CN115334435A - Hearing assisting device - Google Patents
Hearing assisting device Download PDFInfo
- Publication number
- CN115334435A CN115334435A CN202210742765.7A CN202210742765A CN115334435A CN 115334435 A CN115334435 A CN 115334435A CN 202210742765 A CN202210742765 A CN 202210742765A CN 115334435 A CN115334435 A CN 115334435A
- Authority
- CN
- China
- Prior art keywords
- sound
- hearing aid
- aid device
- frequency
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 claims abstract description 111
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 17
- 210000003128 head Anatomy 0.000 claims description 19
- 210000005069 ears Anatomy 0.000 claims description 15
- 210000000613 ear canal Anatomy 0.000 claims description 4
- 210000002454 frontal bone Anatomy 0.000 claims description 3
- 210000001595 mastoid Anatomy 0.000 claims description 3
- 210000003455 parietal bone Anatomy 0.000 claims description 3
- 210000003582 temporal bone Anatomy 0.000 claims description 3
- 210000000624 ear auricle Anatomy 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 description 56
- 230000000694 effects Effects 0.000 description 51
- 238000012360 testing method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 210000003477 cochlea Anatomy 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 206010011878 Deafness Diseases 0.000 description 3
- 230000010370 hearing loss Effects 0.000 description 3
- 231100000888 hearing loss Toxicity 0.000 description 3
- 208000016354 hearing loss disease Diseases 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 208000000781 Conductive Hearing Loss Diseases 0.000 description 2
- 206010010280 Conductive deafness Diseases 0.000 description 2
- 208000032041 Hearing impaired Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 208000023563 conductive hearing loss disease Diseases 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/50—Customised settings for obtaining desired overall acoustical characteristics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/13—Hearing devices using bone conduction transducers
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Neurosurgery (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Headphones And Earphones (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
技术领域technical field
本申请涉及声学领域,特别涉及一种听力辅助装置。The present application relates to the field of acoustics, in particular to a hearing aid device.
背景技术Background technique
现有的听力辅助装置通常可以通过骨导传声或气导传声方式为用户提供听力补偿。在一些听力辅助装置(例如,助听器)中,骨导传声方式会因为骨导振动器的性能的影响而导致在某些频段内产生的振动信号强度不足,使得通过骨导方式进行听力补偿的效果并不理想。另外,对于传导性听损者而言,传统的气导助听器会在某些频段出现气导声音阈差较大的情况,这使得通过气导方式进行听力补偿变得困难,当用户需要听见频率范围较宽或多频段的声音时,上述问题将会导致用户听音体验较差。Existing hearing aids can usually provide hearing compensation for users through bone conduction or air conduction. In some hearing aids (for example, hearing aids), the bone conduction sound transmission method will cause insufficient vibration signal strength in certain frequency bands due to the performance of the bone conduction vibrator, so that hearing compensation through bone conduction The effect is not ideal. In addition, for people with conductive hearing loss, traditional air conduction hearing aids will have a large air conduction sound threshold difference in certain frequency bands, which makes it difficult to perform hearing compensation through air conduction. When the user needs to hear the frequency When using wide-ranging or multi-band sounds, the above problems will lead to poor listening experience for users.
因此,希望提供一种结合骨导方式和气导方式进行听力补偿的听力辅助装置,可以提高用户在特定频段的听力补偿效果。Therefore, it is desired to provide a hearing aid device that combines bone conduction and air conduction for hearing compensation, which can improve the hearing compensation effect of the user in a specific frequency band.
发明内容Contents of the invention
本申请实施例之一提供一种听力辅助装置,该装置包括:信号输入模块,被配置为接收初始声音并将所述初始声音转化为电信号;信号处理模块,被配置为处理所述电信号并生成控制信号;以及至少一个输出换能器,被配置为将所述控制信号转化为用户的骨骼传导声波以及可以被用户耳朵听到的空气传导声波,其中,在目标频率范围内,所述空气传导声波传递到用户耳朵,使得用户耳朵听到的气导声音的声强大于所述初始声音被所述信号输入模块接收的声强。One of the embodiments of the present application provides a hearing aid device, which includes: a signal input module configured to receive an initial sound and convert the initial sound into an electrical signal; a signal processing module configured to process the electrical signal and generate a control signal; and at least one output transducer configured to convert the control signal into bone-conducted sound waves of the user and air-conducted sound waves that can be heard by the user's ears, wherein, within the target frequency range, the The air conduction sound wave is transmitted to the user's ear, so that the sound intensity of the air conduction sound heard by the user's ear is greater than the sound intensity of the initial sound received by the signal input module.
在一些实施例中,所述目标频率范围为200Hz-8000Hz。In some embodiments, the target frequency range is 200Hz-8000Hz.
在一些实施例中,所述目标频率范围为500Hz-6000Hz。In some embodiments, the target frequency range is 500Hz-6000Hz.
在一些实施例中,所述目标频率范围为750Hz-1000Hz。In some embodiments, the target frequency range is 750Hz-1000Hz.
在一些实施例中,所述信号处理模块包括信号处理单元,所述信号处理单元包括:分频模块,被配置为将所述电信号分解成高频段分量和低频段分量;高频信号处理模块,耦合至所述分频模块并被配置为根据所述高频段分量生成高频输出信号;以及低频信号处理模块,耦合至所述分频模块并被配置为根据所述低频分量生成低频输出信号。In some embodiments, the signal processing module includes a signal processing unit, and the signal processing unit includes: a frequency division module configured to decompose the electrical signal into a high-frequency component and a low-frequency component; a high-frequency signal processing module , coupled to the frequency division module and configured to generate a high frequency output signal according to the high frequency component; and a low frequency signal processing module, coupled to the frequency division module and configured to generate a low frequency output signal according to the low frequency component .
在一些实施例中,所述电信号包括与所述初始声音中高频段分量对应的高频输出信号,以及与所述初始声音中低频段分量对应的低频输出信号,所述信号处理单元包括:高频信号处理模块,被配置为根据所述高频段分量生成高频输出信号;以及低频信号处理模块,被配置为根据所述低频段分量生成低频输出信号。In some embodiments, the electrical signal includes a high-frequency output signal corresponding to a high-frequency component in the initial sound, and a low-frequency output signal corresponding to a low-frequency component in the initial sound, and the signal processing unit includes: A high-frequency signal processing module configured to generate a high-frequency output signal according to the high-frequency component; and a low-frequency signal processing module configured to generate a low-frequency output signal according to the low-frequency component.
在一些实施例中,所述信号处理模块还包括功率放大器,被配置为将所述高频输出信号或所述低频输出信号放大为所述控制信号。In some embodiments, the signal processing module further includes a power amplifier configured to amplify the high frequency output signal or the low frequency output signal into the control signal.
在一些实施例中,所述输出换能器包括:第一振动组件,所述第一振动组件同所述信号处理模块电连接以接收所述控制信号,并基于所述控制信号产生所述骨骼传导声波;以及壳体,所述壳体与所述第一振动组件相耦合并在所述第一振动组件的带动下产生所述空气传导声波。In some embodiments, the output transducer includes: a first vibration component, the first vibration component is electrically connected to the signal processing module to receive the control signal, and generates the bone vibration based on the control signal. a conductive sound wave; and a casing, the casing is coupled to the first vibrating component and driven by the first vibrating component to generate the air-conducting sound wave.
在一些实施例中,所述壳体与所述第一振动组件的连接为刚性连接。In some embodiments, the connection between the housing and the first vibrating component is a rigid connection.
在一些实施例中,所述壳体与所述第一振动组件通过弹性件与所述第一振动组件连接。In some embodiments, the housing and the first vibrating component are connected to the first vibrating component through an elastic member.
在一些实施例中,所述第一振动组件包括:磁路系统,被配置为产生第一磁场;振动板,与所述壳体连接;以及线圈,与所述振动板连接并同所述信号处理模块电连接,所述线圈接收所述控制信号并基于所述控制信号产生第二磁场,所述第一磁场同所述第二磁场相互作用,以使所述振动板产生所述骨骼传导声波。In some embodiments, the first vibrating component includes: a magnetic circuit system configured to generate a first magnetic field; a vibrating plate connected to the housing; and a coil connected to the vibrating plate and connected to the signal The processing module is electrically connected, the coil receives the control signal and generates a second magnetic field based on the control signal, the first magnetic field interacts with the second magnetic field, so that the vibration plate generates the bone-conducted sound wave .
在一些实施例中,所述振动板和所述壳体限定空腔,所述磁路系统位于所述空腔内,其中,所述磁路系统通过弹性件与所述壳体连接。In some embodiments, the vibrating plate and the casing define a cavity, and the magnetic circuit system is located in the cavity, wherein the magnetic circuit system is connected to the casing through an elastic member.
在一些实施例中,所述骨骼传导声波对应的振动输出力级大于55dB。In some embodiments, the vibration output force level corresponding to the bone-conducted sound wave is greater than 55 dB.
在一些实施例中,还可以包括至少一个第二振动组件,被配置为产生额外空气传导声波,在目标频率范围下,所述额外空气传导声波增强用户耳朵听到的气导声音的声强。In some embodiments, at least one second vibrating component configured to generate additional air-conducted sound waves that enhance the sound intensity of the air-conducted sound heard by the user's ears in the target frequency range may also be included.
在一些实施例中,所述至少一个第二振动组件为振膜结构,所述振膜结构与所述壳体连接,所述至少一个输出换能器激励所述振膜结构产生所述额外空气传导声波。In some embodiments, the at least one second vibrating component is a diaphragm structure, the diaphragm structure is connected to the housing, and the at least one output transducer excites the diaphragm structure to generate the additional air Conduct sound waves.
在一些实施例中,所述至少一个第二振动组件为空气传导扬声器,所述空气传导扬声器被配置为根据所述控制信号产生所述额外空气传导声波。In some embodiments, the at least one second vibration component is an air-conducted speaker configured to generate the additional air-conducted sound waves according to the control signal.
在一些实施例中,所述听力辅助装置还包括固定结构,被配置为承载所述听力辅助装置,使得所述听力辅助装置位于用户头部的乳突、颞骨、顶骨、额骨、耳廓、耳道内或耳甲处。In some embodiments, the hearing aid device further includes a fixing structure configured to carry the hearing aid device so that the hearing aid device is positioned on the mastoid process, temporal bone, parietal bone, frontal bone, auricle, In the ear canal or on the concha of the ear.
本申请实施例之一提供一种听力辅助装置,该装置包括:信号输入模块,被配置为接收初始声音并将所述初始声音转化为电信号;信号处理模块,被配置为处理所述电信号并生成控制信号;以及至少一个输出换能器,被配置为将所述控制信号转化为用户的骨骼传导声波以及可以被用户耳朵听到的空气传导声波,其中,所述听力辅助装置包括工作状态和非工作状态,所述工作状态产生所述空气传导声波,所述非工作状态不产生所述空气传导声波,在目标频率范围内,所述工作状态下用户耳朵听到的气导声音的声强大于所述非工作状态下用户耳朵听到的气导声音的声强。One of the embodiments of the present application provides a hearing aid device, which includes: a signal input module configured to receive an initial sound and convert the initial sound into an electrical signal; a signal processing module configured to process the electrical signal and generate a control signal; and at least one output transducer configured to convert the control signal into bone-conducted sound waves of the user and air-conducted sound waves that can be heard by the user's ears, wherein the hearing aid device includes a working state and a non-working state, the working state produces the air-conducted sound wave, the non-working state does not produce the air-conducted sound wave, and within the target frequency range, the sound of the air-conducted sound heard by the user's ear in the working state Stronger than the sound intensity of the air conduction sound heard by the user's ear in the non-working state.
附图说明Description of drawings
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:The present application will be further illustrated by means of exemplary embodiments, which will be described in detail by means of the accompanying drawings. These examples are non-limiting, and in these examples, the same number indicates the same structure, wherein:
图1是根据本申请的一些实施例提供的听力辅助装置的示例性的框架示意图;Fig. 1 is an exemplary framework diagram of a hearing aid device provided according to some embodiments of the present application;
图2是根据本申请一些实施例提供的信号处理单元的框架图;Fig. 2 is a frame diagram of a signal processing unit provided according to some embodiments of the present application;
图3是根据本申请一些实施例提供的输出换能器的结构示意图;Fig. 3 is a schematic structural diagram of an output transducer provided according to some embodiments of the present application;
图4是根据本申请一些实施例提供的听力辅助装置参考声环境中所输出的骨导成分的满档力级(OFL60)频率响应图;Fig. 4 is a full scale force level (OFL60) frequency response diagram of a bone conduction component output by a hearing aid device in a reference acoustic environment according to some embodiments of the present application;
图5是根据本申请一些实施例提供的听力辅助装置参考环境中所输出骨导成分的满档声-力灵敏度级(AMSL)的频率响应图;Fig. 5 is a frequency response diagram of the full-scale acoustic-mechanical sensitivity level (AMSL) of the output bone conduction component in the reference environment of the hearing aid device provided according to some embodiments of the present application;
图6是根据本申请一些实施例所示的听力辅助装置在参考环境中所输出气导成分的声压级图;Fig. 6 is a graph showing the sound pressure level of the air conduction components output by the hearing aid device in the reference environment according to some embodiments of the present application;
图7是根据本申请一些实施例提供的听力辅助装置在参考环境中所输出气导成分的增益图;以及Fig. 7 is a gain diagram of an air conduction component output by a hearing aid device in a reference environment according to some embodiments of the present application; and
图8是根据本申请一些实施例提供的听力辅助装置在佩戴时的位置分布图。Fig. 8 is a position distribution diagram of a hearing aid device when worn according to some embodiments of the present application.
具体实施方式Detailed ways
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following briefly introduces the drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some examples or embodiments of the present application, and those skilled in the art can also apply the present application to other similar scenarios. Unless otherwise apparent from context or otherwise indicated, like reference numerals in the figures represent like structures or operations.
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。It should be understood that "system", "device", "unit" and/or "module" as used herein is a method for distinguishing different components, elements, components, parts or assemblies of different levels. However, the words may be replaced by other expressions if other words can achieve the same purpose.
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As indicated in this application and claims, the terms "a", "an", "an" and/or "the" do not refer to the singular and may include the plural unless the context clearly indicates an exception. Generally speaking, the terms "comprising" and "comprising" only suggest the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list, and the method or device may also contain other steps or elements.
在助听器领域,通常采用气导助听器或骨导助听器对听损者进行助听补偿。传统的气导扬声器通过放大气导声音信号,对听损者进行助听补偿。但对于传导性听损者而言,部分频段的气导声音阈差可能较大,这使得用气导声音进行听力补偿变得困难。骨导助听器通过将声音信号转换成振动信号(骨导声音),对听损者进行助听补偿,但由于骨导助听器受性能的影响,其在某些频段产生的振动信号强度不足,难以达到理想的补偿效果,或者如果骨导助听器在某些频段产生过大幅度的振动时,会给用户带来不舒适的感觉。In the field of hearing aids, air conduction hearing aids or bone conduction hearing aids are usually used to compensate for hearing loss. Traditional air-conduction loudspeakers provide hearing compensation for hearing loss by amplifying air-conduction sound signals. However, for people with conductive hearing loss, the air conduction sound threshold difference in some frequency bands may be large, which makes it difficult to use air conduction sound for hearing compensation. Bone conduction hearing aids can compensate hearing loss by converting sound signals into vibration signals (bone conduction sound). The ideal compensation effect, or if the bone conduction hearing aid generates excessive vibrations in certain frequency bands, it will bring discomfort to the user.
为了提高听力辅助装置的听力补偿效果,本申请提供的听力辅助装置通过骨导方式和气导方式同时为用户提供听力补偿。在一些实施例中,所述听力辅助装置可以包括信号输入模块、信号处理模块以及至少一个输出换能器。其中,信号输入模块被配置为接收初始声音并将所述初始声音转化为电信号,信号处理模块被配置为处理所述电信号并生成控制信号,至少一个输出换能器被配置为将所述控制信号转化为用户的骨骼传导声波以及可以被用户耳朵听到的空气传导声波。在目标频率范围内(例如,200Hz-8000Hz),空气传导声波传递到用户耳朵,可以使得用户耳朵听到的气导声音的声强大于初始声音被信号输入模块接收的声强。在这种情况下,听力辅助装置产生的空气传导声波与骨骼传导声波相叠加,可以使得用户耳朵感知到的听音声强增大,从而提高听力辅助装置的听力补偿效果。In order to improve the hearing compensation effect of the hearing aid device, the hearing aid device provided by the present application provides hearing compensation for the user simultaneously through bone conduction and air conduction. In some embodiments, the hearing assistance device may include a signal input module, a signal processing module, and at least one output transducer. Wherein, the signal input module is configured to receive an initial sound and convert the initial sound into an electrical signal, the signal processing module is configured to process the electrical signal and generate a control signal, and at least one output transducer is configured to convert the The control signal is converted into bone-conducted sound waves of the user and air-conducted sound waves that can be heard by the user's ears. In the target frequency range (for example, 200Hz-8000Hz), the air-conducted sound wave is transmitted to the user's ear, so that the sound intensity of the air-conducted sound heard by the user's ear is greater than the sound intensity of the initial sound received by the signal input module. In this case, the superimposition of air-conducted sound waves generated by the hearing aid device and bone-conducted sound waves can increase the intensity of the listening sound perceived by the user's ears, thereby improving the hearing compensation effect of the hearing aid device.
在一些实施例中,上述骨骼传导声波和空气传导声波可以由同一个输出换能器(例如,骨导振动组件)产生。该输出换能器将控制信号转化为被用户耳朵听到的空气传导声波可以理解为听力辅助装置的壳体在输出换能器的带动下产生空气传导声波(也可以称为听力辅助装置的漏音)。此外,听力辅助装置的壳体上还可以开设满足一定条件的导声孔。导声孔可以将听力辅助装置壳体内的声音导出来,并与壳体振动产生的漏音叠加,共同形成用户耳朵听到的空气传导声波。In some embodiments, the aforementioned bone-conducted sound waves and air-conducted sound waves can be generated by the same output transducer (eg, a bone-conducted vibration component). The output transducer converts the control signal into an air-conducted sound wave that is heard by the user's ear. sound). In addition, the housing of the hearing aid device may also be provided with sound guide holes meeting certain conditions. The sound guide hole can lead out the sound in the hearing aid device housing, and superimpose with the leakage sound generated by the vibration of the housing, jointly forming the air-conducted sound wave heard by the user's ear.
在一些实施例中,听力辅助装置也可以同时包括骨导振动组件(也被称为第一振动组件)和气导振动组件(也被称为第二振动组件)。上述骨骼传导声波和空气传导声波可以分别由骨导振动组件和气导振动组件产生。在使用过程中,信号处理模块可以根据实际情况对用于产生空气传导声波的电信号和用于产生骨骼传导声波的电信号分别进行处理,以满足不同听损者或者同一听损者在不同环境下对听力补偿的不同要求。In some embodiments, the hearing aid device may also include a bone conduction vibration component (also referred to as a first vibration component) and an air conduction vibration component (also referred to as a second vibration component). The aforementioned bone-conducted sound waves and air-conducted sound waves can be generated by bone-conducted vibration components and air-conducted vibration components, respectively. During use, the signal processing module can separately process the electrical signals used to generate air-conducted sound waves and the electrical signals used to generate bone-conducted sound waves according to actual conditions, so as to meet the needs of different hearing-impaired people or the same hearing-impaired person in different environments. Different requirements for hearing compensation.
图1是根据本申请的一些实施例提供的听力辅助装置的示例性的框架示意图。如图1所示,听力辅助装置10可以包括信号输入模块100、信号处理模块200和至少一个输出换能器300。Fig. 1 is an exemplary framework diagram of a hearing aid device provided according to some embodiments of the present application. As shown in FIG. 1 , the
信号输入模块100被配置为接收初始声音并将接收到的初始声音转化为电信号。在一些实施例中,信号输入模块100可以包括麦克风110或/和音频接口120。在一些实施例中,麦克风110可以包括气导麦克风、骨导麦克风、远程麦克风、数字麦克风等,或其任意组合。在一些实施例中,远程麦克风可以包括有线麦克风、无线麦克风、广播麦克风等,或其任意组合。在一些实施例中,麦克风110的数量可以为一个或多个,当麦克风110的数量为多个时,麦克风110的类型可以为一种或多种。在一些实施例中,初始声音可以包括从外部环境通过气导方式传递到信号输入模块100的声音。例如,麦克风110可以将采集到的空气振动转化为模拟信号(电信号)。音频接口120被配置为接收麦克风110的数字或模拟信号。在一些实施例中,音频接口120可以包括模拟音频接口、数字音频接口、有线音频接口、无线音频接口等,或其任意组合。在一些实施例中,信号输入模块100可以直接接收通过有线或者无线方式传递的电信号。例如,音频接口120可以通过有线或者无线方式从外部设备接收任何与声音对应的数字或模拟信号。The
信号处理模块200可以被配置为处理信号输入模块100输出的电信号并生成控制信号。控制信号可以用于控制输出换能器300输出骨骼传导声波和/或空气传导声波。在本说明书的实施例中,骨骼传导声波指的是机械振动经由骨骼传导至用户耳蜗而被用户感知的声波(又称“骨导声音”),空气传导声波指的是机械振动经由空气传导至用户耳蜗而被用户感知的声波(又称“气导声音”)。The signal processing module 200 may be configured to process the electrical signal output by the
在一些实施例中,信号处理模块200可以包括信号处理单元210。信号处理单元210可以对接收的电信号进行处理。例如,信号处理单元210可以对电信号进行基于频率的处理,将在不同频段内的电信号进行分类。又例如,信号处理单元210可以对电信号进行降噪处理,去掉电信号中的噪声(例如,信号输入模块100所接收到的杂音对应的电信号)。在一些实施例中,信号处理模块200还可以包括至少一个功率放大器220。功率放大器220可以对接收的电信号进行放大。在一些实施例中,信号处理单元210和功率放大器220在信号处理模块200中处理信号的顺序在此不受限制。例如,在一些实施例中,信号处理单元210可以先将信号输入模块100输出的电信号处理成一个或多个信号,功率放大器220再对所述一个或多个信号进行放大后生成控制信号。在一些替代性实施例中,功率放大器220可以先对信号输入模块100输出的电信号进行放大,信号处理单元210再基于放大后的电信号进行处理以生成一个或多个控制信号。在一些实施例中,信号处理单元210可以位于多个功率放大器220之间。例如,功率放大器220可以包括第一功率放大器和第二工功率放大器,信号处理单元210位于第一功率放大器和第二功率放大器之间,第一功率放大器可以先对信号输入模块100输出的电信号进行放大,信号处理单元210再基于放大后的电信号进行处理以生成一个或多个控制信号,第二功率放大器再基于一个或多个控制信号进行功率方法处理。在其他实施例中,信号处理模块200可以只包括信号处理单元210,而不包括功率放大器220。关于信号处理模块200的更多描述可以在本申请的其他地方(例如,图2及其相关描述)找到,在此不再赘述。In some embodiments, the signal processing module 200 may include a
至少一个输出换能器300可以被配置为将由信号处理模块200生成的控制信号转化为骨骼传导声波以及可以被用户耳朵听到的空气传导声波。在本申请中,换能器是指可以将电信号转换为振动信号的组件。At least one
在一些实施例中,至少一个输出换能器300包括一个骨导振动组件。该骨导振动组件通过贴合在用户脸部以将振动信号通过颅骨传递到耳蜗。同时,振动信号可以引起该骨导振动组件的壳体的振动,产生被用户耳朵听到的空气传导声波。在一些实施例中,通过设计该骨导振动组件的结构、以及调整信号处理模块200中不同模块对电信号的处理方式,可以使得骨导振动组件产生的空气传导声波满足一定的要求,例如,在目标频率范围内(例如200Hz-8000Hz),由骨导振动组件产生的空气传导声波传递到用户耳朵(的耳蜗),使得用户在佩戴听力辅助装置10时耳朵听到的气导声音的声强大于未佩戴听力辅助装置10时耳朵听到的气导声音的声强。也就是说,骨导振动组件在产生骨骼传导声波的同时,也会放大用户听到的气导声音,从而实现同时以骨导方式和气导方式对用户的听力补偿。需要说明的是,这里用户在佩戴听力辅助装置10时可以视为听力辅助装置处于工作状态,用户在未佩戴听力辅助装置10时可以视为听力辅助装置10处于非工作状态。关于工作状态和非工作状态的具体描述可以参考本申请图5及其相关内容,在此不做进一步限定。In some embodiments, at least one
在一些实施例中,至少一个输出换能器300包括一个骨导振动组件和一个气导振动组件。该气导振动组件可以将由信号处理模块200生成的控制信号转化为额外空气传导声波,进一步以气导的方式对用户进行听力补偿。关于输出换能器300的更多描述可以在本申请的其他地方(例如,图3及其相关描述)找到,并在此不再赘述。In some embodiments, at least one
图2是根据本申请一些实施例提供的信号处理单元的框架图。如图2所示,在一些实施例中,信号处理单元210可以包括分频模块211、高频信号处理模块212以及低频信号处理模块213。分频模块211可以直接将电信号分解为对应不同的频段分量,例如,分频模块211可以将初始声音分解为高频段分量和低频段分量。高频信号处理模块212可以耦合至分频模块211并被配置为根据高频段分量生成高频输出信号(高频电信号);低频信号处理模块213可以耦合至分频模块211并被配置为根据低频段分量生成低频输出信号(低频电信号)。在本说明书的实施例中,高频分量可以指高频的电信号,低频分量可以至低频的电信号。其中,高频信号处理模块212可以将高频的电信号进行处理或调整,低频信号处理模块213可以对低频的电信号进行处理。在一些实施例中,高频信号处理模块212和低频信号处理模块213可以是指均衡器、动态范围控制器或相位处理器等。需要注意的是,在其它实施例中,听力辅助装置可以仅包括分频模块211,高频信号处理模块212和低频信号处理模块213可以根据实际情况确定是否安装。在本说明书的实施例中,低频可以指的是大体上20Hz至150Hz的频段,中频可以指的是大体上150Hz至5kHz的频段,高频段可以指的是大体上5kHz至20kHz的频段,中低频可以指的是大体上150Hz至500Hz的频段,中高频指的是500Hz至5kHz的频段。需要注意的是,上述频段的区分只是作为一个例子大概给出区间。上述频段的定义可以随着不同行业、不同的应用场景和不同分类标准而改变。比如在另外一些应用场景下,低频指的是大体上20Hz至80Hz的频段,中低频可以指大体上80Hz-160Hz之间的频段,中频可以指大体上160Hz至1280Hz的频段,中高频可以指大体上1280Hz-2560Hz的频段,高频段可以指大体上2560Hz至20kHz的频段。Fig. 2 is a block diagram of a signal processing unit provided according to some embodiments of the present application. As shown in FIG. 2 , in some embodiments, the
在一些实施例中,分频模块211还可以直接将电信号分解为对应多个频段的频率分量,同时,信号处理单元210可以包括与多个频段对应的信号处理单元,以获取多个频段对应的频率输出信号。例如,分频模块211可以将电信号分解为低频段分量、中频段分量、高频段分量中的一个或多个,或者将初始声音分解为中低频分量、中高段分量等。In some embodiments, the frequency division module 211 can also directly decompose the electrical signal into frequency components corresponding to multiple frequency bands, and at the same time, the
在一些实施例中,信号处理模块200可以仅包括分频模块211,分频模块211可以对信号输入模块100输出的电信号进行分频处理以获得各个频段的电信号(例如,低频电信号、高频电信号等),并直接输出到功率放大器进行放大。In some embodiments, the signal processing module 200 may only include a frequency division module 211, and the frequency division module 211 may perform frequency division processing on the electrical signal output by the
需要知道的是,分频模块211对电信号的划分方式,可以按照实际情况或者用户的设置进行,并不限制在上述描述的方式。在一些实施例中,分频模块可以包括若干滤波器/滤波器组对电信号进行处理,以输出包含不同频率成分的控制信号,进而可以分别控制气导声音或骨导声音的输出。在一些实施例中,所述滤波器/滤波器组包括但不限于模拟滤波器、数字滤波器、无源滤波器、有源滤波器等。It should be known that the division method of the frequency division module 211 for the electrical signal can be performed according to the actual situation or the setting of the user, and is not limited to the above-described method. In some embodiments, the frequency division module may include several filters/filter banks to process the electrical signal to output control signals containing different frequency components, thereby controlling the output of air conduction sound or bone conduction sound respectively. In some embodiments, the filters/filter banks include, but are not limited to, analog filters, digital filters, passive filters, active filters, and the like.
在一些实施例中,信号输入模块100可以提前对初始声音进行分频处理。例如,信号输入模块100可以包括高频麦克风和低频麦克风。其中,高频麦克风可以接收初始声音中的高频声音并将高频声音转化为高频分量,低频麦克风可以接收初始声音中的低频声音并将低频声音转化为低频分量,从而使得电信号在传递至信号处理模块200之前就完成了分频处理。在一些实施例中,信号处理单元210还可以包括直接与信号输入模块100耦合的高频信号处理模块和低频信号处理模块,以分别根据高频分量和低频分量生成相应的高频输出信号和低频输出信号。In some embodiments, the
在一些实施例中,信号处理单元210可以仅包括全频信号处理模块,并且无需对信号输入模块100输入的电信号进行分频处理。也就是说,上述分频模块211、高频信号处理模块212、低频信号处理模块213可以被替换成全频信号处理模块。全频信号处理模块可包括均衡器、动态范围控制器、相位处理器等。其中,均衡器可被配置为对电信号按照特定的频段进行单独的增益或衰减。动态范围控制器可被配置为压缩和放大电信号,例如,使得声音听起来更加柔和或更大声。相位处理器可被配置为调节电信号的相位。在一些实施例中,电信号可经由均衡器、动态范围控制器、相位处理器处理成输出信号。例如,在一些场景中,用户耳朵可能对某些频率范围(例如,低频、中低频、或高频)的气导声音更敏感,则可以让全频信号处理模块增强该频率范围的电信号,以使得输出换能器300在该频率范围内输出更大声强的气导声音。在另一些场景中,较强低频的骨骼传导声波可能会带给用户不舒适的感觉,则可以让全频信号处理模块对低频的电信号进行衰减,以缓解这种不舒适的感觉。可选地,全频信号处理模块还可以适当增强低频外其他频率范围的电信号,以对衰减的低频信号进行补偿,避免用户听到整体的声强的减小。In some embodiments, the
在一些实施例中,信号处理模块200还可以包括至少一个功率放大器220。功率放大器220可以基于信号输入模块100输出的电信号或信号处理单元210处理后的电信号(例如,高频输出信号或低频输出信号)进行放大生成控制信号。在一些实施例中,信号处理模块200可以包括两个功率放大器220。例如,功率放大器可以包括第一功率放大器和第二功率放大器,其中,第一功率放大器被配置为将高频输出信号放大为相应的控制信号,第二功率放大器将低频输出信号放大为相应的控制信号。在一些实施例中,当分频模块211可以将电信号分解为多个频段对应的频率分量时,信号处理模块200可以包括多个功率放大器220,以将多个频段对应的频率分量对应的输出信号分别放大为控制信号。在一些实施例中,功率放大器也可以和上述全频信号处理模块配合使用,以选择性地对初始声音中特定频率范围的声音进行放大,最终以骨骼传导声波和空气传导声波传递给用户。In some embodiments, the signal processing module 200 may further include at least one
通过上述的信号处理模块200,可以增强听力辅助装置的听力补偿效果。仅作为示例性说明,听力辅助装置为骨传导助听器时,听力辅助装置可利用输出换能器(例如,振动扬声器)输出全频段振动或骨导音,通过骨传导的方式使人产生听觉。在一些情况下,骨导助听器在特定频率范围内(例如,200Hz-8000Hz)具有较好的声音补偿效果。在一些实施例中,为了进一步突出听力辅助装置在该特定频率范围的声音补偿效果,可以对该特定频率范围内的电信号进行放大处理。在一些实施例中,可以对该特定范围以外(例如,20Hz-200Hz,8000Hz-20kHz)的电信号进行放大处理,这样,听力辅助装置可以在该特定范围内具有较好的声音补偿效果的同时,又保证其他频段的声音补偿效果,从而使得听力辅助装置的声音补偿效果在全频段具有较好的均衡性,提高用户体验感。在一些实施例中,听力辅助装置的输出换能器在发出骨骼传导声波的同时也会产生相应的空气传导声波。空气传导声波可以作为听力辅助装置中除骨骼传导声波之外的声音补偿。通过对特定频段范围的电信号进行功放处理,可以在提高该频段下骨骼传导声波补偿量的同时额外增加空气传导声波,从而进一步提高听力辅助装置的声音补偿效果。需要说明的是,上述功放选择的频率范围仅作为示例性说明,本领域技术人员可以通过实际应用情况调整功放对应的频率范围,在此不做进一步限定。Through the above-mentioned signal processing module 200, the hearing compensation effect of the hearing aid device can be enhanced. As an example only, when the hearing aid is a bone conduction hearing aid, the hearing aid can use an output transducer (eg, a vibrating speaker) to output full-range vibration or bone conduction sound to enable people to hear through bone conduction. In some cases, bone conduction hearing aids have a better sound compensation effect in a specific frequency range (eg, 200Hz-8000Hz). In some embodiments, in order to further highlight the sound compensation effect of the hearing aid device in the specific frequency range, the electrical signal in the specific frequency range may be amplified. In some embodiments, electrical signals outside the specific range (for example, 20Hz-200Hz, 8000Hz-20kHz) can be amplified, so that the hearing aid device can have a better sound compensation effect within the specific range , and ensure the sound compensation effect of other frequency bands, so that the sound compensation effect of the hearing aid device has better balance in the whole frequency band, and improves the user experience. In some embodiments, the output transducer of the hearing aid device generates corresponding air-conducted sound waves as well as bone-conducted sound waves. Air-conducted sound waves can be used as sound compensation in addition to bone-conducted sound waves in hearing aids. By performing power amplification processing on electrical signals in a specific frequency range, it is possible to increase the compensation amount of bone-conducted sound waves in this frequency band while additionally increasing air-conducted sound waves, thereby further improving the sound compensation effect of hearing aids. It should be noted that the above frequency range selected by the power amplifier is only used as an example, and those skilled in the art can adjust the corresponding frequency range of the power amplifier according to actual application conditions, which is not further limited here.
需要注意的是,信号处理单元210还可以不进行分频处理,这里是说,信号处理单元210可以不包括分频模块211、高频信号处理模块212和低频信号处理模块213。在一些实施例中,信号处理单元210可以基于电信号的时频、频域或子带对电信号进行处理。在一些实施例中,信号处理单元210可以包括均衡器、动态范围控制器、相位处理器、非线性处理器等。其中,均衡器可被配置为对电信号按照特定的频段进行单独的增益或衰减。动态范围控制器可被配置为压缩和放大电信号,例如,使得声音听起来更加柔和或更大声。相位处理器可被配置为调节电信号的相位。非线性处理器可被配置为降低电信号中的噪声信号。在一些实施例中,电信号可经由均衡器、动态范围控制器、相位处理器、非线性处理器处理成输出信号。It should be noted that the
图3是根据本申请一些实施例提供的输出换能器的结构示意图。Fig. 3 is a schematic structural diagram of an output transducer provided according to some embodiments of the present application.
如图3所示,输出换能器300可以包括第一振动组件和壳体350。其中,第一振动组件可以与信号处理模块200电连接以接收由信号处理模块200生成的控制信号,并基于控制信号产生骨骼传导声波。具体地,第一振动组件可以根据控制信号进行机械振动,该机械振动可以产生骨骼传导声波。例如,第一振动组件可以是将电信号(例如,来自信号处理模块200的控制信号)转换成为机械振动信号的任何元件(例如,振动电机、电磁振动设备,等),其中,信号转换的方式包括但不限于:电磁式(动圈式、动铁式、磁致伸缩式)、压电式、静电式等。第一振动组件内部的结构可以是单谐振系统也可以是复合谐振系统。当用户佩戴听力辅助装置时,第一振动组件中的部分结构可以贴合在用户头部皮肤,从而将骨骼传导声波经由用户头骨传导至用户的耳蜗。壳体350可以与第一振动组件相耦合并在第一振动组件的带动下产生空气传导声波。As shown in FIG. 3 , the
在一些实施例中,壳体350可以与第一振动组件通过连接件330连接。在一些实施例中,可以通过调整壳体350与第一振动组件之间的连接件330来调整壳体350对第一振动组件振动的响应,即,通过调整连接件330来调整壳体350产生空气传导声波的效果。在一些实施例中,连接件330可以是刚性的或者是柔性的。当连接件330为刚性的,壳体350与第一振动组件的连接可以为刚性连接。在其它实施例中,连接件330可以是弹性件,例如弹簧或弹片。In some embodiments, the
在一些实施例中,第一振动组件可以包括磁路系统310、振动板320和线圈340。磁路系统310可以被配置为产生第一磁场;振动板320可以通过连接件330与壳体350连接;线圈340可以与振动板320连接并同信号处理模块200电连接。具体的,线圈340可以接收信号处理模块200生成的控制信号并基于控制信号产生第二磁场,通过第一磁场和第二磁场的相互作用,线圈340会受到作用力F,从而激励振动板320振动,以在用户的脸部产生骨骼传导声波。除此之外,振动板320的振动可以带动壳体350振动,从而产生空气传导声波。具体地,在中低频频段,外壳350的振动幅度比振动板320的振动幅度更大或者相当,由于外壳350不直接与皮肤接触,外壳350的振动不能通过骨导的方式传递声音,但是外壳350的振动可以产生空气传导声波,并通过外耳道路径传导鼓膜,使得用户听到声音,从而增大声音补偿效果。同时,由于在中低频段的壳体350的振感相对于振动板320的振感较强,这里振动板320的振动幅度较小可以有效减弱用户使用时的振感,提升舒适度。而在较高频段,振动板320的振动幅度显著大于外壳350的振动幅度,这样第一振动组件可以有效通过振动板320的振动以骨导的方式传递声音;同时,外壳350振动幅度远小于振动板320的振动,可以有效降低外壳350在较高频段的漏音。在一些实施例中,可以通过调整第一振动组件各部分的质量和弹性系数,调节声音通过气导或骨导传递的频率范围和幅度。In some embodiments, the first vibration component may include a
在一些实施例中,振动板320与壳体350限定空腔,磁路系统310位于该空腔内,并且可以通过连接件330或其它弹性件(图3中未示出)与壳体350连接。在与线圈340的相互作用下,磁路系统310也产生相应的振动。磁路系统310相对壳体350的振动会推动空腔内空气振动。在一些实施例中,在壳体350上开设一个或多个导声孔,可以将空腔内的空气导出壳体350,并与壳体350振动产生的声音叠加,共同形成用户耳朵听到的空气传导声波。壳体350上导声孔的数量、位置、形状和/或尺寸需要满足一定的条件,使得从导声孔导出的声音和壳体350振动产生的声音在用户的耳朵处干涉相增,从而进一步增强用户听到的气导声音。In some embodiments, the vibrating
由图3及其相关描述可知,骨骼传导声波由输出换能器300的振动板320产生,空气传导声波由壳体350(或者壳体350上的导声孔)产生。在一些实施例中,控制信号包括不同的频率成分,基于所述控制信号使振动板320发生的振动可以包括不同频率的振动。因此,听力辅助装置发出的骨骼传导声波和空气传导声波可以覆盖不同的频率范围,从而使得听力辅助装置在不同频率范围内都能提供一定的声音补偿效果。As can be seen from FIG. 3 and its related descriptions, the bone-conducted sound wave is generated by the vibrating
需要知道的是,由于振动板320和壳体350对不同频率的振动的响应程度不同,其产生的骨骼传导声波和空气传导声波在不同频率下提供的声音补偿效果也不同。以空气传导声波为例,壳体350的振动可以放大目标频率范围内用户听到的气导声音的声强。即,在目标频率范围内,壳体350振动产生的空气传导声波传递到用户耳朵,使得用户耳朵听到的气导声音的声强大于初始声音被信号输入模块接收的声强。所述目标频率范围与壳体350的结构以及信号处理模块200对信号的处理方式有关。在一些实施例中,所述目标频率范围可以是200Hz-8000Hz,或者500Hz-6000Hz,或者750Hz-1000Hz,或者其他任意的频率范围。可以认为听力辅助装置在目标频率范围内具有较好的声音补偿效果。在一些特定场景下,可以在信号处理模块200中更多地放大目标频率范围所对应的控制信号,从而进一步提高目标频率范围内的声音补偿效果。在其它应用场景中,例如,用户接收的声音频率范围大于目标频率范围时,由于听力辅助装置在目标频率范围内的声音补偿效果较为明显,此时可以更多地放大除目标频率范围之外的控制信号,从而均衡用户在各个频段的听觉效果,同时降低听力辅助装置的能耗,保证听力辅助装置的使用时间。It should be known that since the vibrating
例如,在对高频段电信号和低频段电信号进行放大时,高频段电信号和低频段电信号的放大程度可以相同或不同。例如,在听力辅助装置的高频声音补偿效果好于低频声音补偿效果的前提下,可以放大低频段电信号,即使得低频输出信号强于高频输出信号,从而保证听力辅助装置在全频段都有比较均衡的声音补偿效果。又例如,在听力辅助装置的高频声音补偿效果好于低频声音补偿效果的前提下,为了进一步突出高频输出信号下听力辅助装置的听觉效果,高频段电信号的放大程度也可以大于低频段电信号的放大程度。在一些实施例中,也可以对全频段的电信号进行相同程度的放大。需要注意的是,在一些实施例中,高频输出信号或低频输出信号可以是相对于目标频率来确定。例如,当目标频率范围为20Hz-1000Hz时,低频可以是20Hz-100Hz的频率段、20Hz-150Hz频率段、20Hz-200Hz频率段等,高频可以是900Hz-1000Hz频率段、850Hz-1000Hz频率段、800Hz-1000Hz频率段等。在一些实施例中,高频输出信号和低频输出信号也可以如本申请其它地方所描述的是相对于全频段频率来确定。另外,这里的高频输出信号和低频输出信号是相对二者之间来讲的,本领域技术人员可以根据实际应用场景进行相应调整,在此不做进一步限定。For example, when amplifying the high-frequency electrical signal and the low-frequency electrical signal, the amplification degrees of the high-frequency electrical signal and the low-frequency electrical signal may be the same or different. For example, under the premise that the high-frequency sound compensation effect of the hearing aid device is better than that of the low-frequency sound compensation effect, the low-frequency electrical signal can be amplified, that is, the low-frequency output signal is stronger than the high-frequency output signal, so as to ensure that the hearing aid device works well in all frequency bands. It has a more balanced sound compensation effect. For another example, on the premise that the high-frequency sound compensation effect of the hearing aid device is better than that of the low-frequency sound compensation effect, in order to further highlight the hearing effect of the hearing aid device under the high-frequency output signal, the amplification degree of the high-frequency electrical signal can also be greater than that of the low-frequency band Amplification of electrical signals. In some embodiments, the same degree of amplification can also be performed on the electrical signals of the whole frequency band. It should be noted that, in some embodiments, the high frequency output signal or the low frequency output signal may be determined relative to the target frequency. For example, when the target frequency range is 20Hz-1000Hz, the low frequency can be the frequency range of 20Hz-100Hz, the frequency range of 20Hz-150Hz, the frequency range of 20Hz-200Hz, etc., and the high frequency can be the frequency range of 900Hz-1000Hz, 850Hz-1000Hz , 800Hz-1000Hz frequency band, etc. In some embodiments, the high frequency output signal and the low frequency output signal may also be determined relative to a full band of frequencies as described elsewhere in this application. In addition, the high-frequency output signal and the low-frequency output signal here are relative to each other, and those skilled in the art can make corresponding adjustments according to actual application scenarios, which are not further limited here.
为了进一步说明听力辅助装置在一定频率范围(例如,200Hz-8000Hz)内的听觉效果,现结合听力辅助装置的骨导成分测试结果和气导成分测试结果进行说明。In order to further illustrate the auditory effect of the hearing aid device in a certain frequency range (for example, 200 Hz-8000 Hz), the test results of the bone conduction component and the air conduction component of the hearing aid device are now described.
图4是根据本申请一些实施例提供的听力辅助装置在参考环境中所输出的满档力级(OFL60)频率响应图。在本说明的实施例中,参考环境可以是指听力辅助装置在非工作状态下,人工头的耳模拟器接收到的声强值(也被称为参考声压级)。OFL60是指听力辅助装置在参考声压级为60dB条件下的输出力级。为了便于描述,本说明书实施例中参考环境对应的声强值为60dB。从图4中可以看出,当参考环境的声强为60dB时,在频率250Hz-8000Hz之间,听力辅助装置输出的骨导成分的振动力级均在76dB以上。当频率范围为250Hz-2000Hz时,听力辅助装置输出的骨导成分的振动力级均在85dB以上。当频率范围为500Hz-1500Hz时,听力辅助装置输出的骨导成分的振动力级均在90dB以上。当频率范围为750Hz-1000Hz时,听力辅助装置输出的骨导成分的振动力级均在92dB以上。在一些实施例中,对于一定参考声压级(例如,60dB)的声音,考虑到不同频率的骨导成分的振动力级不同,可以让信号处理模块200对不同频率的电信号进行不同程度的放大。例如,由于1000Hz-1500Hz范围的骨导成分的振动力级超过其它范围的振动力级,为了进一步提高听力辅助装置的骨导声音补偿效果,可以让信号处理模块200更多地放大1000Hz-1500Hz范围内频段分量。或者,由于4000Hz左右的骨导成分的振动力级小于其它范围的振动力级,为了均衡听力辅助装置的骨导声音在各个频率范围的补偿效果,可以让信号处理模块200更多地放大4000Hz左右的频段分量。Fig. 4 is a frequency response graph of full-range force level (OFL 60 ) output by a hearing aid device in a reference environment according to some embodiments of the present application. In the embodiment of this description, the reference environment may refer to the sound intensity value (also referred to as reference sound pressure level) received by the ear simulator of the artificial head when the hearing aid device is in a non-working state. OFL 60 refers to the output force level of hearing aids under the condition that the reference sound pressure level is 60dB. For ease of description, the sound intensity value corresponding to the reference environment in the embodiments of this specification is 60 dB. It can be seen from Figure 4 that when the sound intensity of the reference environment is 60dB, the vibration force level of the bone conduction component output by the hearing aid device is above 76dB at frequencies between 250Hz and 8000Hz. When the frequency range is 250Hz-2000Hz, the vibration force level of the bone conduction component output by the hearing aid device is above 85dB. When the frequency range is 500Hz-1500Hz, the vibration force level of the bone conduction component output by the hearing aid device is above 90dB. When the frequency range is 750Hz-1000Hz, the vibration force level of the bone conduction component output by the hearing aid device is above 92dB. In some embodiments, for a sound with a certain reference sound pressure level (for example, 60dB), considering that the vibration force levels of bone conduction components at different frequencies are different, the signal processing module 200 can be used to perform different levels of electrical signals at different frequencies. enlarge. For example, since the vibration force level of the bone conduction component in the range of 1000Hz-1500Hz exceeds the vibration force level of other ranges, in order to further improve the bone conduction sound compensation effect of the hearing aid device, the signal processing module 200 can be more amplified in the range of 1000Hz-1500Hz Inner frequency components. Or, since the vibration force level of the bone conduction component at about 4000 Hz is smaller than that in other ranges, in order to balance the compensation effect of the bone conduction sound in each frequency range of the hearing aid device, the signal processing module 200 can be more amplified at about 4000 Hz frequency band components.
图5是根据本申请一些实施例提供的听力辅助装置所输出骨导成分的满档声-力灵敏度级(AMSL)的频率响应图。在本说明书的实施例中,声-力灵敏度级可以是指满档力级与参考声压级的差值,例如,图5中的OFL60与参考声压级(如,60dB)的差值。从图5中可以看出,当听力辅助装置的参考声压级为60dB时,频率范围为250Hz-8000Hz时,骨导成分的声-力灵敏度级在在15dB以上。当频率范围为250Hz-2000Hz时,骨导成分的声-力灵敏度级均在在25dB以上。当频率范围为500Hz-1500Hz时,骨导成分的声-力灵敏度级均在在30dB以上。当频率范围为750Hz-1000Hz时,骨导成分的声-力灵敏度级均在在32dB以上。在一些实施例中,对于一定声强(例如,60dB)的声音,考虑到不同频率(或频段)的骨导成分的声-力灵敏度级不同,可以让信号处理模块200对不同频率的电信号进行不同程度的放大。例如,由于1000Hz-1500Hz范围的骨导成分的声-力灵敏度级超过其它范围的声-力灵敏度级,为了进一步提高听力辅助装置的骨导声音补偿效果,可以让信号处理模块200更多地放大1000Hz-1500Hz范围内频段分量。或者,由于8000Hz左右的骨导成分的声-力灵敏度级小于其它范围的声-力灵敏度级,为了均衡听力辅助装置的骨导声音在各个频率范围的补偿效果,可以让信号处理模块200更多地放大8000Hz左右的频段分量。需要注意的是,本说明书实施例中参考环境对应的声强值不局限于上述的60dB,这里的参考环境对应的声强值设为60dB仅作为示例性说明,在其它实施例中,参考环境对应的声强值可以根据实际情况进行适应性调整,在此不作进一步限定。Fig. 5 is a frequency response diagram of the full-scale acoustic-mechanical sensitivity level (AMSL) of the bone conduction component output by the hearing aid device according to some embodiments of the present application. In the embodiments of this specification, the sound-force sensitivity level may refer to the difference between the full-scale force level and the reference sound pressure level, for example, the difference between OFL 60 in FIG. 5 and the reference sound pressure level (eg, 60dB) . It can be seen from Figure 5 that when the reference sound pressure level of the hearing aid device is 60dB and the frequency range is 250Hz-8000Hz, the sound-force sensitivity level of the bone conduction component is above 15dB. When the frequency range is 250Hz-2000Hz, the sound-force sensitivity level of the bone conduction component is above 25dB. When the frequency range is 500Hz-1500Hz, the sound-force sensitivity level of the bone conduction component is above 30dB. When the frequency range is 750Hz-1000Hz, the sound-force sensitivity level of the bone conduction component is above 32dB. In some embodiments, for a sound with a certain sound intensity (for example, 60dB), considering that the acoustic-force sensitivity levels of the bone conduction components of different frequencies (or frequency bands) are different, the signal processing module 200 can be used for electrical signals of different frequencies. different levels of magnification. For example, since the sound-force sensitivity level of the bone conduction component in the range of 1000Hz-1500Hz exceeds the sound-force sensitivity level of other ranges, in order to further improve the bone conduction sound compensation effect of the hearing aid device, the signal processing module 200 can be amplified more Frequency band components in the range of 1000Hz-1500Hz. Or, since the sound-force sensitivity level of the bone conduction component around 8000 Hz is smaller than that of other ranges, in order to balance the compensation effect of the bone conduction sound in each frequency range of the hearing aid device, the signal processing module 200 can be made more Amplify the frequency band components around 8000Hz. It should be noted that the sound intensity value corresponding to the reference environment in the embodiments of this specification is not limited to the above-mentioned 60dB, and the sound intensity value corresponding to the reference environment here is set to 60dB for illustrative purposes only. The corresponding sound intensity value can be adaptively adjusted according to the actual situation, which is not further limited here.
在一些实施例中,对所述听力辅助装置的气导成分的输出可以使用带有耳模拟器的人工头进行测试。其中,耳模拟器所测的仅为气导成分的输出。在对气导成分的输出进行测试时,可以使用特定声压级(例如,参考声压级60dB)的单频音(例如,250Hz、500Hz、750Hz、1000Hz、1500Hz、2000Hz、3000Hz、4000Hz、6000Hz、8000Hz)为测试声源进行测试。在测试过程中,可以将带有耳模拟器的人工头放置于测试点且不佩戴听力辅助装置,然后测试声源开启,获得耳模拟器在该情况下所测得的声压级(气导成分的输出),也可以被叫做“非工作状态”声压级;除此之外,可以将听力辅助装置按照实际使用时的佩戴方式放置于人工头上,当测试声源开启时,获得耳模拟器在该情况下测得的声压级,也可以被叫做“工作状态”声压级,其中,听力辅助装置的气导成分的增益为“工作状态”声压级与“非工作状态”声压级之差。在一些实施例中,测试点可以选在距测试声源正前方的1.5m处,同时人工头面部正对测试声源方向。需要注意的是,上述关于听力辅助装置的气导声压测试的方法仅作为示例性说明,本领域技术人员可以根据实际情况对该实验方法进行适应性调整。In some embodiments, the output to the air conduction component of the hearing assistance device may be tested using an artificial head with an ear simulator. Among them, what the ear simulator measures is only the output of the air conduction component. When testing the output of air conduction components, single-frequency tones (for example, 250Hz, 500Hz, 750Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz, 4000Hz, 6000Hz) of a specific sound pressure level (for example, a reference sound pressure level of 60dB) can be used , 8000Hz) as the test sound source for testing. During the test, an artificial head with an ear simulator can be placed at the test point without wearing a hearing aid, and then the test sound source is turned on to obtain the sound pressure level (air conduction) measured by the ear simulator under this condition. component output), which can also be called "non-working state" sound pressure level; in addition, the hearing aid device can be placed on the artificial head according to the actual wearing method in use, and when the test sound source is turned on, the hearing aid can be obtained. The sound pressure level measured by the simulator in this situation can also be called the "working state" sound pressure level, where the gain of the air conduction component of the hearing aid device is the "working state" sound pressure level and the "non-working state" difference in sound pressure level. In some embodiments, the test point can be selected at 1.5m directly in front of the test sound source, while the artificial head and face are facing the direction of the test sound source. It should be noted that the above-mentioned method of air conduction sound pressure test for hearing aids is only for illustration, and those skilled in the art can make adaptive adjustments to the experimental method according to the actual situation.
通过对听力辅助装置的气导成分的输出进行测试,可以获得听力辅助装置在参考声压级下工作状态与非工作状态的声压级图和增益图。具体的,图6是根据本申请一些实施例所示的听力辅助装置在在参考环境中所输出气导成分的声压级图;图7是根据本申请一些实施例提供的听力辅助装置在参考环境中所输出气导成分的增益图。在本说明书的实施例中,输出气导成分的增益可以是指在各频率时听力辅助装置在工作状态输出气导成分的声压级与非工作状态输出气导成分的声压级的差值。如图6和图7所示,听力辅助装置在非工作状态下,当频率范围为250Hz-8000Hz且参考声压级为60dB时,人工头内部的耳模拟器测得的气导成分的声压级大体为60dB,即人工头内部的耳模拟器测得的气导成分的声压级基本等同于测试声源的声压级。当听力辅助装置在工作状态下,在频率范围为250Hz-6000Hz时,人工头内部的耳模拟器测得的气导成分的声压级均大于60dB,而当频率范围为6000Hz-8000Hz时,人工头内部的骨模拟器测得的气导成分声压级大体为60dB,由此可以得出,当听力辅助装置在工作状态下,且频率范围为250Hz-6000Hz时,听力辅助装置可以产生区别于测试声源的空气传导声波,该空气传导声波可以产生高于测试声源的声强,从而提高了听力辅助装置的气导听力补偿效果。在一些实施例中,对于一定声强(例如,60dBSPL)的声音,考虑到不同频率的气导成分的增益不同,可以让信号处理模块200对不同频率(或频段)的电信号进行不同程度的放大。例如,由于750Hz左右的气导成分的增益超过其它范围的增益,为了进一步提高听力辅助装置的气导声音补偿效果,可以让信号处理模块200更多地放大750Hz范围内频段分量。或者,由于6000Hz以上的气导成分的增益小于其它范围的增益,为了均衡听力辅助装置的气导声音在各个频率范围的补偿效果,可以让信号处理模块200更多地放大6000Hz以上的频段分量。By testing the output of the air conduction component of the hearing aid device, the sound pressure level diagram and the gain diagram of the hearing aid device in the working state and non-working state at the reference sound pressure level can be obtained. Specifically, Fig. 6 is a sound pressure level diagram of the air conduction component output by the hearing aid device according to some embodiments of the present application in the reference environment; Fig. 7 is a hearing aid device provided according to some embodiments of the present application in the reference environment Gain plot of the output air conduction component in the environment. In the embodiment of this specification, the gain of the output air conduction component may refer to the difference between the sound pressure level of the hearing aid device outputting the air conduction component in the working state and the sound pressure level of the non-working state outputting the air conduction component at each frequency . As shown in Figure 6 and Figure 7, when the hearing aid device is in the non-working state, when the frequency range is 250Hz-8000Hz and the reference sound pressure level is 60dB, the sound pressure of the air conduction component measured by the ear simulator inside the artificial head The level is roughly 60dB, that is, the sound pressure level of the air conduction component measured by the ear simulator inside the artificial head is basically equal to the sound pressure level of the test sound source. When the hearing aid device is in working condition, when the frequency range is 250Hz-6000Hz, the sound pressure level of the air conduction component measured by the ear simulator inside the artificial head is greater than 60dB, and when the frequency range is 6000Hz-8000Hz, the artificial head The sound pressure level of the air conduction component measured by the bone simulator inside the head is roughly 60dB. From this, it can be concluded that when the hearing aid device is in working condition and the frequency range is 250Hz-6000Hz, the hearing aid device can produce a difference from The air conduction sound wave of the test sound source can generate a sound intensity higher than that of the test sound source, thereby improving the air conduction hearing compensation effect of the hearing aid device. In some embodiments, for a sound with a certain sound intensity (for example, 60dBSPL), considering that the gains of air conduction components at different frequencies are different, the signal processing module 200 can be used to perform different degrees of electrical signal processing at different frequencies (or frequency bands). enlarge. For example, since the gain of the air conduction component around 750 Hz exceeds the gain of other ranges, in order to further improve the air conduction sound compensation effect of the hearing aid device, the signal processing module 200 can be made to amplify the frequency band components in the range of 750 Hz more. Or, since the gain of the air conduction component above 6000 Hz is smaller than that of other ranges, in order to balance the compensation effect of the air conduction sound of the hearing aid device in each frequency range, the signal processing module 200 can be made to amplify the frequency band components above 6000 Hz more.
结合由图4-7的内容,在特定频率范围下,听力辅助装置输出的骨骼传导声波和气传导声波具有较好的听力补偿效果。例如,频率范围在250Hz-8000Hz时,听力辅助装置输出的骨骼传导声波相对于参考声压级具有较好的增益效果。又例如,频率范围在250Hz-6000Hz时,听力辅助装置输出的空气传导声波相对于参考声压级(例如,60dBSPL)具有较好的增益效果。综上可以知晓,听力辅助装置在目标频率范围内具有较好的骨导增益和气导增益。在一些实施例中,目标频率范围内为200Hz-8000Hz。优选地,目标频率范围内为500Hz-6000Hz。更为优选地,目标频率范围内为750Hz-1000Hz。需要注意的是,可以通过调节频率范围,提高听力辅助装置在骨骼传导声波和/或空气传导声波方面的声音补偿效果。例如,在250Hz-500Hz,听力辅助装置在骨骼传导声波的声音补偿效果较好,而在此频段下听力辅助装置在空气传导声波的声音补偿效果较差,这里可以通过功率放大器220对该频段的电信号进行功放处理,以增强听力辅助装置在该频段骨骼传导声波方面的声音补偿效果。又例如,在3000Hz-4000Hz,听力辅助装置在空气传导声波的声音补偿效果较好,而在此频段下听力辅助装置在骨骼传导声波的声音补偿效果较差,这里可以通过功率放大器220对该频段的电信号进行放大,以增强听力辅助装置在该频段空气传导声波方面的声音补偿效果。再例如,在750Hz-1500Hz,听力辅助装置在空气传导声波和骨骼传导声波的声音补偿效果都比较好,这里可以通过功率放大器220对该频段的电信号进行放大,以增强听力辅助装置在该频段骨骼传导声波和空气传导声波方面的声音补偿效果,以突出听力辅助装置在该频段的声音补偿效果。在其它的实施例中,为了保证听力辅助装置在各频段听音效果的均衡性,可以对750Hz-1500Hz之外的频段信号进行功放处理。在其它的实施例中,还可以通过调整第一振动组件(例如,磁路系统310、振动板320、连接件330)各部分的质量和弹性系数,从而调节声音通过气导或骨导传递的频率范围和幅度。Combining the contents of Figures 4-7, in a specific frequency range, the bone-conducted sound waves and air-conducted sound waves output by the hearing aid device have a better hearing compensation effect. For example, when the frequency range is 250 Hz-8000 Hz, the bone-conducted sound wave output by the hearing aid device has a better gain effect relative to the reference sound pressure level. For another example, when the frequency range is 250 Hz-6000 Hz, the air-conducted sound wave output by the hearing aid device has a better gain effect relative to the reference sound pressure level (eg, 60 dBSPL). To sum up, it can be known that the hearing aid device has better bone conduction gain and air conduction gain in the target frequency range. In some embodiments, the target frequency range is 200Hz-8000Hz. Preferably, the target frequency range is 500Hz-6000Hz. More preferably, the target frequency range is 750Hz-1000Hz. It should be noted that the sound compensation effect of the hearing aid device in terms of bone-conducted sound waves and/or air-conducted sound waves can be improved by adjusting the frequency range. For example, at 250Hz-500Hz, the sound compensation effect of the hearing aid device on bone-conducted sound waves is better, but the sound compensation effect of the hearing aid device on air-conducted sound waves in this frequency band is poor, and the
在一些进一步的实施例中,为了提高听力辅助装置在空气传导声波方面的补偿效果,可以在听力辅助装置中设置额外的振动组件。再参考图3,在一些实施例中,听力辅助装置10还可以包括至少一个第二振动组件(图中未示出),其被配置为产生额外的空气传导声波,在目标频率范围内,所述额外空气传导声波可以进一步增强用户耳朵听到的气导声音的声强。In some further embodiments, in order to improve the compensation effect of the hearing aid device on air-conducted sound waves, an additional vibrating component may be provided in the hearing aid device. Referring again to FIG. 3 , in some embodiments, the
在一些实施例中,所述至少一个第二振动组件可以为振膜结构(例如,被动振膜),并且与壳体350连接,使得第一振动组件的振动可以激励该振膜结构产生额外空气传导声波。具体的,当输出换能器的振动板320产生振动产生骨骼传导声波时,也会带动壳体350内部空气振动并作用于振膜结构,振膜结构随壳体350内部空气的振动而振动,从而产生额外空气传导声波,额外空气传导声波通过壳体350上设置的至少一个出声孔向外部辐射。所述额外空气传导声波可以和壳体350振动产生的空气传导声波共同传递到用户的耳朵,进一步提高了用户接收到的气导声音的声强。In some embodiments, the at least one second vibrating component can be a diaphragm structure (for example, a passive diaphragm), and is connected to the
在一些实施例中,第二振动组件可以为空气传导扬声器,空气传导扬声器被配置为根据控制信号产生额外空气传导声波。空气传导扬声器发出的额外空气传导声波也可以通过壳体350上设置的至少一个出声孔向外部辐射。在一些实施例中,当用户佩戴听力辅助装置时,至少一个出声孔靠近人体耳朵。在一些实施例中,控制空气传导扬声器的控制信号可以与控制输出换能器的控制信号相同或不同。例如,当控制空气传导扬声器的控制信号与控制输出换能器的控制信号相同时,空气传导扬声器可以为听力辅助装置补充与输出换能器相同频率范围的声波,从而提高该频率范围的听觉效果。又例如,当控制空气传导扬声器的控制信号与控制输出换能器的控制信号不同时,空气传导扬声器可以为听力辅助装置补充与输出换能器不同频率范围的声波,从而弥补听力辅助装置在其它频率范围的听觉效果。In some embodiments, the second vibration component may be an air-conducted speaker configured to generate additional air-conducted sound waves according to the control signal. The additional air-conducted sound waves emitted by the air-conducted speaker can also be radiated to the outside through at least one sound outlet provided on the
在一些实施例中,听力辅助装置还可以包括固定结构,其被配置为承载所述听力辅助装置,使得听力辅助装置(图8中的阴影区域)可以位于如图8所示的用户头部的乳突1、颞骨2、顶骨3、额骨4、耳廓5、耳甲6或耳道内(图中未示出)附近区域。在其它的实施例中,听力辅助装置也可以位于用户头部的其它区域,在此不作进一步限定。In some embodiments, the assistive hearing device may further include a fixed structure configured to carry the assistive hearing device such that the assistive hearing device (shaded area in FIG. 8 ) may be positioned on the user's head as shown in FIG. 8 . Mastoid 1,
在一些实施例中,听力辅助装置可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,固定结构可以作为上述产品的部件(例如,连接件)。听力辅助装置可以采用悬挂或夹持的方式固定在用户的耳朵的附近。在一些可替代的实施例中,固定结构可以为挂钩,且挂钩的形状与耳廓的形状相匹配,从而听力辅助装置可以通过挂钩独立佩戴在用户的耳朵上。独立佩戴使用的听力辅助装置可以通过有线或无线(例如,蓝牙)的方式与信号源(例如,电脑、手机或其他移动设备)通信连接。例如,左右耳处的听力辅助装置可以均通过无线的方式与信号源直接通信连接。又例如,左右耳处的听力辅助装置可以包括第一输出装置和第二输出装置,其中第一输出装置可以与信号源进行通信连接,第二输出装置可以通过无线方式与第一输出装置无线连接,第一输出装置和第二输出装置之间通过一个或多个同步信号实现音频播放的同步。无线连接的方式可以包括但不限于蓝牙、局域网、广域网、无线个域网、近场通讯等或其任意组合。In some embodiments, the hearing assistance device can be combined with glasses, headphones, head-mounted display devices, AR/VR helmets, etc., in which case, the fixed structure can be used as a part of the above products (for example, connectors). The hearing aid device can be fixed near the user's ear in a hanging or clamping manner. In some alternative embodiments, the fixing structure may be a hook, and the shape of the hook matches the shape of the auricle, so that the hearing aid device can be independently worn on the user's ear through the hook. A hearing aid device worn independently can communicate with a signal source (eg, a computer, a mobile phone or other mobile devices) in a wired or wireless (eg, Bluetooth) manner. For example, the hearing aids at the left and right ears may both communicate directly with the signal source in a wireless manner. For another example, the hearing aids at the left and right ears may include a first output device and a second output device, wherein the first output device may communicate with the signal source, and the second output device may be wirelessly connected to the first output device , Synchronization of audio playback is implemented between the first output device and the second output device through one or more synchronization signals. The way of wireless connection may include but not limited to Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc. or any combination thereof.
在一些实施例中,固定结构可以为具有人体耳朵适配形状的壳体结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便固定结构可以直接挂靠在用户的耳朵处。在一些实施例中,固定结构可以包括耳挂、头梁或弹性带等,使得听力辅助装置可以更好地固定在用户身上,防止用户在使用时发生掉落。仅作为示例性说明,例如,弹性带可以为头带,头带可以被配置为围绕头部区域佩戴。在一些实施例中,弹性带可以是连续的带状物,并可以被弹性地拉伸以佩戴在用户的头部,同时弹性带还可以对用户的头部施加压力,使得听力辅助装置牢固地固定在用户的头部的特定位置上。在一些实施例中,弹性带可以是不连续的带状物。例如,弹性带可以包括刚性部分和柔性部分,其中,刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与听力辅助装置的壳体通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料制成(例如,布料、复合材料或/和氯丁橡胶)。In some embodiments, the fixing structure can be a shell structure with a shape suitable for the human ear, such as circular, elliptical, polygonal (regular or irregular), U-shaped, V-shaped, semicircular, so that the fixed structure It can be directly attached to the user's ear. In some embodiments, the fixing structure may include ear hooks, head beams or elastic bands, etc., so that the hearing aid device can be better fixed on the user and prevent the user from falling during use. For example only, the elastic band may be a headband that may be configured to be worn around the head region. In some embodiments, the elastic band can be a continuous ribbon, and can be elastically stretched to be worn on the user's head, and at the same time, the elastic band can also apply pressure to the user's head, so that the hearing aid device is firmly fixed. Fixed to a specific position on the user's head. In some embodiments, the elastic band may be a discontinuous strip. For example, the elastic band may include a rigid part and a flexible part, wherein the rigid part may be made of a rigid material (eg, plastic or metal), and the rigid part may be physically connected to the housing of the hearing aid device (eg, snap fit, thread connection, etc.) to fix. The flexible portion may be made of elastic material (eg, cloth, composite, or/and neoprene).
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。The basic concept has been described above, obviously, for those skilled in the art, the above detailed disclosure is only an example, and does not constitute a limitation to the present application. Although not expressly stated here, various modifications, improvements and amendments to this application may be made by those skilled in the art. Such modifications, improvements, and amendments are suggested in this application, so such modifications, improvements, and amendments still belong to the spirit and scope of the exemplary embodiments of this application.
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。Meanwhile, the present application uses specific words to describe the embodiments of the present application. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that two or more references to "an embodiment" or "an embodiment" or "an alternative embodiment" in different places in this specification do not necessarily refer to the same embodiment . In addition, certain features, structures or characteristics of one or more embodiments of the present application may be properly combined.
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。In addition, those skilled in the art will understand that various aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product or combination of substances, or any combination of them Any new and useful improvements. Correspondingly, various aspects of the present application may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software. The above hardware or software may be referred to as "block", "module", "engine", "unit", "component" or "system". Additionally, aspects of the present application may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。A computer storage medium may contain a propagated data signal embodying a computer program code, for example, in baseband or as part of a carrier wave. The propagated signal may have various manifestations, including electromagnetic form, optical form, etc., or a suitable combination. A computer storage medium may be any computer-readable medium, other than a computer-readable storage medium, that can be used to communicate, propagate, or transfer a program for use by being coupled to an instruction execution system, apparatus, or device. Program code residing on a computer storage medium may be transmitted over any suitable medium, including radio, electrical cable, fiber optic cable, RF, or the like, or combinations of any of the foregoing.
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。The computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages, etc. The program code may run entirely on the user's computer, or as a stand-alone software package, or run partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the latter case, the remote computer can be connected to the user computer through any form of network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (such as through the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。In addition, unless explicitly stated in the claims, the order of processing elements and sequences described in the application, the use of numbers and letters, or the use of other designations are not used to limit the order of the flow and methods of the application. While the foregoing disclosure has discussed by way of various examples some embodiments of the invention that are presently believed to be useful, it should be understood that such detail is for illustrative purposes only and that the appended claims are not limited to the disclosed embodiments, but rather, the claims The claims are intended to cover all modifications and equivalent combinations that fall within the spirit and scope of the embodiments of the application. For example, although the system components described above may be implemented by hardware devices, they may also be implemented by a software-only solution, such as installing the described system on an existing server or mobile device.
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。In the same way, it should be noted that in order to simplify the expression disclosed in the present application and help the understanding of one or more embodiments of the invention, in the foregoing description of the embodiments of the present application, sometimes multiple features are combined into one embodiment, drawings or descriptions thereof. This method of disclosure does not, however, imply that the subject matter of the application requires more features than are recited in the claims. Indeed, embodiment features are less than all features of a single foregoing disclosed embodiment.
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。In some embodiments, numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about", "approximately" or "substantially" in some examples. grooming. Unless otherwise stated, "about", "approximately" or "substantially" indicates that the stated figure allows for a variation of ±20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。The entire contents of each patent, patent application, patent application publication, and other material, such as article, book, specification, publication, document, etc., cited in this application are hereby incorporated by reference into this application. Application history documents that are inconsistent with or conflict with the content of this application are excluded, as are documents (currently or hereafter appended to this application) that limit the broadest scope of the claims of this application. It should be noted that if there is any inconsistency or conflict between the descriptions, definitions, and/or terms used in the attached materials of this application and the contents of this application, the descriptions, definitions and/or terms used in this application shall prevail .
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in this application are only used to illustrate the principles of the embodiments of this application. Other modifications are also possible within the scope of this application. Therefore, by way of example and not limitation, alternative configurations of the embodiments of the present application may be considered consistent with the teachings of the present application. Accordingly, the embodiments of the present application are not limited to the embodiments explicitly introduced and described in the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210742765.7A CN115334435A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010891010.4A CN111954142A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
CN202210742765.7A CN115334435A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010891010.4A Division CN111954142A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115334435A true CN115334435A (en) | 2022-11-11 |
Family
ID=73368021
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210742765.7A Pending CN115334435A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
CN202010891010.4A Pending CN111954142A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010891010.4A Pending CN111954142A (en) | 2020-08-29 | 2020-08-29 | Hearing assisting device |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN115334435A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023245612A1 (en) * | 2022-06-24 | 2023-12-28 | 深圳市韶音科技有限公司 | Earphones |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4091336A4 (en) * | 2020-03-31 | 2023-05-24 | Shenzhen Shokz Co., Ltd. | ACOUSTIC PRODUCTION DEVICE |
KR20230043940A (en) | 2021-02-10 | 2023-03-31 | 썬전 샥 컴퍼니 리미티드 | hearing aids |
CN115209287B (en) * | 2021-04-09 | 2025-03-07 | 深圳市韶音科技有限公司 | A headset |
CN115209281B (en) * | 2021-04-09 | 2025-03-07 | 深圳市韶音科技有限公司 | A headset |
CN115209282B (en) * | 2021-04-09 | 2025-03-07 | 深圳市韶音科技有限公司 | A headset |
JP2024501575A (en) | 2021-04-09 | 2024-01-12 | シェンツェン・ショックス・カンパニー・リミテッド | sound output device |
CN115209269B (en) * | 2021-04-09 | 2025-03-07 | 深圳市韶音科技有限公司 | A headset |
CN115209265B (en) * | 2021-04-09 | 2025-03-07 | 深圳市韶音科技有限公司 | A headset |
CN116918350A (en) * | 2021-04-25 | 2023-10-20 | 深圳市韶音科技有限公司 | Acoustic device |
CN113827227B (en) * | 2021-08-10 | 2024-04-02 | 北京塞宾科技有限公司 | Hearing test signal generation method, hearing test method, storage medium, and device |
CN117174100B (en) * | 2023-10-27 | 2024-04-05 | 荣耀终端有限公司 | Bone conduction speech generation method, electronic device and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276142A (en) * | 1997-08-19 | 2000-12-06 | 韩国电子通信研究院 | Telephone with receiver arousing bone-conduction and air-conduction hearing |
CN101753221A (en) * | 2008-11-28 | 2010-06-23 | 新兴盛科技股份有限公司 | Butterfly temporal bone conduction communication and/or hearing aid device |
CN204145749U (en) * | 2014-11-03 | 2015-02-04 | 张云高 | A kind of ossiphone |
CN104394492A (en) * | 2014-12-11 | 2015-03-04 | 东莞声都实业有限公司 | Single-film bone conduction earphone with double functions and double sound effects |
US20150156595A1 (en) * | 2013-12-02 | 2015-06-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Hearing assistive device |
CN209642968U (en) * | 2019-04-29 | 2019-11-15 | 上海力声特医学科技有限公司 | Bone conduction conductance double type hearing aid |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9398366B2 (en) * | 2012-07-23 | 2016-07-19 | Sennheiser Electronic Gmbh & Co. Kg | Handset and headset |
CN104159181B (en) * | 2014-07-31 | 2018-03-27 | 安百特半导体有限公司 | Hearing aid method and system with autonomous adjustment function |
CN105533986B (en) * | 2016-01-26 | 2018-11-23 | 王泽玲 | A kind of osteoacusis hair band |
US10277971B2 (en) * | 2016-04-28 | 2019-04-30 | Roxilla Llc | Malleable earpiece for electronic devices |
CN107569236B (en) * | 2017-09-06 | 2020-03-06 | 杨捷 | Multifunctional hearing test and hearing aid system and hearing test method thereof |
CN111148271B (en) * | 2018-11-05 | 2024-04-12 | 华为终端有限公司 | Method and terminal for controlling hearing aid |
-
2020
- 2020-08-29 CN CN202210742765.7A patent/CN115334435A/en active Pending
- 2020-08-29 CN CN202010891010.4A patent/CN111954142A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276142A (en) * | 1997-08-19 | 2000-12-06 | 韩国电子通信研究院 | Telephone with receiver arousing bone-conduction and air-conduction hearing |
CN101753221A (en) * | 2008-11-28 | 2010-06-23 | 新兴盛科技股份有限公司 | Butterfly temporal bone conduction communication and/or hearing aid device |
US20150156595A1 (en) * | 2013-12-02 | 2015-06-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Hearing assistive device |
CN204145749U (en) * | 2014-11-03 | 2015-02-04 | 张云高 | A kind of ossiphone |
CN104394492A (en) * | 2014-12-11 | 2015-03-04 | 东莞声都实业有限公司 | Single-film bone conduction earphone with double functions and double sound effects |
CN209642968U (en) * | 2019-04-29 | 2019-11-15 | 上海力声特医学科技有限公司 | Bone conduction conductance double type hearing aid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023245612A1 (en) * | 2022-06-24 | 2023-12-28 | 深圳市韶音科技有限公司 | Earphones |
Also Published As
Publication number | Publication date |
---|---|
CN111954142A (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115334435A (en) | Hearing assisting device | |
JP7528199B2 (en) | Audio output device | |
US9949048B2 (en) | Controlling own-voice experience of talker with occluded ear | |
CN110099347B (en) | Hearing aid comprising a vibrator contacting the pinna | |
US11102589B2 (en) | Hearing aid and method for use of same | |
JP2025013937A (en) | Hearing aids | |
JP2016531514A (en) | Dynamic drivers in hearing aids | |
US20140369538A1 (en) | Assistive Listening System | |
US11095992B2 (en) | Hearing aid and method for use of same | |
US20100067721A1 (en) | Hearing device and operation of a hearing device with frequency transposition | |
US20220256296A1 (en) | Binaural hearing system comprising frequency transition | |
WO2022170604A1 (en) | Hearing aid device | |
EP3113519A1 (en) | Methods and devices for correct and safe placement of an in-ear communication device in the ear canal of a user | |
US10880658B1 (en) | Hearing aid and method for use of same | |
KR20180090227A (en) | Hearing aid offering diffraction andbone-conduction sound | |
US11128963B1 (en) | Hearing aid and method for use of same | |
RU2801638C1 (en) | Hearing aid devices | |
CN116491132A (en) | Configuration method and system of bone conduction hearing assistance device | |
US11153694B1 (en) | Hearing aid and method for use of same | |
EP4297436A1 (en) | A hearing aid comprising an active occlusion cancellation system and corresponding method | |
RU2790965C1 (en) | Acoustic output device | |
EP2835983A1 (en) | Hearing instrument presenting environmental sounds | |
WO2021217670A1 (en) | Sound output device, sound image adjustment method and volume adjustment method | |
CN115250413A (en) | Configuration method and system of bone conduction hearing auxiliary equipment | |
TW202243494A (en) | Configuration method and system of bone conduction hearing aid device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |