonic stimulation parameter determination unit 321 can receive the control signal sent by the analysis control module 2, and determine the ultrasonic stimulation parameter corresponding to the control signal according to the pre-established correspondence between the control signal and the ultrasonic stimulation parameter, so as to subsequently perform ultrasonic stimulation on the target object according to the ultrasonic stimulation parameter. Furthermore, the ultrasonic transmitter 322 can be parameterized according to the ultrasonic stimulation parameter so that the ultrasonic wave emitted by the ultrasonic transmitter 322 is consistent with the demand.
还需要说明的是,若不能确定出某些超声刺激参数,则可以使用默认参数值进行设置,在后续刺激和反馈的过程中进行调整,根据调整好的参数值更新控制信号与超声刺激参数的对应关系。It should also be noted that if certain ultrasonic stimulation parameters cannot be determined, the default parameter values can be used for setting, and adjustments can be made during subsequent stimulation and feedback, and the correspondence between the control signal and the ultrasonic stimulation parameters can be updated according to the adjusted parameter values.
超声发射器322,与超声刺激参数确定单元321相连接,用于在参数设置完成时,对目标对象进行超声刺激。The ultrasonic transmitter 322 is connected to the ultrasonic stimulation parameter determination unit 321 and is used to perform ultrasonic stimulation on the target object when the parameter setting is completed.
具体的,在对超声发射器322进行参数设置之后,可以通过超声发射器322向目标对象的目标部位(如:大脑)进行超声刺激,以促使目标对象的大脑神经活动与控制信号相对应,进而调控大脑神经活动。Specifically, after setting the parameters of the ultrasonic transmitter 322, ultrasonic stimulation can be performed on the target part of the target object (such as the brain) through the ultrasonic transmitter 322 to cause the brain neural activity of the target object to correspond to the control signal, thereby regulating the brain neural activity.
需要说明的是,通过超声刺激设备32执行的响应动作确定超声刺激参数并对目标对象进行超声刺激后,还可以进一步通过超声脑血流成像模块1获取超声刺激时的目标脑血流成像信息,以判断是否继续通过超声刺激设备32对目标对象进行神经调控。因此,通过上述技术方案可以实现闭环脑机接口。It should be noted that after the ultrasonic stimulation parameters are determined by the response action performed by the ultrasonic stimulation device 32 and the target object is ultrasonically stimulated, the target cerebral blood flow imaging information during the ultrasonic stimulation can be further obtained by the ultrasonic cerebral blood flow imaging module 1 to determine whether to continue to perform neural regulation on the target object through the ultrasonic stimulation device 32. Therefore, a closed-loop brain-computer interface can be realized through the above technical solution.
可选的,超声脑血流成像模块1,还用于:Optionally, the ultrasonic cerebral blood flow imaging module 1 is also used for:
获取基于超声刺激设备321对目标对象进行超声刺激时的目标脑血流成像信息。The target cerebral blood flow imaging information is acquired when the ultrasonic stimulation device 321 performs ultrasonic stimulation on the target object.
其中,目标脑血流成像信息可以是对目标对象进行超声刺激时,通过超声无创脑功能成像,如多普勒成像或者超分辨成像等,采集得到的三维脑血流图的相关信息。The target cerebral blood flow imaging information may be related information of a three-dimensional cerebral blood flow map acquired by ultrasonic non-invasive brain function imaging, such as Doppler imaging or super-resolution imaging, when the target object is subjected to ultrasonic stimulation.
具体的,在通过超声刺激设备321对目标对象进行超声刺激时,超声脑血流成像模块1可以无创且实时的获取目标脑血流成像信息。Specifically, when the ultrasonic stimulation device 321 performs ultrasonic stimulation on the target object, the ultrasonic cerebral blood flow imaging module 1 can obtain the target cerebral blood flow imaging information non-invasively and in real time.
可选的,解析控制模块2,还用于:Optionally, the parsing control module 2 is further used for:
获取目标脑血流成像信息,在目标脑血流成像信息不满足预设条件的情况下,根据目标脑血流成像信息更新控制信号,并更新后的控制信号发送至超声刺激设备321。The target cerebral blood flow imaging information is acquired. When the target cerebral blood flow imaging information does not meet the preset condition, the control signal is updated according to the target cerebral blood flow imaging information, and the updated control signal is sent to the ultrasonic stimulation device 321 .
其中,预设条件可以是预先设置的停止超声刺激设备321继续进行超声刺激的条件,例如:癫痫检测条件等。The preset condition may be a pre-set condition for stopping the ultrasonic stimulation device 321 from continuing the ultrasonic stimulation, such as an epilepsy detection condition.
具体的,获取超声脑血流成像模块1发送的目标脑血流成像信息,判断目标脑血流成像信息是否满足预设条件,若满足,则停止生成控制信号,停止对目标对象进行超声调控,若不满足,则根据目标脑血流成像信息确定与目标脑血流成像信息对应的控制信号,以更新控制信号,进而,可以将更新后的控制信号发送至超声刺激设备321,以通过超声刺激设备321对目标对象进行超声调控。Specifically, the target cerebral blood flow imaging information sent by the ultrasonic cerebral blood flow imaging module 1 is obtained, and it is determined whether the target cerebral blood flow imaging information meets the preset conditions. If so, the control signal is stopped from being generated, and the ultrasonic regulation of the target object is stopped. If not, the control signal corresponding to the target cerebral blood flow imaging information is determined according to the target cerebral blood flow imaging information to update the control signal. Then, the updated control signal can be sent to the ultrasonic stimulation device 321 to perform ultrasonic regulation on the target object through the ultrasonic stimulation device 321.
需要说明的是,确定与目标脑血流成像信息对应的控制信号的过程与确定与初始脑血流成像信息对应的控制信号相类似,在此不再赘述。It should be noted that the process of determining the control signal corresponding to the target cerebral blood flow imaging information is similar to the process of determining the control signal corresponding to the initial cerebral blood flow imaging information, which will not be described in detail here.
示例性的,通过超声脑血流成像模块1获取目标对象的初始脑血流成像信息,解析控制模块2对初始脑血流成像信息进行解析,确定当前处于癫痫发作状态,生成癫痫控制信号发送至超声刺激设备321,以通过超声刺激设备321对目标对象进行神经调控。进而,持续的且实时的通过超声脑血流成像模块1获取目标对象的目标脑血流成像信息,解析控制模块2对目标脑血流成像信息进行解析,判断是否仍处于癫痫发作状态,若是,则继续生成癫痫控制信号发送至超声刺激设备321,以通过超声刺激设备321对目标对象进行神经调控,若否,则表明目标对象已恢复正常,可以停止后续操作。Exemplarily, the initial cerebral blood flow imaging information of the target object is obtained through the ultrasonic cerebral blood flow imaging module 1, and the analysis control module 2 analyzes the initial cerebral blood flow imaging information to determine that the target object is currently in an epileptic seizure state, and generates an epilepsy control signal to send to the ultrasonic stimulation device 321, so as to perform neurological regulation on the target object through the ultrasonic stimulation device 321. Then, the target cerebral blood flow imaging information of the target object is continuously and in real time obtained through the ultrasonic cerebral blood flow imaging module 1, and the analysis control module 2 analyzes the target cerebral blood flow imaging information to determine whether the target object is still in an epileptic seizure state. If so, the epilepsy control signal is continuously generated and sent to the ultrasonic stimulation device 321, so as to perform neurological regulation on the target object through the ultrasonic stimulation device 321. If not, it indicates that the target object has returned to normal and subsequent operations can be stopped.
图4为本发明实施例二所提供的另一种声波无创脑机接口的结构示意图。FIG4 is a schematic diagram of the structure of another acoustic wave non-invasive brain-computer interface provided in Embodiment 2 of the present invention.
如图4所示,所述脑机接口包括:信号采集模块、脑神经信号预处理与特征提取模块、脑血流信号分类模块、控制输出模块以及无创神经编码模块。As shown in FIG. 4 , the brain-computer interface includes: a signal acquisition module, a brain nerve signal preprocessing and feature extraction module, a cerebral blood flow signal classification module, a control output module and a non-invasive neural encoding module.
信号采集模块:实现对大脑神经活动信号的实时采集和读取。可以是利用无创超声脑功能成像(多普勒成像、超分辨成像等)对大脑的脑血流信号(初始脑血流成像信息或者目标脑血流成像信息)进行读取。还可以通过该信号采集模块来采集脑血流信号以及其他脑电信号、近红外等其他影像信号,以进行多模态脑神经信号采集。Signal acquisition module: It realizes the real-time acquisition and reading of brain neural activity signals. It can use non-invasive ultrasonic brain function imaging (Doppler imaging, super-resolution imaging, etc.) to read the brain's cerebral blood flow signals (initial cerebral blood flow imaging information or target cerebral blood flow imaging information). The signal acquisition module can also be used to collect cerebral blood flow signals and other EEG signals, near-infrared and other imaging signals to perform multi-modal brain neural signal acquisition.
脑神经信号预处理与特征提取模块:对信号采集模块读取的脑血流信号进行预处理,以提高信噪比来为特征提取提供高信噪比数据。然后,提取预处理后的脑血流信号对应的特征值(特征信息)。Cerebral nerve signal preprocessing and feature extraction module: preprocess the cerebral blood flow signal read by the signal acquisition module to improve the signal-to-noise ratio and provide high signal-to-noise ratio data for feature extraction. Then, extract the characteristic value (feature information) corresponding to the preprocessed cerebral blood flow signal.
脑血流信号分类模块:利用机器学习或人工智能方法建立脑血流信号特征与控制信号之间的关系,确定脑神经信号预处理与特征提取模块输出的特征值对应的控制信号(初始控制信号)。Cerebral blood flow signal classification module: Use machine learning or artificial intelligence methods to establish the relationship between cerebral blood flow signal characteristics and control signals, and determine the control signal (initial control signal) corresponding to the characteristic value output by the brain nerve signal preprocessing and feature extraction module.
控制输出模块:将上述脑血流信号分类模块输出的控制信号转化为控制外部设备(执行设备)的具体指令(目标控制信号),以实现对外部设备的控制。控制输出模块可以包括外部设备,例如语音模块、假肢、轮椅等。外部设备响应具体指令,进行相应的动作(响应动作)。Control output module: converts the control signal output by the above-mentioned cerebral blood flow signal classification module into a specific instruction (target control signal) for controlling an external device (executing device) to realize the control of the external device. The control output module may include external devices such as voice modules, prostheses, wheelchairs, etc. The external device responds to the specific instruction and performs the corresponding action (response action).
无创神经编码模块:利用外部设备控制超声波刺激大脑,调控中枢神经活动。具体可以是根据外部设备执行的响应动作,确定超声刺激参数,以进行超声刺激。Non-invasive neural coding module: Use external devices to control ultrasound to stimulate the brain and regulate central nervous system activity. Specifically, ultrasound stimulation parameters can be determined based on the response actions performed by the external device to perform ultrasound stimulation.
通过上述声波无创脑机接口,可以利用无创超声脑功能成像技术对大脑神经活动进行实时动态的读取,然后经过放大、滤波、模数转换等处理转换为可以被计算机识别的信号,进一步,对信号进行预处理,并提取特征信号,再利用这些特征信号进行模式识别,解码神经信息,最后将神经信息转化为控制外部设备的具体指令,以实现对外部设备的控制。Through the above-mentioned acoustic non-invasive brain-computer interface, non-invasive ultrasonic brain functional imaging technology can be used to read the brain's neural activity in real time and dynamically, and then converted into a signal that can be recognized by the computer through amplification, filtering, analog-to-digital conversion and other processing. Further, the signal is pre-processed and characteristic signals are extracted. These characteristic signals are then used for pattern recognition and decoding of neural information. Finally, the neural information is converted into specific instructions for controlling external devices to achieve control of external devices.
通过上述声波无创脑机接口,还可以利用脑电图等现有的神经信息读取技术对大脑神经活动进行实时动态的读取,然后经过放大、滤波、模数转换等处理转换为可以被计算机识别的信号,进一步,对信号进行预处理,提取特征信号,再利用这些特征信号进行模式识别,解码神经信息,最后将神经信息转化为控制外部设备的具体指令,外部设备响应指令执行响应动作。利用外部设备的响应动作可以触发无创超声神经调控技术,对目标对象进行超声刺激,实现对大脑神经活动的“再编码”,实现闭环脑机接口。Through the above-mentioned acoustic wave non-invasive brain-computer interface, it is also possible to use existing neural information reading technologies such as electroencephalograms to read brain neural activity in real time and dynamically, and then convert it into a signal that can be recognized by the computer through amplification, filtering, analog-to-digital conversion and other processing. Further, the signal is pre-processed to extract characteristic signals, and then these characteristic signals are used for pattern recognition, decoding neural information, and finally the neural information is converted into specific instructions to control external devices, and the external devices respond to the instructions and perform response actions. The response action of the external device can trigger the non-invasive ultrasonic neural regulation technology, perform ultrasonic stimulation on the target object, achieve "recoding" of brain neural activity, and realize a closed-loop brain-computer interface.
通过上述声波无创脑机接口,还可以利用无创超声脑功能成像技术对大脑神经活动进行实时动态的读取,然后经过放大、滤波、模数转换等处理转换为可以被计算机识别的信号,进一步,对信号进行预处理,并提取特征信号,再利用这些特征信号进行模式识别,解码神经信息,将神经信息转化为控制外部设备的具体指令,外部设备响应指令执行响应动作。利用外部设备的响应动作可以触发无创超声神经调控技术,对目标对象进行超声刺激,实现对大脑神经活动的“再编码”,实现无创超声闭环脑机接口。Through the above-mentioned acoustic wave non-invasive brain-computer interface, non-invasive ultrasonic brain functional imaging technology can also be used to read the brain's neural activity in real time and dynamically, and then converted into a signal that can be recognized by the computer through amplification, filtering, analog-to-digital conversion and other processing. Further, the signal is pre-processed and characteristic signals are extracted, and then these characteristic signals are used for pattern recognition, decoding neural information, and converting neural information into specific instructions to control external devices. The external device responds to the instructions and performs response actions. The response action of the external device can trigger the non-invasive ultrasonic neural regulation technology, perform ultrasonic stimulation on the target object, achieve "recoding" of brain neural activity, and realize a non-invasive ultrasonic closed-loop brain-computer interface.
本发明实施例的技术方案,基于脑电信息采集模块获取目标对象的初始脑电信息,并将初始脑电信息发送至解析控制模块,基于解析控制模块获取初始脑电信息,根据初始脑电信息确定控制信号,并将控制信号发送至执行设备,解决了大脑内部神经信号获取方式单一以及解析不准确的问题,实现了提高大脑神经信号解析准确性,进而提高脑机接口的准确性,提高识别大脑内部神经活动的时空分辨率的效果。The technical solution of the embodiment of the present invention obtains the initial EEG information of the target object based on the EEG information acquisition module, and sends the initial EEG information to the analysis control module, obtains the initial EEG information based on the analysis control module, determines the control signal according to the initial EEG information, and sends the control signal to the execution device, which solves the problems of single method of obtaining neural signals inside the brain and inaccurate analysis, and achieves the improvement of the accuracy of brain neural signal analysis, thereby improving the accuracy of brain-computer interface, and improving the effect of improving the spatiotemporal resolution of neural activities in the brain.
实施例三Embodiment 3
图5为本发明实施例三所提供的一种声波无创脑机接口的控制方法的流程示意图。如图5所示,该方法应用于声波无创脑机接口中,声波无创脑机接口包括:超声脑血流成像模块、解析控制模块以及执行设备,该方法包括:FIG5 is a flow chart of a control method of an acoustic wave non-invasive brain-computer interface provided in Embodiment 3 of the present invention. As shown in FIG5 , the method is applied to an acoustic wave non-invasive brain-computer interface, and the acoustic wave non-invasive brain-computer interface includes: an ultrasonic cerebral blood flow imaging module, an analysis control module, and an execution device. The method includes:
S510、基于超声脑血流成像模块,获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块。S510: Based on the ultrasonic cerebral blood flow imaging module, initial cerebral blood flow imaging information of the target object is obtained, and the initial cerebral blood flow imaging information is sent to the analysis control module.
S520、基于解析控制模块,获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备。S520: Based on the analysis control module, initial cerebral blood flow imaging information is obtained, a control signal is determined according to the initial cerebral blood flow imaging information, and the control signal is sent to the execution device.
其中,执行设备包括动作设备和/或超声刺激设备。Among them, the execution device includes an action device and/or an ultrasonic stimulation device.
S530、基于执行设备,接收控制信号,并根据控制信号执行响应动作。S530: Based on the execution device, receive the control signal and execute a response action according to the control signal.
可选的,所述执行设备包括超声刺激设备,所述方法还包括:基于超声刺激设备,接收所述控制信号,根据所述控制信号,确定与所述控制信号对应的超声刺激参数,并根据所述超声刺激参数对所述目标对象进行超声刺激。Optionally, the execution device includes an ultrasonic stimulation device, and the method further includes: based on the ultrasonic stimulation device, receiving the control signal, determining ultrasonic stimulation parameters corresponding to the control signal according to the control signal, and performing ultrasonic stimulation on the target object according to the ultrasonic stimulation parameters.
可选的,所述超声刺激设备,包括:超声刺激参数确定单元以及超声发射器,所述方法还包括:基于超声刺激参数确定单元,接收所述控制信号,并根据预先建立的控制信号与超声刺激参数的对应关系,确定超声刺激参数,并根据所述超声刺激参数对所述超声发射器进行参数设置;基于超声发射器,在参数设置完成时,对所述目标对象进行超声刺激。Optionally, the ultrasonic stimulation device includes: an ultrasonic stimulation parameter determination unit and an ultrasonic transmitter, and the method further includes: based on the ultrasonic stimulation parameter determination unit, receiving the control signal, and determining the ultrasonic stimulation parameters according to a pre-established correspondence between the control signal and the ultrasonic stimulation parameters, and setting parameters of the ultrasonic transmitter according to the ultrasonic stimulation parameters; based on the ultrasonic transmitter, when the parameter setting is completed, performing ultrasonic stimulation on the target object.
可选的,所述方法还包括:基于超声脑血流成像模块,获取基于所述超声刺激设备对所述目标对象进行超声刺激时的目标脑血流成像信息。Optionally, the method further includes: based on an ultrasonic cerebral blood flow imaging module, acquiring target cerebral blood flow imaging information when the ultrasonic stimulation device performs ultrasonic stimulation on the target object.
可选的,所述方法还包括:基于解析控制模块,获取所述目标脑血流成像信息,在所述目标脑血流成像信息不满足预设条件的情况下,根据所述目标脑血流成像信息更新所述控制信号,并更新后的控制信号发送至所述超声刺激设备。Optionally, the method further includes: based on the analysis control module, obtaining the target cerebral blood flow imaging information, and when the target cerebral blood flow imaging information does not meet a preset condition, updating the control signal according to the target cerebral blood flow imaging information, and sending the updated control signal to the ultrasonic stimulation device.
可选的,所述脑机接口还包括:脑电信息采集模块;所述方法还包括:基于脑电信息采集模块,获取目标对象的初始脑电信息,并将所述初始脑电信息发送至所述解析控制模块;相应的,还包括:基于解析控制模块,获取所述初始脑电信息,根据所述初始脑电信息确定控制信号,并将所述控制信号发送至执行设备。Optionally, the brain-computer interface also includes: an EEG information acquisition module; the method also includes: based on the EEG information acquisition module, acquiring initial EEG information of the target object, and sending the initial EEG information to the analysis and control module; correspondingly, it also includes: based on the analysis and control module, acquiring the initial EEG information, determining a control signal based on the initial EEG information, and sending the control signal to the execution device.
可选的,所述脑机接口还包括:脑电信息采集模块;所述方法还包括:基于解析控制模块,获取所述初始脑血流成像信息以及初始脑电信息,根据初始脑血流成像信息以及初始脑电信息确定控制信号,并将所述控制信号发送至执行设备。Optionally, the brain-computer interface also includes: an EEG information acquisition module; the method also includes: based on the analysis control module, obtaining the initial cerebral blood flow imaging information and the initial EEG information, determining a control signal according to the initial cerebral blood flow imaging information and the initial EEG information, and sending the control signal to the execution device.
可选的,所述解析控制模块包括:预处理和特征提取单元、控制信号确定单元以及控制信号输出单元;所述方法还包括:基于所述预处理和特征提取单元,获取所述初始脑血流成像信息,对所述初始脑血流成像信息进行预处理,并对预处理后的初始脑血流成像信息进行特征提取,确定与所述初始脑血流成像信息对应的特征信息,并将所述特征信息发送至所述控制信号确定单元;基于所述控制信号确定单元,获取所述特征信息,并将所述特征信息输入至预先建立的脑血流信号分类模型中,得到与所述初始脑血流成像信息相对应的初始控制信号,并将所述初始控制信号发送至所述控制信号输出单元;基于所述控制信号输出单元,接收所述初始控制信号,将所述初始控制信号转换为所述执行设备对应的目标控制信号,并将所述目标控制信号发送至所述执行设备。Optionally, the analysis control module includes: a preprocessing and feature extraction unit, a control signal determination unit and a control signal output unit; the method also includes: based on the preprocessing and feature extraction unit, acquiring the initial cerebral blood flow imaging information, preprocessing the initial cerebral blood flow imaging information, and extracting features from the preprocessed initial cerebral blood flow imaging information, determining feature information corresponding to the initial cerebral blood flow imaging information, and sending the feature information to the control signal determination unit; based on the control signal determination unit, acquiring the feature information, and inputting the feature information into a pre-established cerebral blood flow signal classification model to obtain an initial control signal corresponding to the initial cerebral blood flow imaging information, and sending the initial control signal to the control signal output unit; based on the control signal output unit, receiving the initial control signal, converting the initial control signal into a target control signal corresponding to the execution device, and sending the target control signal to the execution device.
可选的,所述执行设备包括动作设备,所述动作设备包括语音设备、机械臂以及轮椅中的至少一种。Optionally, the execution device includes an action device, and the action device includes at least one of a voice device, a robotic arm and a wheelchair.
本发明实施例的技术方案,基于超声脑血流成像模块获取目标对象的初始脑血流成像信息,并将初始脑血流成像信息发送至解析控制模块,基于解析控制模块获取初始脑血流成像信息,根据初始脑血流成像信息确定控制信号,并将控制信号发送至执行设备,基于执行设备接收控制信号,并根据控制信号执行响应动作,解决了有创脑机接口风险大、实时性差以及准确率低的问题,实现了提高脑机接口的实时性以及准确性、降低脑机接口的风险、提高对大脑内部神经元进行刺激的时空分辨率以及识别大脑内部神经活动的时空分辨率的效果。The technical solution of the embodiment of the present invention obtains initial cerebral blood flow imaging information of the target object based on the ultrasonic cerebral blood flow imaging module, and sends the initial cerebral blood flow imaging information to the analysis control module, obtains the initial cerebral blood flow imaging information based on the analysis control module, determines a control signal according to the initial cerebral blood flow imaging information, and sends the control signal to the execution device, receives the control signal based on the execution device, and executes a response action according to the control signal, which solves the problems of high risk, poor real-time performance and low accuracy of invasive brain-computer interface, and achieves the effect of improving the real-time performance and accuracy of brain-computer interface, reducing the risk of brain-computer interface, and improving the spatiotemporal resolution of stimulating neurons in the brain and identifying the spatiotemporal resolution of neural activities in the brain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。It should be understood that the various forms of processes shown above can be used to reorder, add or delete steps. For example, the steps described in the present invention can be executed in parallel, sequentially or in different orders, as long as the desired results of the technical solution of the present invention can be achieved, and this document does not limit this.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementations do not constitute a limitation on the protection scope of the present invention. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions can be made according to design requirements and other factors. Any modification, equivalent substitution and improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210976256.0A CN115344122B (en) | 2022-08-15 | 2022-08-15 | Acoustic non-invasive brain-computer interface and control method |
PCT/CN2022/132605 WO2024036794A1 (en) | 2022-08-15 | 2022-11-17 | Acoustic-wave non-invasive brain-computer interface and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210976256.0A CN115344122B (en) | 2022-08-15 | 2022-08-15 | Acoustic non-invasive brain-computer interface and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115344122A CN115344122A (en) | 2022-11-15 |
CN115344122B true CN115344122B (en) | 2024-06-18 |
Family
ID=83951458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210976256.0A Active CN115344122B (en) | 2022-08-15 | 2022-08-15 | Acoustic non-invasive brain-computer interface and control method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115344122B (en) |
WO (1) | WO2024036794A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115344122B (en) * | 2022-08-15 | 2024-06-18 | 中国科学院深圳先进技术研究院 | Acoustic non-invasive brain-computer interface and control method |
CN115813344A (en) * | 2022-12-09 | 2023-03-21 | 天津大学 | Deep brain stimulation noninvasive monitoring system based on sound computer imaging |
CN118778797A (en) * | 2023-04-04 | 2024-10-15 | 曹庆恒 | A brain-computer signal security system and its use method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012131418A1 (en) * | 2011-03-30 | 2012-10-04 | Centre National De La Recherche Scientifique - Cnrs - | Method for ultrasound functional imaging, man-machine interface method and apparatus using such methods |
CN114366126A (en) * | 2022-01-28 | 2022-04-19 | 燕山大学 | A method and system for closed-loop EEG regulation |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866775A (en) * | 2012-09-04 | 2013-01-09 | 同济大学 | System and method for controlling brain computer interface (BCI) based on multimode fusion |
KR101430557B1 (en) * | 2012-10-25 | 2014-08-18 | 계명대학교 산학협력단 | Microstimulation system using real-time blood flow reaction |
KR101680995B1 (en) * | 2013-03-15 | 2016-11-29 | 인텔 코포레이션 | Brain computer interface (bci) system based on gathered temporal and spatial patterns of biophysical signals |
KR101470588B1 (en) * | 2013-05-24 | 2014-12-10 | 고려대학교 산학협력단 | Apparatus and method for brain-brain interfacing |
EP2868343A1 (en) * | 2013-10-31 | 2015-05-06 | Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO | System to deliver adaptive electrical spinal cord stimulation to facilitate and restore locomotion after a neuromotor impairment |
FR3023156B1 (en) * | 2014-07-02 | 2016-08-05 | Centre Nat Rech Scient | METHOD AND DEVICE FOR FUNCTIONAL IMAGING OF THE BRAIN |
CN104826243B (en) * | 2015-05-15 | 2018-02-27 | 深圳先进技术研究院 | A kind of device of ultrasound stimulation nerve fiber |
US12318623B2 (en) * | 2018-05-01 | 2025-06-03 | Brainsway Ltd. | Device and method for real-time closed-loop brain stimulation |
CN110448334A (en) * | 2019-08-12 | 2019-11-15 | 云南中医药大学 | A detection method of blood vessel imaging |
US12318315B2 (en) * | 2020-05-12 | 2025-06-03 | California Institute Of Technology | Decoding movement intention using ultrasound neuroimaging |
CN112402792A (en) * | 2020-11-04 | 2021-02-26 | 深圳中科华意科技有限公司 | Nerve regulation and control device and method |
CN112657033B (en) * | 2020-12-10 | 2022-12-13 | 中国科学院深圳先进技术研究院 | Ultrasonic wake-up system |
WO2022120760A1 (en) * | 2020-12-10 | 2022-06-16 | 中国科学院深圳先进技术研究院 | Ultrasonic wake-up system |
CN113197564A (en) * | 2021-04-27 | 2021-08-03 | 燕山大学 | Portable neurovascular coupling detection device for conscious animals |
CN113918008B (en) * | 2021-08-30 | 2024-06-25 | 北京大学 | Brain-computer interface system based on source space brain magnetic signal decoding and application method |
CN114201041B (en) * | 2021-11-09 | 2024-01-26 | 北京电子工程总体研究所 | Man-machine interaction command method and device based on brain-computer interface |
CN115344122B (en) * | 2022-08-15 | 2024-06-18 | 中国科学院深圳先进技术研究院 | Acoustic non-invasive brain-computer interface and control method |
-
2022
- 2022-08-15 CN CN202210976256.0A patent/CN115344122B/en active Active
- 2022-11-17 WO PCT/CN2022/132605 patent/WO2024036794A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012131418A1 (en) * | 2011-03-30 | 2012-10-04 | Centre National De La Recherche Scientifique - Cnrs - | Method for ultrasound functional imaging, man-machine interface method and apparatus using such methods |
CN114366126A (en) * | 2022-01-28 | 2022-04-19 | 燕山大学 | A method and system for closed-loop EEG regulation |
Non-Patent Citations (1)
Title |
---|
Aya Khalaf etal.."A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound".《Journal of Neuroscience Methods Volume》.2019,第313卷44-53. * |
Also Published As
Publication number | Publication date |
---|---|
CN115344122A (en) | 2022-11-15 |
WO2024036794A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115344122B (en) | Acoustic non-invasive brain-computer interface and control method | |
CN114533086B (en) | Motor imagery brain electrolysis code method based on airspace characteristic time-frequency transformation | |
CN112488002B (en) | Emotion recognition method and system based on N170 | |
CN113146618B (en) | Control method and system of mechanical arm, electronic equipment and storage medium | |
CN105956624A (en) | Motor imagery electroencephalogram classification method based on space-time-frequency optimization feature sparse representation | |
Sarma et al. | Pre-processing and feature extraction techniques for EEGBCI applications-a review of recent research | |
CN113398470A (en) | Nerve regulation and control system capable of enhancing sleep | |
CN114587371A (en) | A long-term implantable miniature wireless optogenetic stimulation brain-computer interface system | |
CN105904459A (en) | Robot control system based on eye electrical signal recognition and design method of system | |
CN111584032A (en) | Novel brain-controlled intelligent rehabilitation method based on capsule network and application | |
Wu et al. | Signal processing for brain–computer interfaces: A review and current perspectives | |
CN113359991B (en) | Intelligent brain-controlled mechanical arm auxiliary feeding system and method for disabled people | |
Mora et al. | A BCI platform supporting AAL applications | |
CN115227263A (en) | Neural stimulation system based on EEG signal theta oscillation regulation and control | |
CN115363602A (en) | Attention improving system based on real-time electroencephalogram signals | |
CN118415649B (en) | A closed-loop multimodal neural stimulation system and method based on time interference | |
Bhalerao et al. | FBSE-based automated classification of motor imagery EEG signals in brain–computer interface | |
Saadabi et al. | Non-invasive brain-computer interface technology (BCI) modalities and implementation: a review article and assimilation of BCI models | |
Büyükgöze | The Brain-Computer Interface | |
Pei et al. | Introductory chapter: methods and applications of neural signal processing | |
NL2038311B1 (en) | Interventional electroencephalogram acquisition and electrical stimulation method and device | |
CN111651046A (en) | A gesture intent recognition system without hand motion | |
Zlatov | Addressing Cross-Subject and Trial-To-Trial Variability in EEG | |
Zlatov | Addressing cross-subject and trial-to-trial variability in EEG: physiology-informed data augmentation | |
Alam | Electroencephalographic signal processing and classification techniques for noninvasive motor imagery based brain computer interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |