[go: up one dir, main page]

CN115335690A - Electrodes and Electrode Chips - Google Patents

Electrodes and Electrode Chips Download PDF

Info

Publication number
CN115335690A
CN115335690A CN202080099113.5A CN202080099113A CN115335690A CN 115335690 A CN115335690 A CN 115335690A CN 202080099113 A CN202080099113 A CN 202080099113A CN 115335690 A CN115335690 A CN 115335690A
Authority
CN
China
Prior art keywords
layer
electrode
metal layer
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080099113.5A
Other languages
Chinese (zh)
Other versions
CN115335690B (en
Inventor
朱子诚
山口佳则
山中启一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optorun Shanghai Co Ltd
Original Assignee
Optorun Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optorun Shanghai Co Ltd filed Critical Optorun Shanghai Co Ltd
Publication of CN115335690A publication Critical patent/CN115335690A/en
Application granted granted Critical
Publication of CN115335690B publication Critical patent/CN115335690B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供一种能提高电化学测定的测定灵敏度和再现性的电极和电极芯片。电极芯片(2)具备:金属层(41),形成于绝缘性的基板(21)之上;碳层(42),形成于金属层(41)之上;以及上部粘接层(44),形成于金属层(41)的上表面与碳层(42)之间。上部粘接层(44)由硅形成。金属层(41)的侧面由绝缘层(25)覆盖。

Figure 202080099113

The present invention provides an electrode and an electrode chip capable of improving the measurement sensitivity and reproducibility of electrochemical measurement. The electrode chip (2) is provided with: a metal layer (41) formed on an insulating substrate (21); a carbon layer (42) formed on the metal layer (41); and an upper adhesive layer (44), It is formed between the upper surface of the metal layer (41) and the carbon layer (42). The upper adhesive layer (44) is formed of silicon. The sides of the metal layer (41) are covered by an insulating layer (25).

Figure 202080099113

Description

电极和电极芯片Electrodes and Electrode Chips

技术领域technical field

本发明涉及一种电极和电极芯片。The invention relates to an electrode and an electrode chip.

背景技术Background technique

利用电化学测定的原理的测定在许多场景下使用:溶液中的重金属的高灵敏度测定、利用酶电极的葡萄糖测定、利用离子电极的pH(氢离子浓度指数)的测定、残留农药的电化学检测所代表的食物检查(例如参照专利文献1)等。特别是,其中,对于镉、汞、砷、钴、铜、锌、铅这样的重金属的测定,在将水、土壤、食物、蔬菜、米、饮用水所含的这些重金属量摄取到体内前进行掌握是非常重要的。The measurement using the principle of electrochemical measurement is used in many scenarios: high-sensitivity measurement of heavy metals in solution, glucose measurement using an enzyme electrode, measurement of pH (hydrogen ion concentration index) using an ion electrode, electrochemical detection of residual pesticides Representative food inspection (for example, refer to Patent Document 1) and the like. In particular, the measurement of heavy metals such as cadmium, mercury, arsenic, cobalt, copper, zinc, and lead is carried out before ingesting the amount of these heavy metals contained in water, soil, food, vegetables, rice, and drinking water into the body. Mastery is very important.

在电化学测定中,已知能使用在绝缘性的基板之上形成有电极的电极芯片。在电极芯片中,电极基本上为单层构造,将银、铂、金、铝等金属材料或碳等导电性材料用作电极材料。In electrochemical measurement, it is known that an electrode chip in which electrodes are formed on an insulating substrate can be used. In the electrode chip, the electrodes basically have a single-layer structure, and metal materials such as silver, platinum, gold, and aluminum or conductive materials such as carbon are used as electrode materials.

但是,在金属材料之中有与空气中、样品中的水分等发生氧化还原反应而腐蚀的成分,测定灵敏度、再现性有时会降低。此外,碳材料虽然不易被氧化还原,但电阻率比金属材料高,在用作电极的情况下灵敏度差。However, metal materials contain components that corrode due to redox reactions with moisture in the air or samples, and the measurement sensitivity and reproducibility may decrease. In addition, although carbon materials are not easily oxidized and reduced, their resistivity is higher than that of metal materials, and their sensitivity is poor when used as electrodes.

作为消除这样的不良状况的方法,已知有在形成于绝缘性的基板之上的金属层之上层叠碳层的方法(例如参照专利文献2-4)。As a method of solving such problems, a method of laminating a carbon layer on a metal layer formed on an insulating substrate is known (for example, refer to Patent Documents 2-4).

但是,在以往的电极中,存在如下问题:在测定中由于浸透于碳层的水而在金属层表面产生氢,发生金属层与碳层的剥离、碳层的破损,测定灵敏度、再现性降低。However, conventional electrodes have problems in that hydrogen is generated on the surface of the metal layer due to water permeating the carbon layer during measurement, peeling between the metal layer and the carbon layer occurs, and damage to the carbon layer occurs, thereby reducing measurement sensitivity and reproducibility. .

现有技术文献prior art literature

专利文献patent documents

专利文献1:日本特开平11-248668号公报Patent Document 1: Japanese Patent Application Laid-Open No. 11-248668

专利文献2:日本专利第5120453号公报Patent Document 2: Japanese Patent No. 5120453

专利文献3:日本特开2013-190212号公报Patent Document 3: Japanese Patent Laid-Open No. 2013-190212

专利文献4:日本特开2014-153280号公报Patent Document 4: Japanese Patent Laid-Open No. 2014-153280

发明内容Contents of the invention

发明所要解决的问题The problem to be solved by the invention

本发明是为了改善上述现状而完成的,其目的在于提供一种能提高对液体样品中的微量成分进行测定的电化学测定的测定灵敏度和再现性的电极和电极芯片。The present invention was made to improve the above-mentioned present situation, and an object of the present invention is to provide an electrode and an electrode chip capable of improving the measurement sensitivity and reproducibility of electrochemical measurement for measuring trace components in a liquid sample.

用于解决问题的方案solutions to problems

本发明的电极具备:金属层,形成于绝缘性的基板之上;碳层,形成于所述金属层之上;以及上部粘接层,形成于所述金属层的上表面与所述碳层之间,所述上部粘接层由硅形成,所述金属层的侧面由绝缘层覆盖。The electrode of the present invention includes: a metal layer formed on an insulating substrate; a carbon layer formed on the metal layer; and an upper adhesive layer formed on the upper surface of the metal layer and the carbon layer. In between, the upper adhesive layer is formed of silicon, and the side surfaces of the metal layer are covered by an insulating layer.

根据本发明的电极,由于具有金属层而使电阻降低,从而能提高测定灵敏度。此外,通过用碳层覆盖金属层的上表面并且用绝缘层覆盖金属层的侧面,能防止金属层的氧化还原,能提高测定灵敏度和再现性。而且,通过在金属层的上表面与碳层之间设置由硅形成的上部粘接层,使金属层与碳层的密合性提高,并且由于硅与金属相比电阻率高,能抑制测定中的在金属层上表面的氢的产生并防止金属层与碳层的剥离,从而能提高测定灵敏度和再现性。此外,由于金属层的侧面被绝缘层覆盖,因此,水分不会到达该侧面,能防止在金属层的侧面的氢的产生。According to the electrode of the present invention, since the electrode has a metal layer, the electrical resistance is reduced, so that the measurement sensitivity can be improved. In addition, by covering the upper surface of the metal layer with a carbon layer and covering the side surfaces of the metal layer with an insulating layer, oxidation and reduction of the metal layer can be prevented, and measurement sensitivity and reproducibility can be improved. Moreover, by providing an upper adhesive layer made of silicon between the upper surface of the metal layer and the carbon layer, the adhesion between the metal layer and the carbon layer is improved, and since silicon has a higher resistivity than metal, it is possible to suppress the measurement. The generation of hydrogen on the upper surface of the metal layer and prevent the peeling of the metal layer and the carbon layer, thereby improving the measurement sensitivity and reproducibility. In addition, since the side surface of the metal layer is covered with the insulating layer, moisture does not reach the side surface, and generation of hydrogen on the side surface of the metal layer can be prevented.

在本发明的电极中,也可以设为,具备形成于所述基板与所述金属层之间的下部粘接层。In the electrode of the present invention, a lower adhesive layer formed between the substrate and the metal layer may be provided.

根据这样的方案,能防止测定中的基板与金属层的密合性的降低,能提高测定灵敏度和再现性。According to such a configuration, it is possible to prevent a decrease in the adhesion between the substrate and the metal layer during measurement, and to improve measurement sensitivity and reproducibility.

优选的是,下部粘接层由例如硅、铬、钛、钨或在所述基板的表面实施使所述基板与所述金属层的密合性提高的表面处理而形成的表面处理层形成。不过,下部粘接层也可以由除了上述以外的金属形成。Preferably, the lower adhesive layer is formed of, for example, silicon, chromium, titanium, tungsten, or a surface treatment layer obtained by subjecting the surface of the substrate to a surface treatment that improves the adhesion between the substrate and the metal layer. However, the lower adhesive layer may also be formed of metals other than the above.

本发明的电极芯片具备由本发明的电极构成的工作电极(working electrode)和参比电极(reference electrode)。The electrode chip of the present invention includes a working electrode (working electrode) and a reference electrode (reference electrode) composed of the electrode of the present invention.

根据本发明的电极芯片,能适用于使用工作电极和参比电极的双电极方式的电化学测定。并且,工作电极和参比电极这两方由具有金属层、碳层以及粘接层的本发明的电极构成,因此,关于工作电极和参比电极这两方,由于能降低电阻,能防止金属层的氧化还原且能防止碳层的剥离,因此,能提高测定灵敏度和再现性。According to the electrode chip of the present invention, it can be suitably used for electrochemical measurement of a two-electrode system using a working electrode and a reference electrode. In addition, both the working electrode and the reference electrode are composed of the electrode of the present invention having a metal layer, a carbon layer, and an adhesive layer. Therefore, for both the working electrode and the reference electrode, since the resistance can be reduced, the metal can be prevented. The redox of the layer and the peeling of the carbon layer can be prevented, so the measurement sensitivity and reproducibility can be improved.

在本发明的电极芯片中,也可以设为,还具备由本发明的电极构成的对电极。In the electrode chip of the present invention, a counter electrode composed of the electrode of the present invention may be further provided.

根据这样的方案,能适用于使用工作电极、参比电极以及对电极的三电极方式的电化学测定。并且,关于工作电极、参比电极以及对电极,由于能降低电阻,能防止金属层的氧化还原且能防止碳层的剥离,因此,能提高测定灵敏度和再现性。According to such a configuration, it can be applied to electrochemical measurement of a three-electrode system using a working electrode, a reference electrode, and a counter electrode. In addition, with respect to the working electrode, reference electrode, and counter electrode, since resistance can be reduced, oxidation and reduction of the metal layer can be prevented, and peeling of the carbon layer can be prevented, so that measurement sensitivity and reproducibility can be improved.

发明效果Invention effect

本发明能提供一种能提高电化学测定的测定灵敏度和再现性的电极和电极芯片。The present invention can provide an electrode and an electrode chip capable of improving measurement sensitivity and reproducibility of electrochemical measurement.

附图说明Description of drawings

图1是表示电化学测定装置的一个例子的概略构成图。FIG. 1 is a schematic configuration diagram showing an example of an electrochemical measurement device.

图2是表示电极芯片的一个实施方式的概略性的俯视图。FIG. 2 is a schematic plan view showing an embodiment of an electrode chip.

图3是与图2的A-A位置对应的概略性的剖视图。FIG. 3 is a schematic cross-sectional view corresponding to the position AA of FIG. 2 .

图4是表示电极芯片的其他实施方式的概略性的剖视图。Fig. 4 is a schematic cross-sectional view showing another embodiment of the electrode chip.

具体实施方式Detailed ways

基于附图对本发明的电极和电极芯片的实施方式进行说明。图1是表示该实施方式的概略构成图。图2是表示电极芯片的一个实施方式的俯视图。Embodiments of the electrode and the electrode chip of the present invention will be described based on the drawings. FIG. 1 is a schematic configuration diagram showing the embodiment. Fig. 2 is a plan view showing an embodiment of an electrode chip.

如图1所示,电化学测定装置1具备电极芯片2、与电极芯片2连接的恒电位仪3、与恒电位仪3连接的操作部4、显示部5、电源部6以及外部输出部7。在本实施方式中,电极芯片2为一次性的电极芯片。As shown in FIG. 1 , an electrochemical measurement device 1 includes an electrode chip 2, a potentiostat 3 connected to the electrode chip 2, an operation unit 4 connected to the potentiostat 3, a display unit 5, a power supply unit 6, and an external output unit 7. . In this embodiment, the electrode chip 2 is a disposable electrode chip.

如图2所示,电极芯片2具备平板状的绝缘性的基板21,在基板21上彼此绝缘地设有工作电极22、对电极23以及参比电极24。基板21在俯视观察下具有大致长方形的形态。工作电极22、对电极23以及参比电极24以从基板21的长尺寸方向一端附近延及至另一端附近的方式设置。As shown in FIG. 2 , the electrode chip 2 includes a flat insulating substrate 21 , and a working electrode 22 , a counter electrode 23 , and a reference electrode 24 are provided on the substrate 21 insulated from each other. The substrate 21 has a substantially rectangular shape in plan view. The working electrode 22 , the counter electrode 23 , and the reference electrode 24 are provided so as to extend from the vicinity of one end in the longitudinal direction of the substrate 21 to the vicinity of the other end.

在基板21上形成有将工作电极22、对电极23以及参比电极24彼此绝缘的绝缘层25。绝缘层25埋入于电极22、23、24之间,并且以包围电极22、23、24的轮廓的方式设置,从而覆盖电极22、23、24的侧面。An insulating layer 25 is formed on the substrate 21 to insulate the working electrode 22 , the counter electrode 23 , and the reference electrode 24 from each other. The insulating layer 25 is embedded between the electrodes 22 , 23 , and 24 , and is provided so as to surround the contours of the electrodes 22 , 23 , and 24 so as to cover the side surfaces of the electrodes 22 , 23 , and 24 .

在电极芯片2中,包含被测定物质的液体样品10与工作电极22、对电极23以及参比电极24的一端侧接触。电极芯片2的工作电极22、对电极23以及参比电极24的另一端侧经由连接器8和电缆9(省略在图1中的图示)与恒电位仪3电连接。电极芯片2可拆装地装配于连接器8。In the electrode chip 2 , the liquid sample 10 containing the substance to be measured is in contact with one end side of the working electrode 22 , the counter electrode 23 , and the reference electrode 24 . The other ends of the working electrode 22 , the counter electrode 23 , and the reference electrode 24 of the electrode chip 2 are electrically connected to the potentiostat 3 via the connector 8 and the cable 9 (not shown in FIG. 1 ). The electrode chip 2 is detachably attached to the connector 8 .

电极芯片2的基板21的至少一个表面由平坦的绝缘性材料形成。基板21的材质没有特别限定,例如可以举出聚酰亚胺(PI:polyimide)、玻璃、聚对苯二甲酸乙二酯(PET:polyethyleneterephthalate)、聚甲基丙烯酸甲酯树脂(PMMA:polymethylmethacrylate)、聚碳酸酯(PC:polycarbonate)、聚丙烯(PP:polypropylene)、聚乙烯(PE:polyethylene)、聚苯乙烯(PS:polystyrene)、聚氯乙烯(PVC:polyvinylchloride)、聚甲醛(POM:polyoxymethylene)、ABS树脂(ABS(acrylonitrile-butadiene-styrene):丙烯腈-丁二烯-苯乙烯)等。不过,基板21的材质不限定于这些,也可以为陶瓷、石英等。此外,基板21的形状、厚度以及大小没有特别限定。At least one surface of the substrate 21 of the electrode chip 2 is formed of a flat insulating material. The material of the substrate 21 is not particularly limited, and examples thereof include polyimide (PI: polyimide), glass, polyethylene terephthalate (PET: polyethyleneterephthalate), polymethylmethacrylate resin (PMMA: polymethylmethacrylate) , polycarbonate (PC: polycarbonate), polypropylene (PP: polypropylene), polyethylene (PE: polyethylene), polystyrene (PS: polystyrene), polyvinyl chloride (PVC: polyvinylchloride), polyoxymethylene (POM: polyoxymethylene ), ABS resin (ABS (acrylonitrile-butadiene-styrene): acrylonitrile-butadiene-styrene), etc. However, the material of the substrate 21 is not limited to these, and may be ceramics, quartz, or the like. In addition, the shape, thickness, and size of the substrate 21 are not particularly limited.

如图2和图3所示,在电极芯片2中,工作电极22、对电极23以及参比电极24分别具备:金属层41,形成于基板21之上;碳层42,覆盖金属层41而形成;下部粘接层43,形成于基板21与金属层41之间;以及上部粘接层44,形成于金属层41的上表面与碳层42之间。在参比电极24的一端侧的碳层42上表面形成有银氯化银层45。As shown in Fig. 2 and Fig. 3, in electrode chip 2, working electrode 22, counter electrode 23 and reference electrode 24 possess respectively: metal layer 41, is formed on substrate 21; Carbon layer 42, covers metal layer 41 and A lower adhesive layer 43 is formed between the substrate 21 and the metal layer 41 ; and an upper adhesive layer 44 is formed between the upper surface of the metal layer 41 and the carbon layer 42 . A silver silver chloride layer 45 is formed on the upper surface of the carbon layer 42 on one end side of the reference electrode 24 .

下部粘接层43为防止基板21与金属层41的剥离的薄膜,例如由硅形成。作为下部粘接层43的材料,只要是基板21与金属层41的密合性良好的材料即可,除了可以使用硅以外,例如还可以使用铬、钛、钨。The lower adhesive layer 43 is a thin film for preventing peeling of the substrate 21 and the metal layer 41 , and is formed of silicon, for example. The material of the lower adhesive layer 43 may be any material as long as it has good adhesion between the substrate 21 and the metal layer 41 , and other than silicon, for example, chromium, titanium, and tungsten may be used.

此外,下部粘接层43也可以由在基板21的表面实施使基板21与金属层41的密合性提高的表面处理而形成的表面处理层形成。作为这样的表面处理,例如可以举出等离子处理、电晕处理、火焰处理、蚀刻处理、蒸汽处理、离子束处理等。In addition, the lower adhesive layer 43 may be formed of a surface treatment layer formed by subjecting the surface of the substrate 21 to a surface treatment to improve the adhesion between the substrate 21 and the metal layer 41 . Such surface treatment includes, for example, plasma treatment, corona treatment, flame treatment, etching treatment, steam treatment, ion beam treatment, and the like.

金属层41由与碳层42相比电阻率低的材料形成,形成于下部粘接层43之上。金属层41是用于降低工作电极22、对电极23以及参比电极24的每一个的一端与另一端之间的电阻的层。作为金属层41的材料,例如可以使用银、钌、钽、钛、铜、铝、铂、铌、锆或者这些元素的合金,或这些元素与碳的合金等。Metal layer 41 is made of a material having a lower resistivity than carbon layer 42 , and is formed on lower adhesive layer 43 . The metal layer 41 is a layer for reducing the resistance between one end and the other end of each of the working electrode 22 , the counter electrode 23 , and the reference electrode 24 . As the material of the metal layer 41 , for example, silver, ruthenium, tantalum, titanium, copper, aluminum, platinum, niobium, zirconium, alloys of these elements, alloys of these elements and carbon, or the like can be used.

上部粘接层44形成于金属层41的上表面,为防止金属层41的上表面与碳层42的剥离的薄膜,由硅形成。The upper adhesive layer 44 is formed on the upper surface of the metal layer 41 , is a thin film that prevents the upper surface of the metal layer 41 from being peeled off from the carbon layer 42 , and is made of silicon.

碳层42隔着上部粘接层44形成于金属层41之上。碳层42例如由无定形碳或类金刚石碳(DLC:diamond-like carbon)形成。The carbon layer 42 is formed on the metal layer 41 via the upper adhesive layer 44 . The carbon layer 42 is formed of, for example, amorphous carbon or diamond-like carbon (DLC: diamond-like carbon).

碳因为具有如下的特性而适合保护金属层41的碳层42的使用。(1)即使在3000℃的真空中(500℃的空气中)也具有优异的稳定性;(2)不易受化学药品侵蚀;(3)不透过气体、溶液;(4)具有优异的硬度、强度;(5)具有优异的电导率性;(6)对金属盐等的润湿有阻力;(7)血液、组织相容性良好;(8)有物理特性、化学特性的各向同性。Carbon is suitable for use in the carbon layer 42 that protects the metal layer 41 because it has the following characteristics. (1) It has excellent stability even in a vacuum of 3000°C (in the air of 500°C); (2) It is not easily corroded by chemicals; (3) It is impermeable to gases and solutions; (4) It has excellent hardness , strength; (5) has excellent electrical conductivity; (6) has resistance to wetting of metal salts, etc.; (7) has good blood and tissue compatibility; (8) has isotropic physical and chemical properties .

作为下部粘接层43、金属层41、上部粘接层44以及碳层42的制造方法,出于能高精度地控制各层的形状和膜厚的观点,优选的是蒸镀法。在此,作为蒸镀法,可以使用真空蒸镀法、离子镀法、溅射法等所谓的物理气相沉积法(PVD:physical vapor deposition)、所谓的化学气相沉积法(CVD:chemical vapor deposition)。不过,各层的制造方法不限定于蒸镀法,也可以为丝网印刷法、喷墨印刷法等印刷法。As a method of manufacturing lower adhesive layer 43 , metal layer 41 , upper adhesive layer 44 , and carbon layer 42 , vapor deposition is preferable from the viewpoint of being able to control the shape and film thickness of each layer with high precision. Here, as the vapor deposition method, so-called physical vapor deposition (PVD: physical vapor deposition) such as vacuum vapor deposition, ion plating, and sputtering, and so-called chemical vapor deposition (CVD: chemical vapor deposition) can be used. . However, the manufacturing method of each layer is not limited to the vapor deposition method, but printing methods such as screen printing method and inkjet printing method may also be used.

如图2和图3所示,绝缘层25在俯视观察下形成为包围下部粘接层43、金属层41以及上部粘接层44的轮廓。金属层41的侧面由绝缘层25覆盖。在本实施方式中,下部粘接层43的侧面、上部粘接层44的侧面以及碳层42的侧面也由绝缘层25覆盖。绝缘层25的下表面与基板21接触。下部粘接层43、金属层41以及上部粘接层44由于被基板21和绝缘层25包围而与周围气氛隔离。As shown in FIGS. 2 and 3 , the insulating layer 25 is formed in an outline surrounding the lower adhesive layer 43 , the metal layer 41 , and the upper adhesive layer 44 in plan view. The side surfaces of the metal layer 41 are covered with the insulating layer 25 . In this embodiment, the side surfaces of the lower adhesive layer 43 , the upper adhesive layer 44 , and the carbon layer 42 are also covered with the insulating layer 25 . The lower surface of the insulating layer 25 is in contact with the substrate 21 . The lower adhesive layer 43 , the metal layer 41 and the upper adhesive layer 44 are isolated from the surrounding atmosphere due to being surrounded by the substrate 21 and the insulating layer 25 .

绝缘层25的材质没有特别限定,例如可以举出硅氧化膜(SiO2)、硅氮化膜(Si3N4)、氧化铝(Al2O3)等。不过,绝缘层25不限定于由这些材质形成的层,只要是能将电极22、23、24的侧面(至少金属层41的侧面)与周围气氛隔绝、不使水分通过的绝缘物即可。The material of insulating layer 25 is not particularly limited, and examples thereof include silicon oxide film (SiO 2 ), silicon nitride film (Si 3 N 4 ), aluminum oxide film (Al 2 O 3 ), and the like. However, the insulating layer 25 is not limited to layers made of these materials, as long as it can isolate the side surfaces of the electrodes 22, 23, 24 (at least the side surfaces of the metal layer 41) from the surrounding atmosphere and prevent moisture from passing through.

需要说明的是,绝缘层25的上表面高度位置(厚度)只要是绝缘层25能至少覆盖金属层41的侧面的程度即可。其中,为了增加绝缘层25与碳层42的接触面积,优选的是,绝缘层25的上表面高度位置为与碳层42的上表面高度位置相同程度。由此,能可靠地防止水分从绝缘层25与碳层42之间向金属层41的浸入。It should be noted that the height position (thickness) of the upper surface of the insulating layer 25 may be such that the insulating layer 25 can cover at least the side surfaces of the metal layer 41 . Here, in order to increase the contact area between the insulating layer 25 and the carbon layer 42 , it is preferable that the height position of the upper surface of the insulating layer 25 is approximately the same as the height position of the upper surface of the carbon layer 42 . Thereby, infiltration of moisture into the metal layer 41 from between the insulating layer 25 and the carbon layer 42 can be reliably prevented.

在本实施方式中,电极22、23、24具备:金属层41,形成于绝缘性的基板21之上;碳层42,以覆盖金属层41的方式形成于基板21上;以及下部粘接层43,形成于基板21与金属层41之间。电极22、23、24由于具有金属层41而使电阻降低,从而能提高测定灵敏度。此外,通过用碳层42覆盖金属层41的上表面并且用绝缘层25覆盖金属层41的侧面,能防止金属层41的氧化还原,能提高测定灵敏度和再现性。而且,通过在金属层41的上表面与碳层42之间设置由硅形成的上部粘接层44,使金属层41与碳层42的密合性提高,并且由于硅与金属相比电阻率高而能抑制测定中的在金属层41的上表面的氢的产生。此外,由于金属层41的侧面被绝缘层25覆盖,因此,水分不会到达该侧面,能防止在金属层41的侧面的氢的产生。由此,防止基板21与金属层41的剥离,从而能提高测定灵敏度和再现性。In this embodiment, the electrodes 22, 23, and 24 include: a metal layer 41 formed on the insulating substrate 21; a carbon layer 42 formed on the substrate 21 so as to cover the metal layer 41; and a lower adhesive layer. 43 , formed between the substrate 21 and the metal layer 41 . Since the electrodes 22, 23, and 24 have the metal layer 41, the electrical resistance is reduced, and the measurement sensitivity can be improved. In addition, by covering the upper surface of the metal layer 41 with the carbon layer 42 and covering the side surfaces of the metal layer 41 with the insulating layer 25, oxidation and reduction of the metal layer 41 can be prevented, and measurement sensitivity and reproducibility can be improved. Furthermore, by providing the upper adhesive layer 44 made of silicon between the upper surface of the metal layer 41 and the carbon layer 42, the adhesion between the metal layer 41 and the carbon layer 42 is improved, and since the resistivity of silicon is higher than that of metal, High enough to suppress the generation of hydrogen on the upper surface of the metal layer 41 during measurement. In addition, since the side surface of the metal layer 41 is covered with the insulating layer 25 , moisture does not reach the side surface, and generation of hydrogen on the side surface of the metal layer 41 can be prevented. Thereby, peeling of the substrate 21 and the metal layer 41 is prevented, and measurement sensitivity and reproducibility can be improved.

此外,由于电极22、23、24具备形成于基板21与金属层41之间的下部粘接层43,因此,能防止测定中的基板21与金属层41的密合性的降低,能提高测定灵敏度和再现性。In addition, since the electrodes 22, 23, and 24 are provided with the lower adhesive layer 43 formed between the substrate 21 and the metal layer 41, it is possible to prevent the decrease in the adhesion between the substrate 21 and the metal layer 41 during measurement, and to improve the measurement performance. Sensitivity and reproducibility.

此外,金属层41、碳层42以及粘接层43、44是由蒸镀法形成的层,金属层41、碳层42以及粘接层43、44在俯视观察下形成为相同的形状。通过用蒸镀法形成各层41、42、43、44,能高精度地控制各层41、42、43、44的形状和膜厚,能针对电极22、23、24的每一个,提高整体的电阻的稳定性。In addition, metal layer 41, carbon layer 42, and adhesive layers 43, 44 are layers formed by vapor deposition, and metal layer 41, carbon layer 42, and adhesive layers 43, 44 are formed in the same shape in plan view. By forming each layer 41, 42, 43, 44 by vapor deposition, the shape and film thickness of each layer 41, 42, 43, 44 can be controlled with high precision, and the overall electrode 22, 23, 24 can be improved for each electrode 22, 23, 24. resistance stability.

此外,下部粘接层43由硅形成。就硅而言,由于与玻璃的密合性和与金属的密合性好,因此,能增强金属层41与基板21的密合性。此外,上部粘接层44也由硅形成。就硅而言,由于与金属的密合性和与碳的密合性好,因此,能增强金属层41与碳层42的密合性。In addition, the lower adhesive layer 43 is formed of silicon. Since silicon has good adhesion to glass and metal, it can enhance the adhesion between the metal layer 41 and the substrate 21 . In addition, the upper adhesive layer 44 is also formed of silicon. Since silicon has good adhesion to metal and carbon, the adhesion between metal layer 41 and carbon layer 42 can be enhanced.

电极芯片2具备工作电极22、参比电极24以及对电极23,因此,能适用于三电极方式的电化学测定。并且,关于工作电极22、参比电极24以及对电极23,由于能降低电阻,能防止金属层41的氧化还原且能防止金属层41的剥离,因此,能提高测定灵敏度和再现性。The electrode chip 2 includes a working electrode 22 , a reference electrode 24 , and a counter electrode 23 , so it can be applied to electrochemical measurements of a three-electrode system. In addition, the working electrode 22, the reference electrode 24, and the counter electrode 23 can reduce resistance, prevent oxidation and reduction of the metal layer 41, and prevent peeling of the metal layer 41, so that measurement sensitivity and reproducibility can be improved.

需要说明的是,根据本发明的电极芯片,能适用于使用工作电极和参比电极的双电极方式的电化学测定。并且,工作电极和参比电极这两方由具有金属层、碳层以及粘接层的本发明的电极构成,因此,关于工作电极和参比电极这两方,由于能降低电阻,能防止金属层的氧化还原且能防止金属层的剥离,因此,能提高测定灵敏度和再现性。It should be noted that the electrode chip according to the present invention can be applied to electrochemical measurement of a two-electrode system using a working electrode and a reference electrode. In addition, both the working electrode and the reference electrode are composed of the electrode of the present invention having a metal layer, a carbon layer, and an adhesive layer. Therefore, for both the working electrode and the reference electrode, since the resistance can be reduced, the metal can be prevented. The redox of the metal layer can prevent the peeling of the metal layer, so the measurement sensitivity and reproducibility can be improved.

如图1所示,恒电位仪3配置为以使电极芯片2的工作电极22的电位相对于参比电极24为恒定的方式进行控制,并且能测定流动于工作电极22与对电极23之间的电流。作为概略构成,恒电位仪3具备运算控制部31、电压施加部32以及电流检测部33。As shown in FIG. 1 , the potentiostat 3 is configured to control the potential of the working electrode 22 of the electrode chip 2 with respect to the reference electrode 24 in a constant manner, and can measure the voltage flowing between the working electrode 22 and the counter electrode 23. current. As a schematic configuration, the potentiostat 3 includes an arithmetic control unit 31 , a voltage application unit 32 , and a current detection unit 33 .

运算控制部31发挥如下功能:使用通过电化学测定得到的测定值来进行规定的运算处理,并且基于经由操作部4输入的来自用户的指令,发送电压施加部32所需的信号或使显示部5显示测定结果等信息。运算控制部31例如通过微型计算机执行规定的程序来实现。The calculation control unit 31 performs a predetermined calculation process using the measured value obtained by electrochemical measurement, and transmits a signal required by the voltage applying unit 32 or makes the display unit 5Display information such as measurement results. The arithmetic control unit 31 is realized, for example, by a microcomputer executing a predetermined program.

电压施加部32配置为在接收到来自运算控制部31的测定开始的信号时,对电极芯片2的工作电极22与对电极23之间施加所期望的波形的电压,以使工作电极22与参比电极24之间的电位成为所期望的电位的方式进行控制。The voltage application unit 32 is configured to apply a voltage of a desired waveform between the working electrode 22 and the counter electrode 23 of the counter electrode chip 2 when receiving the measurement start signal from the calculation control unit 31, so that the working electrode 22 and the counter electrode 23 are connected to each other. Control is performed so that the potential between the specific electrodes 24 becomes a desired potential.

电流检测部33配置为检测流动于电极芯片2的工作电极22与对电极23之间的电流的大小。与电流检测部33检测出的电流的大小相关的信号被取入至运算控制部31。The current detection unit 33 is configured to detect the magnitude of the current flowing between the working electrode 22 and the counter electrode 23 of the electrode chip 2 . A signal related to the magnitude of the current detected by the current detection unit 33 is taken into the arithmetic control unit 31 .

运算控制部31配置为基于从电流检测部33取入的信号,使用例如预先准备的检量线,进行样品溶液中的特定成分浓度等的计算,将测定结果显示于显示部5。The arithmetic control unit 31 is configured to calculate the concentration of a specific component in the sample solution based on the signal received from the current detection unit 33 using, for example, a calibration curve prepared in advance, and display the measurement result on the display unit 5 .

在电化学测定装置1中,操作部4为供用户进行电源的接通/断开、测定的开始、显示于显示部5的信息的变更这样的操作的输入装置。显示部5为例如由液晶显示器实现的构成。需要说明的是,也可以是,用触摸面板构成显示部5,使显示部5兼具操作部4的功能。电源部6例如可以由干电池、蓄电池等来实现。通过电源部6,向恒电位仪3、显示部5供给需要的电力。In the electrochemical measurement device 1 , the operation unit 4 is an input device for the user to perform operations such as turning on/off a power supply, starting a measurement, and changing information displayed on the display unit 5 . The display unit 5 is realized by, for example, a liquid crystal display. It should be noted that the display unit 5 may be configured with a touch panel, and the display unit 5 may also function as the operation unit 4 . The power supply unit 6 can be realized by, for example, a dry cell, a storage battery, or the like. Necessary electric power is supplied to the potentiostat 3 and the display unit 5 through the power supply unit 6 .

此外,也可以是,在恒电位仪3连接有外部输出部7,以便能通过USB(universalserial bus:通用串行总线)端子这样的有线通信单元、无线通信单元来向个人计算机等外部设备输出信息。在该情况下,运算控制部31配置为通过外部输出部7来向外部设备输出测定数据等。In addition, an external output unit 7 may be connected to the potentiostat 3 so that information can be output to external devices such as a personal computer through a wired communication unit such as a USB (universal serial bus) terminal or a wireless communication unit. . In this case, the arithmetic control unit 31 is configured to output measurement data and the like to an external device through the external output unit 7 .

需要说明的是,也可以设为,操作部4、显示部5、电源部6以及外部输出部7例如由笔记本计算机、平板电脑等移动计算机来实现。而且,若设为将小型的恒电位仪(例如小型恒电位仪“miniSTAT100”(BioDevice Technology制))用作恒电位仪3,则能将电化学测定装置1构成为可携带。由此,能进行使用电化学测定装置1的在现场(on-site,现场)的液体样品的测定。It should be noted that the operation unit 4 , the display unit 5 , the power supply unit 6 , and the external output unit 7 may be realized by, for example, mobile computers such as notebook computers and tablet computers. Furthermore, if a small potentiostat (for example, a small potentiostat "miniSTAT100" (manufactured by BioDevice Technology)) is used as the potentiostat 3, the electrochemical measuring device 1 can be configured to be portable. This enables on-site measurement of a liquid sample using the electrochemical measurement device 1 .

如图2所示,使用电化学测定装置1的电化学测定在电极芯片2滴有液体样品10的状态下进行。相对于电极芯片2,液体样品10以与工作电极22、对电极23以及参比电极24接触的方式滴下到基板21上。需要说明的是,也可以是,在工作电极22、对电极23以及参比电极24的一端侧浸渍于液体样品的状态下进行测定。As shown in FIG. 2 , the electrochemical measurement using the electrochemical measurement device 1 is performed in a state where the liquid sample 10 is dripped on the electrode chip 2 . With respect to the electrode chip 2 , the liquid sample 10 is dropped onto the substrate 21 so as to be in contact with the working electrode 22 , the counter electrode 23 and the reference electrode 24 . In addition, the measurement may be performed in the state which immersed the one end side of the working electrode 22, the counter electrode 23, and the reference electrode 24 in the liquid sample.

接着,对电极芯片2的制作例进行说明。在作为基板21的厚度2500nm(2.5μm)左右的玻璃基板之上,通过溅射法,使用具有与下部粘接层形成区域对应的开口图案的金属掩膜形成厚度20nm左右的硅层来作为下部粘接层43。需要说明的是,由硅形成的下部粘接层43的膜厚没有特别限定。Next, a fabrication example of the electrode chip 2 will be described. On a glass substrate with a thickness of about 2500 nm (2.5 μm) as the substrate 21, a silicon layer with a thickness of about 20 nm is formed as the lower part by sputtering using a metal mask having an opening pattern corresponding to the region where the lower adhesive layer is formed. Adhesive layer 43 . It should be noted that the film thickness of the lower adhesive layer 43 formed of silicon is not particularly limited.

使用具有与该金属掩膜的与下部粘接层形成区域对应的开口图案相同的开口图案的金属掩膜,在下部粘接层43上,通过溅射法形成厚度150nm左右的银层来作为金属层41。Using a metal mask having the same opening pattern as the opening pattern corresponding to the lower adhesive layer forming region of the metal mask, a silver layer with a thickness of about 150 nm is formed as a metal layer on the lower adhesive layer 43 by sputtering. Layer 41.

之后,使用具有与对应于下部粘接层形成区域的开口图案相同的开口图案的金属掩膜,在金属层41上,通过溅射法形成厚度20nm左右的硅层来作为上部粘接层44。需要说明的是,由硅形成的上部粘接层44的膜厚没有特别限定。Then, using a metal mask having the same opening pattern as that corresponding to the lower adhesive layer forming region, a silicon layer with a thickness of about 20 nm is formed as upper adhesive layer 44 on metal layer 41 by sputtering. It should be noted that the film thickness of the upper adhesive layer 44 formed of silicon is not particularly limited.

接着,使用具有与对应于下部粘接层形成区域的开口图案相同的开口图案的金属掩膜,在上部粘接层44上,通过溅射法形成厚度1000nm左右的碳层42。如此一来,形成了分别具有下部粘接层43、金属层41、上部粘接层44以及碳层42的工作电极22、对电极23以及参比电极24。Next, a carbon layer 42 having a thickness of about 1000 nm is formed on the upper adhesive layer 44 by sputtering using a metal mask having the same opening pattern as that corresponding to the lower adhesive layer forming region. In this way, the working electrode 22 , the counter electrode 23 , and the reference electrode 24 each having the lower adhesive layer 43 , the metal layer 41 , the upper adhesive layer 44 , and the carbon layer 42 are formed.

在此,在将基板21搬入至溅射装置的腔室内后,使用相同的金属掩膜,不从腔室搬出地将下部粘接层43、金属层41、上部粘接层44、碳层42成膜于基板21上。由此,能缩短下部粘接层43、金属层41、上部粘接层44以及碳层42的成膜所需的时间,并且能防止异物向各层之间的附着。此外,金属层41、碳层42以及粘接层43、44在俯视观察下形成为相同的形状。Here, after the substrate 21 is carried into the chamber of the sputtering apparatus, the lower adhesive layer 43, the metal layer 41, the upper adhesive layer 44, and the carbon layer 42 are deposited using the same metal mask without being removed from the chamber. A film is formed on the substrate 21 . Accordingly, the time required for film formation of the lower adhesive layer 43 , the metal layer 41 , the upper adhesive layer 44 , and the carbon layer 42 can be shortened, and adhesion of foreign matter between the layers can be prevented. In addition, the metal layer 41, the carbon layer 42, and the adhesive layers 43 and 44 are formed in the same shape when viewed from above.

电极22、23、24的线宽(与长尺寸方向正交的宽度方向的尺寸)为1.0mm左右。此外,电极22、23、24的间隔为0.5mm左右。The line width (dimension in the width direction perpendicular to the longitudinal direction) of the electrodes 22, 23, 24 is about 1.0 mm. In addition, the distance between the electrodes 22, 23, and 24 is about 0.5 mm.

通过溅射法,使用具有在下部粘接层形成区域的周围开口的开口图案的金属掩膜,以覆盖下部粘接层43、金属层41、上部粘接层44以及碳层42的侧面(电极22、23、24的侧面)的方式,在基板21上形成厚度1200nm左右的绝缘层25。绝缘层25形成为包围电极22、23、24的周围,并且埋入于电极22、23、24之间。By sputtering, a metal mask having an opening pattern opening around the region where the lower adhesive layer is formed is used to cover the lower adhesive layer 43, the metal layer 41, the upper adhesive layer 44, and the side surfaces of the carbon layer 42 (electrode 22, 23, 24), an insulating layer 25 with a thickness of about 1200 nm is formed on the substrate 21. The insulating layer 25 is formed so as to surround the electrodes 22 , 23 , and 24 and is embedded between the electrodes 22 , 23 , and 24 .

如此一来,通过蒸镀法(在此为溅射法),使用具有开口图案的金属掩膜形成下部粘接层43、金属层41、上部粘接层44、碳层42以及绝缘层25,由此,在各层成膜后无需进行由蚀刻法、剥离法实现的图案化,能减少制造成本。In this way, the lower adhesive layer 43, the metal layer 41, the upper adhesive layer 44, the carbon layer 42, and the insulating layer 25 are formed by vapor deposition (here, sputtering) using a metal mask having an opening pattern, This eliminates the need for patterning by etching or lift-off after film formation of each layer, thereby reducing manufacturing costs.

在参比电极24的一端侧的碳层42上表面,通过成膜法,将厚度100nm左右的银层成膜并进行氯化处理来形成银氯化银层45。如此一来,制作出电极芯片2。需要说明的是,既可以在形成绝缘层25后形成银氯化银层45,也可以在形成绝缘层25前形成银氯化银层45。On the upper surface of the carbon layer 42 on the one end side of the reference electrode 24, a silver layer with a thickness of about 100 nm was formed by a film-forming method and subjected to chlorination treatment to form a silver-silver chloride layer 45 . In this way, the electrode chip 2 is manufactured. It should be noted that the silver-silver chloride layer 45 may be formed after the insulating layer 25 is formed, or the silver-silver chloride layer 45 may be formed before the insulating layer 25 is formed.

金属层41的膜厚没有特别限定,但优选的是,为50nm以上且1000nm以下。需要说明的是,当金属层41的膜厚比50nm薄时,电极22、23、24变为高电阻,测定灵敏度降低。此外,当金属层41的膜厚比1000nm厚时,在用蒸镀法(例如溅射法)将金属层41成膜的情况下,金属层41的成膜所需的时间变长,生产效率降低。The film thickness of the metal layer 41 is not particularly limited, but is preferably not less than 50 nm and not more than 1000 nm. In addition, when the film thickness of the metal layer 41 is thinner than 50 nm, the electrodes 22, 23, 24 become high resistance, and measurement sensitivity falls. In addition, when the film thickness of the metal layer 41 is thicker than 1000 nm, when the metal layer 41 is formed into a film by a vapor deposition method (such as a sputtering method), the time required for the film formation of the metal layer 41 becomes longer, and the production efficiency is significantly reduced. reduce.

需要说明的是,在一块基板21设置多个电极芯片2的区域并同时形成多个电极芯片2后,将各电极芯片2单片化,由此,能降低制造成本。It should be noted that, after forming a plurality of electrode chips 2 in a region where a plurality of electrode chips 2 are provided on one substrate 21 at the same time, each electrode chip 2 is singulated, thereby reducing the manufacturing cost.

在电极芯片2中,也可以是,如图4所示,在基板21的表面形成实施使密合性提高的表面处理而形成的表面处理层46来作为下部粘接层,在表面处理层46上形成有金属层41和绝缘层25。由此,能提高基板21与金属层41和绝缘层25的密合性,能可靠地防止水分从基板21与绝缘层25之间的浸入,能更可靠地防止测定时的在金属层41侧面的氢的产生和绝缘层25的剥离。In the electrode chip 2, as shown in FIG. 4 , a surface treatment layer 46 may be formed on the surface of the substrate 21 for surface treatment to improve adhesion as a lower adhesive layer. A metal layer 41 and an insulating layer 25 are formed thereon. Thus, the adhesion between the substrate 21 and the metal layer 41 and the insulating layer 25 can be improved, the intrusion of moisture from between the substrate 21 and the insulating layer 25 can be reliably prevented, and the occurrence of moisture on the side of the metal layer 41 during measurement can be more reliably prevented. The generation of hydrogen and the peeling off of the insulating layer 25.

本发明不限于前述的实施方式,可以具体化为各种方案。例如,电极芯片可以是不具备对电极23而具备工作电极22和参比电极24来作为电极的构成且能适用于双电极方式的电化学测定的构成。The present invention is not limited to the aforementioned embodiments, and can be embodied in various forms. For example, the electrode chip may have a configuration that does not include the counter electrode 23 but includes the working electrode 22 and the reference electrode 24 as electrodes, and may be applicable to electrochemical measurement using a two-electrode method.

此外,本发明的电极芯片也可以适用于线性电势扫描法(LSV:linear sweepvoltammetry)、计时电流法(CA:chronoamperometry)、循环伏安法(CV:cyclicvoltammetry)、短波形伏安法(SWV)等方法,而不限于微分脉冲伏安法(DPV:differentialpulse voltammetry)。In addition, the electrode chip of the present invention can also be applied to linear sweep voltammetry (LSV: linear sweepvoltammetry), chronoamperometry (CA: chronoamperometry), cyclic voltammetry (CV: cyclicvoltammetry), short wave voltammetry (SWV) etc. method, not limited to differential pulse voltammetry (DPV: differentialpulse voltammetry).

附图标记说明Explanation of reference signs

1:电化学测定装置;1: Electrochemical determination device;

2:电极芯片;2: electrode chip;

3:恒电位仪;3: potentiostat;

4:操作部;4: Operation Department;

5:显示部;5: display unit;

6:电源部;6: Power supply unit;

7:外部输出部;7: External output unit;

8:连接器;8: Connector;

9:电缆;9: cable;

10:液体样品;10: liquid sample;

21:基板;21: Substrate;

22:工作电极;22: working electrode;

23:对电极;23: counter electrode;

24:参比电极;24: reference electrode;

25:绝缘层;25: insulating layer;

31:运算控制部;31: Operation control department;

32:电压施加部;32: voltage applying part;

33:电流检测部;33: current detection unit;

41:金属层;41: metal layer;

42:碳层;42: carbon layer;

43:下部粘接层;43: lower bonding layer;

44:上部粘接层;44: upper bonding layer;

45:银氯化银层;45: silver silver chloride layer;

46:表面处理层。46: surface treatment layer.

Claims (5)

1.一种电极,其具备:1. An electrode comprising: 金属层,形成于绝缘性的基板之上;a metal layer formed on an insulating substrate; 碳层,形成于所述金属层之上;以及a carbon layer formed over the metal layer; and 上部粘接层,形成于所述金属层的上表面与所述碳层之间,an upper adhesive layer formed between the upper surface of the metal layer and the carbon layer, 所述上部粘接层由硅形成,the upper adhesive layer is formed of silicon, 所述金属层的侧面由绝缘层覆盖。The sides of the metal layer are covered by an insulating layer. 2.根据权利要求1所述的电极,其具备:2. The electrode according to claim 1, comprising: 下部粘接层,形成于所述基板与所述金属层之间。The lower bonding layer is formed between the substrate and the metal layer. 3.根据权利要求2所述的电极,其中,3. The electrode according to claim 2, wherein, 所述下部粘接层由硅、铬、钛、钨或表面处理层形成,所述表面处理层以在所述基板的表面实施使所述基板与所述金属层的密合性提高的表面处理的方式形成。The lower adhesive layer is formed of silicon, chromium, titanium, tungsten, or a surface treatment layer that is subjected to a surface treatment on the surface of the substrate to improve the adhesion between the substrate and the metal layer. way formed. 4.一种电极芯片,其具备:4. An electrode chip, which has: 工作电极和参比电极,由如权利要求1至3中任一项所述的电极构成。The working electrode and the reference electrode are made of the electrodes according to any one of claims 1 to 3. 5.根据权利要求4所述的电极芯片,其还具备:5. electrode chip according to claim 4, it also has: 对电极,由如权利要求1至3中任一项所述的电极构成。The counter electrode is made of the electrode according to any one of claims 1 to 3.
CN202080099113.5A 2020-03-27 2020-03-27 Electrodes and electrode chips Active CN115335690B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014118 WO2021192248A1 (en) 2020-03-27 2020-03-27 Electrode and electrode chip

Publications (2)

Publication Number Publication Date
CN115335690A true CN115335690A (en) 2022-11-11
CN115335690B CN115335690B (en) 2025-02-11

Family

ID=77891624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080099113.5A Active CN115335690B (en) 2020-03-27 2020-03-27 Electrodes and electrode chips

Country Status (3)

Country Link
JP (1) JP7279260B2 (en)
CN (1) CN115335690B (en)
WO (1) WO2021192248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111455A1 (en) * 2022-11-21 2024-05-30 日東電工株式会社 Electrode and electrochemical measurement system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761897A (en) * 2021-01-14 2023-09-15 光驰科技(上海)有限公司 Gene detection tool and gene detection kit
JP7322311B1 (en) * 2023-02-28 2023-08-07 住友化学株式会社 Electrochemical sensor and method of manufacturing electrochemical sensor
WO2024180988A1 (en) * 2023-02-28 2024-09-06 日東電工株式会社 Electrode, and electrochemical measuring system
WO2024203071A1 (en) * 2023-03-27 2024-10-03 日東電工株式会社 Electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687768A (en) * 2005-04-21 2005-10-26 复旦大学 Micro sensor for detecting hepatic fibrosis based on method of antibody and antigen
CN1710419A (en) * 2004-06-17 2005-12-21 中国科学院电子学研究所 Whole blood lactate test strips
US20120211363A1 (en) * 2009-11-05 2012-08-23 Centro De Estudios E Investigaciuones Tecnicas (Ceit) Thin-film pseudo-reference electrode and method for the production thereof
JP2013190212A (en) * 2012-03-12 2013-09-26 Dainippon Printing Co Ltd Biosensor and manufacturing method of the same
JP2014153280A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Biosensor electrode and biosensor
JP2014153279A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Manufacturing method of electrode for biosensor, biosensor manufacturing method and transfer foil for biosensor
JP2015034784A (en) * 2013-08-09 2015-02-19 大日本印刷株式会社 Original sheet for biosensor electrode, biosensor electrode, and biosensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992603B2 (en) * 1991-06-24 1999-12-20 日本電信電話株式会社 Wall jet type electrochemical detector and method of manufacturing the same
JP5120453B2 (en) * 2008-07-09 2013-01-16 日本電気株式会社 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
JP2010230369A (en) * 2009-03-26 2010-10-14 Ryukoku Univ Electrode structure, method for manufacturing the electrode structure, and electrochemical sensor
KR20100117173A (en) * 2009-04-24 2010-11-03 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Electrochemical biosensor electrode strip and preparing method thereof
JP5508312B2 (en) * 2011-03-01 2014-05-28 日本電信電話株式会社 Method for producing electrode for electrochemical measurement
EP3157081B1 (en) * 2014-06-13 2020-08-05 LG Chem, Ltd. Silicon-carbon composite, negative electrode comprising same, secondary battery using silicon-carbon composite, and method for preparing silicon-carbon composite
KR102444557B1 (en) * 2014-07-22 2022-09-20 도요보 가부시키가이샤 Thin film-laminated film
JP7337498B2 (en) * 2017-12-11 2023-09-04 日東電工株式会社 Electrode film and electrochemical measurement system
WO2021009845A1 (en) * 2019-07-16 2021-01-21 株式会社オプトラン Electrode and electrode chip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710419A (en) * 2004-06-17 2005-12-21 中国科学院电子学研究所 Whole blood lactate test strips
CN1687768A (en) * 2005-04-21 2005-10-26 复旦大学 Micro sensor for detecting hepatic fibrosis based on method of antibody and antigen
US20120211363A1 (en) * 2009-11-05 2012-08-23 Centro De Estudios E Investigaciuones Tecnicas (Ceit) Thin-film pseudo-reference electrode and method for the production thereof
JP2013190212A (en) * 2012-03-12 2013-09-26 Dainippon Printing Co Ltd Biosensor and manufacturing method of the same
JP2014153280A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Biosensor electrode and biosensor
JP2014153279A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Manufacturing method of electrode for biosensor, biosensor manufacturing method and transfer foil for biosensor
JP2015034784A (en) * 2013-08-09 2015-02-19 大日本印刷株式会社 Original sheet for biosensor electrode, biosensor electrode, and biosensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王利, 蔡新霞, 李华清, 郭增军, 饶能高: "纳米材料与微电极生物传感器", 微纳电子技术, no. 8, 25 August 2003 (2003-08-25), pages 526 - 528 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111455A1 (en) * 2022-11-21 2024-05-30 日東電工株式会社 Electrode and electrochemical measurement system

Also Published As

Publication number Publication date
WO2021192248A1 (en) 2021-09-30
JP7279260B2 (en) 2023-05-22
CN115335690B (en) 2025-02-11
JPWO2021192248A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN115335690B (en) Electrodes and electrode chips
Rezaei et al. Electrochemical detection techniques in biosensor applications
CN101595381B (en) Electrode plate for electrochemical measurement, electrochemical measuring apparatus having the electrode plate, and method for determining target substance by using the electrode plate
US8466521B2 (en) Hydrogen ion-sensitive field effect transistor and manufacturing method thereof
Berduque et al. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions
TWI637167B (en) Substance measuring method and measuring device using electrochemical biosensor
WO2021009845A1 (en) Electrode and electrode chip
US20250027900A1 (en) pH Sensing Technique Based On Graphene Electrodes
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
US9671432B2 (en) Nanowire electrode sensor
CN107957440B (en) Planar ammonia selective sensing electrode and method for fabricating the same
CN102893150B (en) Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
WO2016032314A1 (en) An egfet phosphate sensor device
TW201105960A (en) Plastic potentiometric ion-selective sensor and fabrication thereof
CN115349088B (en) Electrochemical analysis chip
CN101627301A (en) Electrode plate for electrochemical measurement, electrochemical measuring instrument having the electrode plate for electrochemical measurement, and method for determining target substance using the
Khamsavi et al. A novel two-electrode nonenzymatic electrochemical glucose sensor based on vertically aligned carbon nanotube arrays
IE980529A1 (en) The use of screen printed electrodes in the electrochemical analysis of electroactive species
JP7533972B2 (en) Electrodes and electrode tips
WO1989000287A1 (en) Multi-sensor and production thereof
Schöning et al. A silicon-based microelectrode array for chemical analysis
US11846598B2 (en) Reference electrode
US20210356419A1 (en) High dynamic range fast cv sensor using wide bandgap silicon carbide
Chiku et al. Fabrication of Cu-modified boron-doped diamond microband electrodes and their application for selective detection of glucose
US20050147741A1 (en) Fabrication of array PH sensitive EGFET and its readout circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant