CN115335690A - Electrodes and Electrode Chips - Google Patents
Electrodes and Electrode Chips Download PDFInfo
- Publication number
- CN115335690A CN115335690A CN202080099113.5A CN202080099113A CN115335690A CN 115335690 A CN115335690 A CN 115335690A CN 202080099113 A CN202080099113 A CN 202080099113A CN 115335690 A CN115335690 A CN 115335690A
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode
- metal layer
- substrate
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明提供一种能提高电化学测定的测定灵敏度和再现性的电极和电极芯片。电极芯片(2)具备:金属层(41),形成于绝缘性的基板(21)之上;碳层(42),形成于金属层(41)之上;以及上部粘接层(44),形成于金属层(41)的上表面与碳层(42)之间。上部粘接层(44)由硅形成。金属层(41)的侧面由绝缘层(25)覆盖。
The present invention provides an electrode and an electrode chip capable of improving the measurement sensitivity and reproducibility of electrochemical measurement. The electrode chip (2) is provided with: a metal layer (41) formed on an insulating substrate (21); a carbon layer (42) formed on the metal layer (41); and an upper adhesive layer (44), It is formed between the upper surface of the metal layer (41) and the carbon layer (42). The upper adhesive layer (44) is formed of silicon. The sides of the metal layer (41) are covered by an insulating layer (25).
Description
技术领域technical field
本发明涉及一种电极和电极芯片。The invention relates to an electrode and an electrode chip.
背景技术Background technique
利用电化学测定的原理的测定在许多场景下使用:溶液中的重金属的高灵敏度测定、利用酶电极的葡萄糖测定、利用离子电极的pH(氢离子浓度指数)的测定、残留农药的电化学检测所代表的食物检查(例如参照专利文献1)等。特别是,其中,对于镉、汞、砷、钴、铜、锌、铅这样的重金属的测定,在将水、土壤、食物、蔬菜、米、饮用水所含的这些重金属量摄取到体内前进行掌握是非常重要的。The measurement using the principle of electrochemical measurement is used in many scenarios: high-sensitivity measurement of heavy metals in solution, glucose measurement using an enzyme electrode, measurement of pH (hydrogen ion concentration index) using an ion electrode, electrochemical detection of residual pesticides Representative food inspection (for example, refer to Patent Document 1) and the like. In particular, the measurement of heavy metals such as cadmium, mercury, arsenic, cobalt, copper, zinc, and lead is carried out before ingesting the amount of these heavy metals contained in water, soil, food, vegetables, rice, and drinking water into the body. Mastery is very important.
在电化学测定中,已知能使用在绝缘性的基板之上形成有电极的电极芯片。在电极芯片中,电极基本上为单层构造,将银、铂、金、铝等金属材料或碳等导电性材料用作电极材料。In electrochemical measurement, it is known that an electrode chip in which electrodes are formed on an insulating substrate can be used. In the electrode chip, the electrodes basically have a single-layer structure, and metal materials such as silver, platinum, gold, and aluminum or conductive materials such as carbon are used as electrode materials.
但是,在金属材料之中有与空气中、样品中的水分等发生氧化还原反应而腐蚀的成分,测定灵敏度、再现性有时会降低。此外,碳材料虽然不易被氧化还原,但电阻率比金属材料高,在用作电极的情况下灵敏度差。However, metal materials contain components that corrode due to redox reactions with moisture in the air or samples, and the measurement sensitivity and reproducibility may decrease. In addition, although carbon materials are not easily oxidized and reduced, their resistivity is higher than that of metal materials, and their sensitivity is poor when used as electrodes.
作为消除这样的不良状况的方法,已知有在形成于绝缘性的基板之上的金属层之上层叠碳层的方法(例如参照专利文献2-4)。As a method of solving such problems, a method of laminating a carbon layer on a metal layer formed on an insulating substrate is known (for example, refer to Patent Documents 2-4).
但是,在以往的电极中,存在如下问题:在测定中由于浸透于碳层的水而在金属层表面产生氢,发生金属层与碳层的剥离、碳层的破损,测定灵敏度、再现性降低。However, conventional electrodes have problems in that hydrogen is generated on the surface of the metal layer due to water permeating the carbon layer during measurement, peeling between the metal layer and the carbon layer occurs, and damage to the carbon layer occurs, thereby reducing measurement sensitivity and reproducibility. .
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开平11-248668号公报Patent Document 1: Japanese Patent Application Laid-Open No. 11-248668
专利文献2:日本专利第5120453号公报Patent Document 2: Japanese Patent No. 5120453
专利文献3:日本特开2013-190212号公报Patent Document 3: Japanese Patent Laid-Open No. 2013-190212
专利文献4:日本特开2014-153280号公报Patent Document 4: Japanese Patent Laid-Open No. 2014-153280
发明内容Contents of the invention
发明所要解决的问题The problem to be solved by the invention
本发明是为了改善上述现状而完成的,其目的在于提供一种能提高对液体样品中的微量成分进行测定的电化学测定的测定灵敏度和再现性的电极和电极芯片。The present invention was made to improve the above-mentioned present situation, and an object of the present invention is to provide an electrode and an electrode chip capable of improving the measurement sensitivity and reproducibility of electrochemical measurement for measuring trace components in a liquid sample.
用于解决问题的方案solutions to problems
本发明的电极具备:金属层,形成于绝缘性的基板之上;碳层,形成于所述金属层之上;以及上部粘接层,形成于所述金属层的上表面与所述碳层之间,所述上部粘接层由硅形成,所述金属层的侧面由绝缘层覆盖。The electrode of the present invention includes: a metal layer formed on an insulating substrate; a carbon layer formed on the metal layer; and an upper adhesive layer formed on the upper surface of the metal layer and the carbon layer. In between, the upper adhesive layer is formed of silicon, and the side surfaces of the metal layer are covered by an insulating layer.
根据本发明的电极,由于具有金属层而使电阻降低,从而能提高测定灵敏度。此外,通过用碳层覆盖金属层的上表面并且用绝缘层覆盖金属层的侧面,能防止金属层的氧化还原,能提高测定灵敏度和再现性。而且,通过在金属层的上表面与碳层之间设置由硅形成的上部粘接层,使金属层与碳层的密合性提高,并且由于硅与金属相比电阻率高,能抑制测定中的在金属层上表面的氢的产生并防止金属层与碳层的剥离,从而能提高测定灵敏度和再现性。此外,由于金属层的侧面被绝缘层覆盖,因此,水分不会到达该侧面,能防止在金属层的侧面的氢的产生。According to the electrode of the present invention, since the electrode has a metal layer, the electrical resistance is reduced, so that the measurement sensitivity can be improved. In addition, by covering the upper surface of the metal layer with a carbon layer and covering the side surfaces of the metal layer with an insulating layer, oxidation and reduction of the metal layer can be prevented, and measurement sensitivity and reproducibility can be improved. Moreover, by providing an upper adhesive layer made of silicon between the upper surface of the metal layer and the carbon layer, the adhesion between the metal layer and the carbon layer is improved, and since silicon has a higher resistivity than metal, it is possible to suppress the measurement. The generation of hydrogen on the upper surface of the metal layer and prevent the peeling of the metal layer and the carbon layer, thereby improving the measurement sensitivity and reproducibility. In addition, since the side surface of the metal layer is covered with the insulating layer, moisture does not reach the side surface, and generation of hydrogen on the side surface of the metal layer can be prevented.
在本发明的电极中,也可以设为,具备形成于所述基板与所述金属层之间的下部粘接层。In the electrode of the present invention, a lower adhesive layer formed between the substrate and the metal layer may be provided.
根据这样的方案,能防止测定中的基板与金属层的密合性的降低,能提高测定灵敏度和再现性。According to such a configuration, it is possible to prevent a decrease in the adhesion between the substrate and the metal layer during measurement, and to improve measurement sensitivity and reproducibility.
优选的是,下部粘接层由例如硅、铬、钛、钨或在所述基板的表面实施使所述基板与所述金属层的密合性提高的表面处理而形成的表面处理层形成。不过,下部粘接层也可以由除了上述以外的金属形成。Preferably, the lower adhesive layer is formed of, for example, silicon, chromium, titanium, tungsten, or a surface treatment layer obtained by subjecting the surface of the substrate to a surface treatment that improves the adhesion between the substrate and the metal layer. However, the lower adhesive layer may also be formed of metals other than the above.
本发明的电极芯片具备由本发明的电极构成的工作电极(working electrode)和参比电极(reference electrode)。The electrode chip of the present invention includes a working electrode (working electrode) and a reference electrode (reference electrode) composed of the electrode of the present invention.
根据本发明的电极芯片,能适用于使用工作电极和参比电极的双电极方式的电化学测定。并且,工作电极和参比电极这两方由具有金属层、碳层以及粘接层的本发明的电极构成,因此,关于工作电极和参比电极这两方,由于能降低电阻,能防止金属层的氧化还原且能防止碳层的剥离,因此,能提高测定灵敏度和再现性。According to the electrode chip of the present invention, it can be suitably used for electrochemical measurement of a two-electrode system using a working electrode and a reference electrode. In addition, both the working electrode and the reference electrode are composed of the electrode of the present invention having a metal layer, a carbon layer, and an adhesive layer. Therefore, for both the working electrode and the reference electrode, since the resistance can be reduced, the metal can be prevented. The redox of the layer and the peeling of the carbon layer can be prevented, so the measurement sensitivity and reproducibility can be improved.
在本发明的电极芯片中,也可以设为,还具备由本发明的电极构成的对电极。In the electrode chip of the present invention, a counter electrode composed of the electrode of the present invention may be further provided.
根据这样的方案,能适用于使用工作电极、参比电极以及对电极的三电极方式的电化学测定。并且,关于工作电极、参比电极以及对电极,由于能降低电阻,能防止金属层的氧化还原且能防止碳层的剥离,因此,能提高测定灵敏度和再现性。According to such a configuration, it can be applied to electrochemical measurement of a three-electrode system using a working electrode, a reference electrode, and a counter electrode. In addition, with respect to the working electrode, reference electrode, and counter electrode, since resistance can be reduced, oxidation and reduction of the metal layer can be prevented, and peeling of the carbon layer can be prevented, so that measurement sensitivity and reproducibility can be improved.
发明效果Invention effect
本发明能提供一种能提高电化学测定的测定灵敏度和再现性的电极和电极芯片。The present invention can provide an electrode and an electrode chip capable of improving measurement sensitivity and reproducibility of electrochemical measurement.
附图说明Description of drawings
图1是表示电化学测定装置的一个例子的概略构成图。FIG. 1 is a schematic configuration diagram showing an example of an electrochemical measurement device.
图2是表示电极芯片的一个实施方式的概略性的俯视图。FIG. 2 is a schematic plan view showing an embodiment of an electrode chip.
图3是与图2的A-A位置对应的概略性的剖视图。FIG. 3 is a schematic cross-sectional view corresponding to the position AA of FIG. 2 .
图4是表示电极芯片的其他实施方式的概略性的剖视图。Fig. 4 is a schematic cross-sectional view showing another embodiment of the electrode chip.
具体实施方式Detailed ways
基于附图对本发明的电极和电极芯片的实施方式进行说明。图1是表示该实施方式的概略构成图。图2是表示电极芯片的一个实施方式的俯视图。Embodiments of the electrode and the electrode chip of the present invention will be described based on the drawings. FIG. 1 is a schematic configuration diagram showing the embodiment. Fig. 2 is a plan view showing an embodiment of an electrode chip.
如图1所示,电化学测定装置1具备电极芯片2、与电极芯片2连接的恒电位仪3、与恒电位仪3连接的操作部4、显示部5、电源部6以及外部输出部7。在本实施方式中,电极芯片2为一次性的电极芯片。As shown in FIG. 1 , an
如图2所示,电极芯片2具备平板状的绝缘性的基板21,在基板21上彼此绝缘地设有工作电极22、对电极23以及参比电极24。基板21在俯视观察下具有大致长方形的形态。工作电极22、对电极23以及参比电极24以从基板21的长尺寸方向一端附近延及至另一端附近的方式设置。As shown in FIG. 2 , the
在基板21上形成有将工作电极22、对电极23以及参比电极24彼此绝缘的绝缘层25。绝缘层25埋入于电极22、23、24之间,并且以包围电极22、23、24的轮廓的方式设置,从而覆盖电极22、23、24的侧面。An
在电极芯片2中,包含被测定物质的液体样品10与工作电极22、对电极23以及参比电极24的一端侧接触。电极芯片2的工作电极22、对电极23以及参比电极24的另一端侧经由连接器8和电缆9(省略在图1中的图示)与恒电位仪3电连接。电极芯片2可拆装地装配于连接器8。In the
电极芯片2的基板21的至少一个表面由平坦的绝缘性材料形成。基板21的材质没有特别限定,例如可以举出聚酰亚胺(PI:polyimide)、玻璃、聚对苯二甲酸乙二酯(PET:polyethyleneterephthalate)、聚甲基丙烯酸甲酯树脂(PMMA:polymethylmethacrylate)、聚碳酸酯(PC:polycarbonate)、聚丙烯(PP:polypropylene)、聚乙烯(PE:polyethylene)、聚苯乙烯(PS:polystyrene)、聚氯乙烯(PVC:polyvinylchloride)、聚甲醛(POM:polyoxymethylene)、ABS树脂(ABS(acrylonitrile-butadiene-styrene):丙烯腈-丁二烯-苯乙烯)等。不过,基板21的材质不限定于这些,也可以为陶瓷、石英等。此外,基板21的形状、厚度以及大小没有特别限定。At least one surface of the
如图2和图3所示,在电极芯片2中,工作电极22、对电极23以及参比电极24分别具备:金属层41,形成于基板21之上;碳层42,覆盖金属层41而形成;下部粘接层43,形成于基板21与金属层41之间;以及上部粘接层44,形成于金属层41的上表面与碳层42之间。在参比电极24的一端侧的碳层42上表面形成有银氯化银层45。As shown in Fig. 2 and Fig. 3, in
下部粘接层43为防止基板21与金属层41的剥离的薄膜,例如由硅形成。作为下部粘接层43的材料,只要是基板21与金属层41的密合性良好的材料即可,除了可以使用硅以外,例如还可以使用铬、钛、钨。The lower
此外,下部粘接层43也可以由在基板21的表面实施使基板21与金属层41的密合性提高的表面处理而形成的表面处理层形成。作为这样的表面处理,例如可以举出等离子处理、电晕处理、火焰处理、蚀刻处理、蒸汽处理、离子束处理等。In addition, the lower
金属层41由与碳层42相比电阻率低的材料形成,形成于下部粘接层43之上。金属层41是用于降低工作电极22、对电极23以及参比电极24的每一个的一端与另一端之间的电阻的层。作为金属层41的材料,例如可以使用银、钌、钽、钛、铜、铝、铂、铌、锆或者这些元素的合金,或这些元素与碳的合金等。
上部粘接层44形成于金属层41的上表面,为防止金属层41的上表面与碳层42的剥离的薄膜,由硅形成。The
碳层42隔着上部粘接层44形成于金属层41之上。碳层42例如由无定形碳或类金刚石碳(DLC:diamond-like carbon)形成。The
碳因为具有如下的特性而适合保护金属层41的碳层42的使用。(1)即使在3000℃的真空中(500℃的空气中)也具有优异的稳定性;(2)不易受化学药品侵蚀;(3)不透过气体、溶液;(4)具有优异的硬度、强度;(5)具有优异的电导率性;(6)对金属盐等的润湿有阻力;(7)血液、组织相容性良好;(8)有物理特性、化学特性的各向同性。Carbon is suitable for use in the
作为下部粘接层43、金属层41、上部粘接层44以及碳层42的制造方法,出于能高精度地控制各层的形状和膜厚的观点,优选的是蒸镀法。在此,作为蒸镀法,可以使用真空蒸镀法、离子镀法、溅射法等所谓的物理气相沉积法(PVD:physical vapor deposition)、所谓的化学气相沉积法(CVD:chemical vapor deposition)。不过,各层的制造方法不限定于蒸镀法,也可以为丝网印刷法、喷墨印刷法等印刷法。As a method of manufacturing lower
如图2和图3所示,绝缘层25在俯视观察下形成为包围下部粘接层43、金属层41以及上部粘接层44的轮廓。金属层41的侧面由绝缘层25覆盖。在本实施方式中,下部粘接层43的侧面、上部粘接层44的侧面以及碳层42的侧面也由绝缘层25覆盖。绝缘层25的下表面与基板21接触。下部粘接层43、金属层41以及上部粘接层44由于被基板21和绝缘层25包围而与周围气氛隔离。As shown in FIGS. 2 and 3 , the insulating
绝缘层25的材质没有特别限定,例如可以举出硅氧化膜(SiO2)、硅氮化膜(Si3N4)、氧化铝(Al2O3)等。不过,绝缘层25不限定于由这些材质形成的层,只要是能将电极22、23、24的侧面(至少金属层41的侧面)与周围气氛隔绝、不使水分通过的绝缘物即可。The material of insulating
需要说明的是,绝缘层25的上表面高度位置(厚度)只要是绝缘层25能至少覆盖金属层41的侧面的程度即可。其中,为了增加绝缘层25与碳层42的接触面积,优选的是,绝缘层25的上表面高度位置为与碳层42的上表面高度位置相同程度。由此,能可靠地防止水分从绝缘层25与碳层42之间向金属层41的浸入。It should be noted that the height position (thickness) of the upper surface of the insulating
在本实施方式中,电极22、23、24具备:金属层41,形成于绝缘性的基板21之上;碳层42,以覆盖金属层41的方式形成于基板21上;以及下部粘接层43,形成于基板21与金属层41之间。电极22、23、24由于具有金属层41而使电阻降低,从而能提高测定灵敏度。此外,通过用碳层42覆盖金属层41的上表面并且用绝缘层25覆盖金属层41的侧面,能防止金属层41的氧化还原,能提高测定灵敏度和再现性。而且,通过在金属层41的上表面与碳层42之间设置由硅形成的上部粘接层44,使金属层41与碳层42的密合性提高,并且由于硅与金属相比电阻率高而能抑制测定中的在金属层41的上表面的氢的产生。此外,由于金属层41的侧面被绝缘层25覆盖,因此,水分不会到达该侧面,能防止在金属层41的侧面的氢的产生。由此,防止基板21与金属层41的剥离,从而能提高测定灵敏度和再现性。In this embodiment, the
此外,由于电极22、23、24具备形成于基板21与金属层41之间的下部粘接层43,因此,能防止测定中的基板21与金属层41的密合性的降低,能提高测定灵敏度和再现性。In addition, since the
此外,金属层41、碳层42以及粘接层43、44是由蒸镀法形成的层,金属层41、碳层42以及粘接层43、44在俯视观察下形成为相同的形状。通过用蒸镀法形成各层41、42、43、44,能高精度地控制各层41、42、43、44的形状和膜厚,能针对电极22、23、24的每一个,提高整体的电阻的稳定性。In addition,
此外,下部粘接层43由硅形成。就硅而言,由于与玻璃的密合性和与金属的密合性好,因此,能增强金属层41与基板21的密合性。此外,上部粘接层44也由硅形成。就硅而言,由于与金属的密合性和与碳的密合性好,因此,能增强金属层41与碳层42的密合性。In addition, the lower
电极芯片2具备工作电极22、参比电极24以及对电极23,因此,能适用于三电极方式的电化学测定。并且,关于工作电极22、参比电极24以及对电极23,由于能降低电阻,能防止金属层41的氧化还原且能防止金属层41的剥离,因此,能提高测定灵敏度和再现性。The
需要说明的是,根据本发明的电极芯片,能适用于使用工作电极和参比电极的双电极方式的电化学测定。并且,工作电极和参比电极这两方由具有金属层、碳层以及粘接层的本发明的电极构成,因此,关于工作电极和参比电极这两方,由于能降低电阻,能防止金属层的氧化还原且能防止金属层的剥离,因此,能提高测定灵敏度和再现性。It should be noted that the electrode chip according to the present invention can be applied to electrochemical measurement of a two-electrode system using a working electrode and a reference electrode. In addition, both the working electrode and the reference electrode are composed of the electrode of the present invention having a metal layer, a carbon layer, and an adhesive layer. Therefore, for both the working electrode and the reference electrode, since the resistance can be reduced, the metal can be prevented. The redox of the metal layer can prevent the peeling of the metal layer, so the measurement sensitivity and reproducibility can be improved.
如图1所示,恒电位仪3配置为以使电极芯片2的工作电极22的电位相对于参比电极24为恒定的方式进行控制,并且能测定流动于工作电极22与对电极23之间的电流。作为概略构成,恒电位仪3具备运算控制部31、电压施加部32以及电流检测部33。As shown in FIG. 1 , the potentiostat 3 is configured to control the potential of the working
运算控制部31发挥如下功能:使用通过电化学测定得到的测定值来进行规定的运算处理,并且基于经由操作部4输入的来自用户的指令,发送电压施加部32所需的信号或使显示部5显示测定结果等信息。运算控制部31例如通过微型计算机执行规定的程序来实现。The
电压施加部32配置为在接收到来自运算控制部31的测定开始的信号时,对电极芯片2的工作电极22与对电极23之间施加所期望的波形的电压,以使工作电极22与参比电极24之间的电位成为所期望的电位的方式进行控制。The
电流检测部33配置为检测流动于电极芯片2的工作电极22与对电极23之间的电流的大小。与电流检测部33检测出的电流的大小相关的信号被取入至运算控制部31。The
运算控制部31配置为基于从电流检测部33取入的信号,使用例如预先准备的检量线,进行样品溶液中的特定成分浓度等的计算,将测定结果显示于显示部5。The
在电化学测定装置1中,操作部4为供用户进行电源的接通/断开、测定的开始、显示于显示部5的信息的变更这样的操作的输入装置。显示部5为例如由液晶显示器实现的构成。需要说明的是,也可以是,用触摸面板构成显示部5,使显示部5兼具操作部4的功能。电源部6例如可以由干电池、蓄电池等来实现。通过电源部6,向恒电位仪3、显示部5供给需要的电力。In the
此外,也可以是,在恒电位仪3连接有外部输出部7,以便能通过USB(universalserial bus:通用串行总线)端子这样的有线通信单元、无线通信单元来向个人计算机等外部设备输出信息。在该情况下,运算控制部31配置为通过外部输出部7来向外部设备输出测定数据等。In addition, an external output unit 7 may be connected to the potentiostat 3 so that information can be output to external devices such as a personal computer through a wired communication unit such as a USB (universal serial bus) terminal or a wireless communication unit. . In this case, the
需要说明的是,也可以设为,操作部4、显示部5、电源部6以及外部输出部7例如由笔记本计算机、平板电脑等移动计算机来实现。而且,若设为将小型的恒电位仪(例如小型恒电位仪“miniSTAT100”(BioDevice Technology制))用作恒电位仪3,则能将电化学测定装置1构成为可携带。由此,能进行使用电化学测定装置1的在现场(on-site,现场)的液体样品的测定。It should be noted that the
如图2所示,使用电化学测定装置1的电化学测定在电极芯片2滴有液体样品10的状态下进行。相对于电极芯片2,液体样品10以与工作电极22、对电极23以及参比电极24接触的方式滴下到基板21上。需要说明的是,也可以是,在工作电极22、对电极23以及参比电极24的一端侧浸渍于液体样品的状态下进行测定。As shown in FIG. 2 , the electrochemical measurement using the
接着,对电极芯片2的制作例进行说明。在作为基板21的厚度2500nm(2.5μm)左右的玻璃基板之上,通过溅射法,使用具有与下部粘接层形成区域对应的开口图案的金属掩膜形成厚度20nm左右的硅层来作为下部粘接层43。需要说明的是,由硅形成的下部粘接层43的膜厚没有特别限定。Next, a fabrication example of the
使用具有与该金属掩膜的与下部粘接层形成区域对应的开口图案相同的开口图案的金属掩膜,在下部粘接层43上,通过溅射法形成厚度150nm左右的银层来作为金属层41。Using a metal mask having the same opening pattern as the opening pattern corresponding to the lower adhesive layer forming region of the metal mask, a silver layer with a thickness of about 150 nm is formed as a metal layer on the lower
之后,使用具有与对应于下部粘接层形成区域的开口图案相同的开口图案的金属掩膜,在金属层41上,通过溅射法形成厚度20nm左右的硅层来作为上部粘接层44。需要说明的是,由硅形成的上部粘接层44的膜厚没有特别限定。Then, using a metal mask having the same opening pattern as that corresponding to the lower adhesive layer forming region, a silicon layer with a thickness of about 20 nm is formed as upper
接着,使用具有与对应于下部粘接层形成区域的开口图案相同的开口图案的金属掩膜,在上部粘接层44上,通过溅射法形成厚度1000nm左右的碳层42。如此一来,形成了分别具有下部粘接层43、金属层41、上部粘接层44以及碳层42的工作电极22、对电极23以及参比电极24。Next, a
在此,在将基板21搬入至溅射装置的腔室内后,使用相同的金属掩膜,不从腔室搬出地将下部粘接层43、金属层41、上部粘接层44、碳层42成膜于基板21上。由此,能缩短下部粘接层43、金属层41、上部粘接层44以及碳层42的成膜所需的时间,并且能防止异物向各层之间的附着。此外,金属层41、碳层42以及粘接层43、44在俯视观察下形成为相同的形状。Here, after the
电极22、23、24的线宽(与长尺寸方向正交的宽度方向的尺寸)为1.0mm左右。此外,电极22、23、24的间隔为0.5mm左右。The line width (dimension in the width direction perpendicular to the longitudinal direction) of the
通过溅射法,使用具有在下部粘接层形成区域的周围开口的开口图案的金属掩膜,以覆盖下部粘接层43、金属层41、上部粘接层44以及碳层42的侧面(电极22、23、24的侧面)的方式,在基板21上形成厚度1200nm左右的绝缘层25。绝缘层25形成为包围电极22、23、24的周围,并且埋入于电极22、23、24之间。By sputtering, a metal mask having an opening pattern opening around the region where the lower adhesive layer is formed is used to cover the lower
如此一来,通过蒸镀法(在此为溅射法),使用具有开口图案的金属掩膜形成下部粘接层43、金属层41、上部粘接层44、碳层42以及绝缘层25,由此,在各层成膜后无需进行由蚀刻法、剥离法实现的图案化,能减少制造成本。In this way, the lower
在参比电极24的一端侧的碳层42上表面,通过成膜法,将厚度100nm左右的银层成膜并进行氯化处理来形成银氯化银层45。如此一来,制作出电极芯片2。需要说明的是,既可以在形成绝缘层25后形成银氯化银层45,也可以在形成绝缘层25前形成银氯化银层45。On the upper surface of the
金属层41的膜厚没有特别限定,但优选的是,为50nm以上且1000nm以下。需要说明的是,当金属层41的膜厚比50nm薄时,电极22、23、24变为高电阻,测定灵敏度降低。此外,当金属层41的膜厚比1000nm厚时,在用蒸镀法(例如溅射法)将金属层41成膜的情况下,金属层41的成膜所需的时间变长,生产效率降低。The film thickness of the
需要说明的是,在一块基板21设置多个电极芯片2的区域并同时形成多个电极芯片2后,将各电极芯片2单片化,由此,能降低制造成本。It should be noted that, after forming a plurality of
在电极芯片2中,也可以是,如图4所示,在基板21的表面形成实施使密合性提高的表面处理而形成的表面处理层46来作为下部粘接层,在表面处理层46上形成有金属层41和绝缘层25。由此,能提高基板21与金属层41和绝缘层25的密合性,能可靠地防止水分从基板21与绝缘层25之间的浸入,能更可靠地防止测定时的在金属层41侧面的氢的产生和绝缘层25的剥离。In the
本发明不限于前述的实施方式,可以具体化为各种方案。例如,电极芯片可以是不具备对电极23而具备工作电极22和参比电极24来作为电极的构成且能适用于双电极方式的电化学测定的构成。The present invention is not limited to the aforementioned embodiments, and can be embodied in various forms. For example, the electrode chip may have a configuration that does not include the
此外,本发明的电极芯片也可以适用于线性电势扫描法(LSV:linear sweepvoltammetry)、计时电流法(CA:chronoamperometry)、循环伏安法(CV:cyclicvoltammetry)、短波形伏安法(SWV)等方法,而不限于微分脉冲伏安法(DPV:differentialpulse voltammetry)。In addition, the electrode chip of the present invention can also be applied to linear sweep voltammetry (LSV: linear sweepvoltammetry), chronoamperometry (CA: chronoamperometry), cyclic voltammetry (CV: cyclicvoltammetry), short wave voltammetry (SWV) etc. method, not limited to differential pulse voltammetry (DPV: differentialpulse voltammetry).
附图标记说明Explanation of reference signs
1:电化学测定装置;1: Electrochemical determination device;
2:电极芯片;2: electrode chip;
3:恒电位仪;3: potentiostat;
4:操作部;4: Operation Department;
5:显示部;5: display unit;
6:电源部;6: Power supply unit;
7:外部输出部;7: External output unit;
8:连接器;8: Connector;
9:电缆;9: cable;
10:液体样品;10: liquid sample;
21:基板;21: Substrate;
22:工作电极;22: working electrode;
23:对电极;23: counter electrode;
24:参比电极;24: reference electrode;
25:绝缘层;25: insulating layer;
31:运算控制部;31: Operation control department;
32:电压施加部;32: voltage applying part;
33:电流检测部;33: current detection unit;
41:金属层;41: metal layer;
42:碳层;42: carbon layer;
43:下部粘接层;43: lower bonding layer;
44:上部粘接层;44: upper bonding layer;
45:银氯化银层;45: silver silver chloride layer;
46:表面处理层。46: surface treatment layer.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014118 WO2021192248A1 (en) | 2020-03-27 | 2020-03-27 | Electrode and electrode chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115335690A true CN115335690A (en) | 2022-11-11 |
CN115335690B CN115335690B (en) | 2025-02-11 |
Family
ID=77891624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080099113.5A Active CN115335690B (en) | 2020-03-27 | 2020-03-27 | Electrodes and electrode chips |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7279260B2 (en) |
CN (1) | CN115335690B (en) |
WO (1) | WO2021192248A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024111455A1 (en) * | 2022-11-21 | 2024-05-30 | 日東電工株式会社 | Electrode and electrochemical measurement system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116761897A (en) * | 2021-01-14 | 2023-09-15 | 光驰科技(上海)有限公司 | Gene detection tool and gene detection kit |
JP7322311B1 (en) * | 2023-02-28 | 2023-08-07 | 住友化学株式会社 | Electrochemical sensor and method of manufacturing electrochemical sensor |
WO2024180988A1 (en) * | 2023-02-28 | 2024-09-06 | 日東電工株式会社 | Electrode, and electrochemical measuring system |
WO2024203071A1 (en) * | 2023-03-27 | 2024-10-03 | 日東電工株式会社 | Electrode |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1687768A (en) * | 2005-04-21 | 2005-10-26 | 复旦大学 | Micro sensor for detecting hepatic fibrosis based on method of antibody and antigen |
CN1710419A (en) * | 2004-06-17 | 2005-12-21 | 中国科学院电子学研究所 | Whole blood lactate test strips |
US20120211363A1 (en) * | 2009-11-05 | 2012-08-23 | Centro De Estudios E Investigaciuones Tecnicas (Ceit) | Thin-film pseudo-reference electrode and method for the production thereof |
JP2013190212A (en) * | 2012-03-12 | 2013-09-26 | Dainippon Printing Co Ltd | Biosensor and manufacturing method of the same |
JP2014153280A (en) * | 2013-02-12 | 2014-08-25 | Dainippon Printing Co Ltd | Biosensor electrode and biosensor |
JP2014153279A (en) * | 2013-02-12 | 2014-08-25 | Dainippon Printing Co Ltd | Manufacturing method of electrode for biosensor, biosensor manufacturing method and transfer foil for biosensor |
JP2015034784A (en) * | 2013-08-09 | 2015-02-19 | 大日本印刷株式会社 | Original sheet for biosensor electrode, biosensor electrode, and biosensor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2992603B2 (en) * | 1991-06-24 | 1999-12-20 | 日本電信電話株式会社 | Wall jet type electrochemical detector and method of manufacturing the same |
JP5120453B2 (en) * | 2008-07-09 | 2013-01-16 | 日本電気株式会社 | Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method |
JP2010230369A (en) * | 2009-03-26 | 2010-10-14 | Ryukoku Univ | Electrode structure, method for manufacturing the electrode structure, and electrochemical sensor |
KR20100117173A (en) * | 2009-04-24 | 2010-11-03 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Electrochemical biosensor electrode strip and preparing method thereof |
JP5508312B2 (en) * | 2011-03-01 | 2014-05-28 | 日本電信電話株式会社 | Method for producing electrode for electrochemical measurement |
EP3157081B1 (en) * | 2014-06-13 | 2020-08-05 | LG Chem, Ltd. | Silicon-carbon composite, negative electrode comprising same, secondary battery using silicon-carbon composite, and method for preparing silicon-carbon composite |
KR102444557B1 (en) * | 2014-07-22 | 2022-09-20 | 도요보 가부시키가이샤 | Thin film-laminated film |
JP7337498B2 (en) * | 2017-12-11 | 2023-09-04 | 日東電工株式会社 | Electrode film and electrochemical measurement system |
WO2021009845A1 (en) * | 2019-07-16 | 2021-01-21 | 株式会社オプトラン | Electrode and electrode chip |
-
2020
- 2020-03-27 CN CN202080099113.5A patent/CN115335690B/en active Active
- 2020-03-27 WO PCT/JP2020/014118 patent/WO2021192248A1/en active Application Filing
- 2020-03-27 JP JP2022510350A patent/JP7279260B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1710419A (en) * | 2004-06-17 | 2005-12-21 | 中国科学院电子学研究所 | Whole blood lactate test strips |
CN1687768A (en) * | 2005-04-21 | 2005-10-26 | 复旦大学 | Micro sensor for detecting hepatic fibrosis based on method of antibody and antigen |
US20120211363A1 (en) * | 2009-11-05 | 2012-08-23 | Centro De Estudios E Investigaciuones Tecnicas (Ceit) | Thin-film pseudo-reference electrode and method for the production thereof |
JP2013190212A (en) * | 2012-03-12 | 2013-09-26 | Dainippon Printing Co Ltd | Biosensor and manufacturing method of the same |
JP2014153280A (en) * | 2013-02-12 | 2014-08-25 | Dainippon Printing Co Ltd | Biosensor electrode and biosensor |
JP2014153279A (en) * | 2013-02-12 | 2014-08-25 | Dainippon Printing Co Ltd | Manufacturing method of electrode for biosensor, biosensor manufacturing method and transfer foil for biosensor |
JP2015034784A (en) * | 2013-08-09 | 2015-02-19 | 大日本印刷株式会社 | Original sheet for biosensor electrode, biosensor electrode, and biosensor |
Non-Patent Citations (1)
Title |
---|
王利, 蔡新霞, 李华清, 郭增军, 饶能高: "纳米材料与微电极生物传感器", 微纳电子技术, no. 8, 25 August 2003 (2003-08-25), pages 526 - 528 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024111455A1 (en) * | 2022-11-21 | 2024-05-30 | 日東電工株式会社 | Electrode and electrochemical measurement system |
Also Published As
Publication number | Publication date |
---|---|
WO2021192248A1 (en) | 2021-09-30 |
JP7279260B2 (en) | 2023-05-22 |
CN115335690B (en) | 2025-02-11 |
JPWO2021192248A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115335690B (en) | Electrodes and electrode chips | |
Rezaei et al. | Electrochemical detection techniques in biosensor applications | |
CN101595381B (en) | Electrode plate for electrochemical measurement, electrochemical measuring apparatus having the electrode plate, and method for determining target substance by using the electrode plate | |
US8466521B2 (en) | Hydrogen ion-sensitive field effect transistor and manufacturing method thereof | |
Berduque et al. | Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions | |
TWI637167B (en) | Substance measuring method and measuring device using electrochemical biosensor | |
WO2021009845A1 (en) | Electrode and electrode chip | |
US20250027900A1 (en) | pH Sensing Technique Based On Graphene Electrodes | |
US7435610B2 (en) | Fabrication of array pH sensitive EGFET and its readout circuit | |
US9671432B2 (en) | Nanowire electrode sensor | |
CN107957440B (en) | Planar ammonia selective sensing electrode and method for fabricating the same | |
CN102893150B (en) | Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution | |
WO2016032314A1 (en) | An egfet phosphate sensor device | |
TW201105960A (en) | Plastic potentiometric ion-selective sensor and fabrication thereof | |
CN115349088B (en) | Electrochemical analysis chip | |
CN101627301A (en) | Electrode plate for electrochemical measurement, electrochemical measuring instrument having the electrode plate for electrochemical measurement, and method for determining target substance using the | |
Khamsavi et al. | A novel two-electrode nonenzymatic electrochemical glucose sensor based on vertically aligned carbon nanotube arrays | |
IE980529A1 (en) | The use of screen printed electrodes in the electrochemical analysis of electroactive species | |
JP7533972B2 (en) | Electrodes and electrode tips | |
WO1989000287A1 (en) | Multi-sensor and production thereof | |
Schöning et al. | A silicon-based microelectrode array for chemical analysis | |
US11846598B2 (en) | Reference electrode | |
US20210356419A1 (en) | High dynamic range fast cv sensor using wide bandgap silicon carbide | |
Chiku et al. | Fabrication of Cu-modified boron-doped diamond microband electrodes and their application for selective detection of glucose | |
US20050147741A1 (en) | Fabrication of array PH sensitive EGFET and its readout circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |