[go: up one dir, main page]

CN115332423A - Light-emitting diode and method of making the same - Google Patents

Light-emitting diode and method of making the same Download PDF

Info

Publication number
CN115332423A
CN115332423A CN202211003671.4A CN202211003671A CN115332423A CN 115332423 A CN115332423 A CN 115332423A CN 202211003671 A CN202211003671 A CN 202211003671A CN 115332423 A CN115332423 A CN 115332423A
Authority
CN
China
Prior art keywords
layer
semiconductor layer
transparent conductive
light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211003671.4A
Other languages
Chinese (zh)
Inventor
贾月华
郭荣妍
李占罡
郭桓邵
彭钰仁
王笃祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanan Optoelectronics Co Ltd
Original Assignee
Tianjin Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanan Optoelectronics Co Ltd filed Critical Tianjin Sanan Optoelectronics Co Ltd
Priority to CN202211003671.4A priority Critical patent/CN115332423A/en
Publication of CN115332423A publication Critical patent/CN115332423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings

Landscapes

  • Led Devices (AREA)

Abstract

本发明提供一种发光二极管及其制备方法。发光二极管至少可包括:外延结构,具有相对的第一表面和第二表面,自第一表面至第二表面包含依次堆叠的第一半导体层、发光层和第二半导体层;若干个透明导电单元,间隔地设置于第一半导体层远离发光层的表面上;保护层,形成于各个透明导电单元上,并包覆各个透明导电单元;绝缘层,形成于保护层上,并露出保护层的部分表面。这种设置可提升发光二极管中正向电压(VF)的稳定性和均匀性,具有优良的光电性能。

Figure 202211003671

The invention provides a light emitting diode and a preparation method thereof. The light emitting diode may at least include: an epitaxial structure with opposite first surfaces and second surfaces, from the first surface to the second surface, including a first semiconductor layer, a light emitting layer and a second semiconductor layer stacked in sequence; a number of transparent conductive units , is arranged at intervals on the surface of the first semiconductor layer away from the light-emitting layer; the protective layer is formed on each transparent conductive unit and covers each transparent conductive unit; the insulating layer is formed on the protective layer and exposes part of the protective layer surface. This setup can improve the stability and uniformity of forward voltage (VF) in light-emitting diodes with excellent optoelectronic performance.

Figure 202211003671

Description

发光二极管及其制备方法Light-emitting diode and its preparation method

技术领域technical field

本发明涉及半导体发光器件技术领域,特别涉及一种发光二极管及其制备方法。The invention relates to the technical field of semiconductor light emitting devices, in particular to a light emitting diode and a preparation method thereof.

背景技术Background technique

随着LED(发光二极管)芯片的发展和相关产品的技术更迭,LED芯片因其尺寸小、集成度高、响应速度快、热稳定性好能耗低等方面的优势而受到关注,并已在日常生活领域中普及应用,不同领域中涉及芯片的产品对于芯片整体光电性能的要求越来越高。With the development of LED (light-emitting diode) chips and the technological change of related products, LED chips have attracted attention because of their advantages in small size, high integration, fast response, good thermal stability and low energy consumption, and have been used in It is popularized and applied in the field of daily life, and products involving chips in different fields have higher and higher requirements for the overall photoelectric performance of the chip.

现有的发光二极管制程过程中,在外延结构上制作透明导电层的欧姆接触图形时,需要经过多次的干法刻蚀和湿法刻蚀,工艺复杂且耗时较长。在此过程中,若透明导电层裸露或暴露的时间过长,发光二极管极易产生正向电压过高,进而影响LED芯片的整体性能。In the existing light-emitting diode manufacturing process, when forming the ohmic contact pattern of the transparent conductive layer on the epitaxial structure, it needs to go through multiple times of dry etching and wet etching, and the process is complex and time-consuming. During this process, if the transparent conductive layer is exposed or exposed for too long, the light-emitting diode is likely to generate an excessively high forward voltage, thereby affecting the overall performance of the LED chip.

因此,在发光二极管制程中,如何减少透明导电层裸露或暴露的时间及确保发光二极管正向电压的均匀性,提升发光二极管的可靠性以确保芯片具有稳定的光电性能,已成为本领域的技术人员员亟待解决的技术难题之一。Therefore, in the light-emitting diode manufacturing process, how to reduce the exposure time of the transparent conductive layer and ensure the uniformity of the forward voltage of the light-emitting diode, improve the reliability of the light-emitting diode to ensure that the chip has stable photoelectric performance has become a technology in the art One of the technical problems urgently needed to be solved by personnel.

发明内容Contents of the invention

本发明一实施例提供一种发光二极管,其至少可包括:外延结构,具有相对的第一表面和第二表面,自第一表面至第二表面包含依次堆叠的第一半导体层、发光层和第二半导体层;若干个透明导电单元,间隔地设置于第一半导体层远离发光层的表面上;保护层,形成于各个透明导电单元上,并包覆各个透明导电单元;绝缘层,形成于保护层上,并露出保护层的部分表面。An embodiment of the present invention provides a light-emitting diode, which may at least include: an epitaxial structure, having a first surface and a second surface opposite to each other, and from the first surface to the second surface, a first semiconductor layer, a light-emitting layer, and The second semiconductor layer; several transparent conductive units are arranged at intervals on the surface of the first semiconductor layer away from the light-emitting layer; the protective layer is formed on each transparent conductive unit and covers each transparent conductive unit; the insulating layer is formed on the on the protective layer and expose part of the surface of the protective layer.

在一些实施例中,在这些透明导电单元中,相邻两个透明导电单元之间的间距为10μm至40μm。In some embodiments, among the transparent conductive units, the distance between two adjacent transparent conductive units is 10 μm to 40 μm.

在一些实施例中,透明导电单元的横截面的图形形状为任意形状,可以为规则图形,也可以为非规则图形。当透明导电单元的横截面为圆形时,圆形的直径为10μm至20μm。In some embodiments, the graphic shape of the cross-section of the transparent conductive unit is arbitrary, and may be a regular graphic or an irregular graphic. When the cross section of the transparent conductive unit is a circle, the diameter of the circle is 10 μm to 20 μm.

在一些实施例中,透明导电单元可由具有高透明、高电导率、低接触电阻的氧化物材料构成,可作为第一半导体层的欧姆接触层。透明导电单元的厚度为0埃至500埃,可使得与第一半导体层之间具有良好的电流导通。In some embodiments, the transparent conductive unit may be made of an oxide material with high transparency, high conductivity, and low contact resistance, and may serve as an ohmic contact layer of the first semiconductor layer. The thickness of the transparent conductive unit is 0 angstroms to 500 angstroms, which can make good current conduction with the first semiconductor layer.

在一些实施例中,保护层至少为Au、Cr、Ni、Pt中的一种。保护层的厚度为100埃至200埃。如此,保护层可对透明导电单元形成有效的包覆,同时可确保透明导电单元具有较佳的电流导通性能。In some embodiments, the protective layer is at least one of Au, Cr, Ni, and Pt. The protective layer has a thickness of 100 angstroms to 200 angstroms. In this way, the protective layer can effectively cover the transparent conductive unit, and at the same time ensure that the transparent conductive unit has better current conduction performance.

在一些实施例中,保护层与第一半导体层远离发光层的表面之间具有一倾斜角,倾斜角为30度至60度,以对透明导电单元形成完全、良好的包覆。In some embodiments, there is an inclination angle between the protection layer and the surface of the first semiconductor layer away from the light-emitting layer, and the inclination angle is 30° to 60°, so as to completely and well cover the transparent conductive unit.

在一些实施例中,透明导电单元在第一半导体层的投影位于保护层在第一半导体层的投影范围内,在第一半导体层远离发光层的表面沿水平方向,透明导电单元的端点与其上的保护层的端点之间的间距为1μm至5μm。In some embodiments, the projection of the transparent conductive unit on the first semiconductor layer is located within the projection range of the protective layer on the first semiconductor layer, and on the surface of the first semiconductor layer away from the light-emitting layer along the horizontal direction, the terminal point of the transparent conductive unit and the The spacing between the ends of the protective layer is 1 μm to 5 μm.

在一些实施例中,若干个透明导电单元的总面积为大于第一半导体层远离发光层的总面积的5%。In some embodiments, the total area of the several transparent conductive units is greater than 5% of the total area of the first semiconductor layer away from the light emitting layer.

在一些实施例中,绝缘层上设有开孔,可裸露出保护层的部分表面。开孔在第一半导体层的投影位于透明导电单元在第一半导体层的投影范围内。In some embodiments, the insulating layer is provided with openings, which can expose part of the surface of the protective layer. The projection of the opening on the first semiconductor layer is located within the projection range of the transparent conductive unit on the first semiconductor layer.

在一些实施例中,发光二极管还可包括基板,外延结构中的第一半导体层可通过键合层与基板相键合。In some embodiments, the light emitting diode may further include a substrate, and the first semiconductor layer in the epitaxial structure may be bonded to the substrate through a bonding layer.

在一些实施例中,绝缘层与键合层之间还可设有镜面反射层。In some embodiments, a specular reflective layer may also be provided between the insulating layer and the bonding layer.

在一些实施例中,发光二极管还可包括:第一电极,设置于基板远离键合层的一侧,且与第一半导体层电性连接;第二电极,设置于第二半导体层远离发光层的一侧,且与第二半导体层电性连接;钝化层,设于第二半导体层上,覆盖第二半导体层远离发光层的一侧表面中未被第二电极覆盖的区域,以及第一半导体层、发光层和第二半导体层的侧壁区域。In some embodiments, the light emitting diode may further include: a first electrode disposed on the side of the substrate away from the bonding layer and electrically connected to the first semiconductor layer; a second electrode disposed on the second semiconductor layer away from the light emitting layer one side of the second semiconductor layer and is electrically connected to the second semiconductor layer; the passivation layer is disposed on the second semiconductor layer, covering the area of the second semiconductor layer on the surface of the side away from the light-emitting layer that is not covered by the second electrode, and the second A semiconductor layer, a light emitting layer and a side wall region of the second semiconductor layer.

本发明一实施例提供的一种发光二极管的制备方法,可用于制造具有如前所述结构的发光二极管。发光二极管的制备方法至少可包括以下步骤:生长外延结构,在一生长衬底上依次生长第二半导体层、发光层和第一半导体层,以形成外延结构;制作透明导电层,在第一半导体层远离发光层的表面形成若干个间隔设置的透明导电单元,并在每个透明导电单元形成保护层;制作绝缘层,在保护层上形成绝缘层,并露出保护层的部分表面;转移外延结构,外延结构中第一半导体层一侧通过键合层与一基板相键合,并去除生长衬底。A method for manufacturing a light-emitting diode provided by an embodiment of the present invention can be used to manufacture a light-emitting diode with the aforementioned structure. The method for preparing a light-emitting diode may at least include the following steps: growing an epitaxial structure, sequentially growing a second semiconductor layer, a light-emitting layer, and a first semiconductor layer on a growth substrate to form an epitaxial structure; making a transparent conductive layer, and forming a transparent conductive layer on the first semiconductor layer. Form several transparent conductive units arranged at intervals on the surface of the layer far away from the light-emitting layer, and form a protective layer on each transparent conductive unit; make an insulating layer, form an insulating layer on the protective layer, and expose part of the surface of the protective layer; transfer epitaxial structure In the epitaxial structure, one side of the first semiconductor layer is bonded to a substrate through a bonding layer, and the growth substrate is removed.

在一些实施例中,在实施所述转移外延结构的步骤前,还可包括以下步骤:绝缘层开孔,在绝缘层中位于保护层的上方设置开孔,开孔处可露出保护层的部分表面;以及设置镜面反射层,于绝缘层上形成镜面反射层,镜面反射层覆盖开孔和绝缘层远离第一半导体层的一侧表面。In some embodiments, before implementing the step of transferring the epitaxial structure, the following steps may also be included: opening holes in the insulating layer, and setting an opening in the insulating layer above the protective layer, and part of the protective layer may be exposed at the opening surface; and setting a specular reflection layer, forming a specular reflection layer on the insulating layer, the specular reflection layer covering the opening and the surface of the insulating layer away from the first semiconductor layer.

本发明的其它特征和有益效果将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明中发光二极管一实施例的剖面示意图;1 is a schematic cross-sectional view of an embodiment of a light-emitting diode in the present invention;

图2为图1中A区域的局部放大示意图;Figure 2 is a partially enlarged schematic diagram of area A in Figure 1;

图3为本发明中发光二极管一实施例的制备方法流程示意图;以及图4至图8为本发明中发光二极管一实施例的制备方法过程示意图。FIG. 3 is a schematic flowchart of a manufacturing method of an embodiment of a light emitting diode in the present invention; and FIGS. 4 to 8 are schematic diagrams of a manufacturing process of an embodiment of a light emitting diode in the present invention.

附图标记:Reference signs:

1-发光二极管;10-基板;11-键合层;12-镜面反射层;20-外延结构;20a-第一表面;20b-第二表面;21-第一半导体层;22-发光层;23-第二半导体层;30-透明导电单元;40-保护层;50-绝缘层;51-开孔;60-第一电极;70-第二电极;80-钝化层;100-生长衬底;D1、D2、D3-间距;α-倾斜角。1-light-emitting diode; 10-substrate; 11-bonding layer; 12-mirror reflection layer; 20-epitaxial structure; 20a-first surface; 20b-second surface; 21-first semiconductor layer; 22-luminescent layer; 23-second semiconductor layer; 30-transparent conductive unit; 40-protective layer; 50-insulating layer; 51-opening hole; 60-first electrode; 70-second electrode; 80-passivation layer; 100-growth lining Bottom; D1, D2, D3-distance; α-tilt angle.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。下面所描述的本发明不同实施方式中所设计的技术特征只要彼此之间未构成冲突就可以相互结合。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. The technical features designed in different embodiments of the present invention described below can be combined with each other as long as they do not constitute conflicts with each other.

请参阅图1,图1为本发明中发光二极管1一实施例的剖面示意图。为达所述优点至少其中之一或其他优点,本发明的一实施例提出一种发光二极管1,其至少可包括:外延结构20,及形成于外延结构20上的透明导电单元30、保护层40和绝缘层50。Please refer to FIG. 1 . FIG. 1 is a schematic cross-sectional view of an embodiment of a light emitting diode 1 in the present invention. In order to achieve at least one of the above advantages or other advantages, an embodiment of the present invention proposes a light emitting diode 1, which may at least include: an epitaxial structure 20, a transparent conductive unit 30 formed on the epitaxial structure 20, and a protective layer 40 and insulating layer 50.

外延结构20可通过有机金属化学气相沉积法(MOCVD)、分子束外延(MBE)、氢化物气相沉积法(HVPE)、物理气相沉积法(PVD)或离子电镀方法等方式形成于一衬底上。根据所需制得的发光二极管1功能、用途不同,衬底可以是临时的生长衬底,在外延结构20生长成形后,将外延结构20转移至其它基板或装接衬底上,以进行后续的制程。The epitaxial structure 20 can be formed on a substrate by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor deposition (HVPE), physical vapor deposition (PVD) or ion plating. . According to the different functions and uses of the light-emitting diode 1 to be prepared, the substrate can be a temporary growth substrate. After the epitaxial structure 20 is grown and formed, the epitaxial structure 20 is transferred to other substrates or mounting substrates for subsequent process.

外延结构20可提供特定中心发射波长的光,例如蓝光、绿光或者红光或者紫光或者紫外光。外延结构20可具有相对的第一表面20a和第二表面20b,自第一表面20a至第二表面20b包含依次堆叠的第一半导体层21、发光层22(或称有源层22、活性层22)和第二半导体层23,第一半导体层21和第二半导体层23的电性相反。The epitaxial structure 20 can provide light of a specific central emission wavelength, such as blue, green or red light or violet or ultraviolet light. The epitaxial structure 20 may have a first surface 20a and a second surface 20b opposite to each other. From the first surface 20a to the second surface 20b, the first semiconductor layer 21 and the light emitting layer 22 (or active layer 22, active layer) are sequentially stacked. 22) and the second semiconductor layer 23, the electrical properties of the first semiconductor layer 21 and the second semiconductor layer 23 are opposite.

在图示实施例中,仅以第一半导体层21为P型半导体层,第二半导体层23为N型半导体层为例进行说明。本发明中并不仅限于此,在其它实施例中,第一半导体层21可以为N型半导体层,第二半导体层23可以为P型半导体层。In the illustrated embodiment, only the first semiconductor layer 21 is a P-type semiconductor layer and the second semiconductor layer 23 is an N-type semiconductor layer as an example for illustration. The present invention is not limited thereto. In other embodiments, the first semiconductor layer 21 may be an N-type semiconductor layer, and the second semiconductor layer 23 may be a P-type semiconductor layer.

在图示实施例中,外延结构20中第一半导体层21为P型半导体层,在电源作用下可以向发光层22提供空穴。在一些实施例中,第一半导体层21中P型半导体层包括P型掺杂的氮化物层,磷化物层(如GaP)或者砷化物层。P型掺杂的氮化物层,磷化物层或者砷化物层,可包括一个或多个II族元素的P型杂质。P型杂质可以是Mg、Zn、Be中的一种或其组合。第一半导体层21可以是单层结构,也可以是多层结构,该多层结构具有不同的组成。In the illustrated embodiment, the first semiconductor layer 21 in the epitaxial structure 20 is a P-type semiconductor layer, which can provide holes to the light emitting layer 22 under the action of a power supply. In some embodiments, the P-type semiconductor layer in the first semiconductor layer 21 includes a P-type doped nitride layer, phosphide layer (such as GaP) or arsenide layer. The P-type doped nitride layer, phosphide layer or arsenide layer may include one or more P-type impurities of group II elements. The P-type impurity may be one of Mg, Zn, Be or a combination thereof. The first semiconductor layer 21 may be a single-layer structure or a multi-layer structure with different compositions.

发光层22可以为量子阱结构(Quantum Well,简称QW)。在一些实施例中,发光层22(或称有源层22、活性层22)可以是由量子阱层与量子势垒层交替地堆叠的多量子阱(multiple quantum wells,简称:MQWs)结构。发光层22可以是单量子阱结构,或者是多量子阱结构。在一些实施例中,发光层22可包括GaN/AlGaN、InAlGaN/InAlGaN、InGaN/AlGaN、GaInP/AlGaInP、GaInP/AlInP或InGaAs/AlInGaAs等的多量子阱结构。为了提高发光层22的发光效率,可通过在发光层22中改变量子阱的深度、成对的量子阱和量子势垒的层数、厚度和/或其它特征来实现。The light emitting layer 22 may be a quantum well structure (Quantum Well, QW for short). In some embodiments, the light-emitting layer 22 (or active layer 22 , active layer 22 ) may be a multiple quantum wells (MQWs for short) structure in which quantum well layers and quantum barrier layers are alternately stacked. The light-emitting layer 22 can be a single quantum well structure, or a multi-quantum well structure. In some embodiments, the light emitting layer 22 may include a GaN/AlGaN, InAlGaN/InAlGaN, InGaN/AlGaN, GaInP/AlGaInP, GaInP/AlInP or InGaAs/AlInGaAs multi-quantum well structure. In order to improve the luminous efficiency of the light-emitting layer 22 , it can be realized by changing the depth of the quantum wells, the number of pairs of quantum wells and quantum barriers, the thickness and/or other characteristics in the light-emitting layer 22 .

外延结构20中第二半导体层23为N型半导体层,在电源作用下可以向发光层22提供电子。在一些实施例中,第二半导体层23中N型半导体层包括N型掺杂的氮化物层,磷化物层(如AlGaInP)或者砷化物层。N型掺杂的氮化物层可包括一个或多个IV族元素的N型杂质。N型杂质可以是Si、Ge、Sn中的一种或其组合。外延结构20之第二表面20b与第二半导体层23远离发光层22一侧的表面为同一表面。外延结构20的设置不限于此,依据实际需求可以选择其它种类的配设方式。The second semiconductor layer 23 in the epitaxial structure 20 is an N-type semiconductor layer, which can provide electrons to the light-emitting layer 22 under the action of a power supply. In some embodiments, the N-type semiconductor layer in the second semiconductor layer 23 includes an N-type doped nitride layer, a phosphide layer (such as AlGaInP) or an arsenide layer. The N-type doped nitride layer may include one or more N-type impurities of Group IV elements. The N-type impurity may be one of Si, Ge, Sn or a combination thereof. The second surface 20 b of the epitaxial structure 20 is the same surface as the surface of the second semiconductor layer 23 on the side away from the light-emitting layer 22 . The arrangement of the epitaxial structure 20 is not limited thereto, and other arrangements can be selected according to actual needs.

外延结构20之第一表面20a与第一半导体层21远离发光层22一侧的表面为同一表面。第一半导体层21远离发光层22一侧的表面设有透明导电层。在图示实施例中,透明导电层位于外延结构20之第一表面20a上。透明导电层由若干个透明导电单元30组成,这些透明导电单元30间隔地设置于第一半导体层21(图中为P层)远离发光层22的表面上。The first surface 20 a of the epitaxial structure 20 is the same surface as the surface of the first semiconductor layer 21 away from the light emitting layer 22 . A transparent conductive layer is provided on the surface of the first semiconductor layer 21 away from the light-emitting layer 22 . In the illustrated embodiment, the transparent conductive layer is located on the first surface 20 a of the epitaxial structure 20 . The transparent conductive layer is composed of several transparent conductive units 30 , and these transparent conductive units 30 are arranged at intervals on the surface of the first semiconductor layer 21 (P layer in the figure) away from the light-emitting layer 22 .

在这些透明导电单元30中,相邻两个透明导电单元30之间具有一定的间距D1,如图2所示。依据发光二极管1所涉产品或应用场景的不同,对光学参数的设计要求不同,相邻两个透明导电单元30之间的间距D1为10μm至40μm。在一较佳实施例中,相邻两个透明导电单元30之间的间距D1为20μm至30μm。此时,这些透明导电单元30既可与第一半导体层21之间形成良好的电流导通,又可使得第一半导体层21远离发光层22一侧的表面具有较佳的光学特性。采用这种透明导电层结构设置的发光二极管1可适用用不同类型的产品中,如大电流芯片、大电压芯片、车用产品、照明产品等场景。Among these transparent conductive units 30 , there is a certain distance D1 between two adjacent transparent conductive units 30 , as shown in FIG. 2 . Depending on the products or application scenarios involved in the light emitting diode 1 , the design requirements for optical parameters are different. The distance D1 between two adjacent transparent conductive units 30 is 10 μm to 40 μm. In a preferred embodiment, the distance D1 between two adjacent transparent conductive units 30 is 20 μm to 30 μm. At this time, these transparent conductive units 30 can not only form a good current conduction with the first semiconductor layer 21 , but also make the surface of the first semiconductor layer 21 away from the light-emitting layer 22 have better optical properties. The light emitting diode 1 provided with this transparent conductive layer structure can be used in different types of products, such as high-current chips, high-voltage chips, automotive products, lighting products and other scenarios.

透明导电单元30(透明导电层)可由具有高透明、高电导率、低接触电阻的氧化物材料构成。例如,透明导电单元可以是氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZNO)、氧化镉锡(CTO)、氧化铟(InO)、铟(In)掺杂氧化锌(ZNO)、铝(Al)掺杂氧化锌(ZNO)、镓(Ga)掺杂氧化锌(ZNO)或者是前述任意组合之一。透明导电单元30可作为第一半导体层21的欧姆接触层,进而确保发光二极管1具有良好的电学特性。透明导电单元30的厚度为0埃至500埃,可使得与第一半导体层21之间具有良好的电流导通及电流扩展性能。在一较佳实施例中,透明导电单元30的厚度为200埃,此时,第一半导体层21上具有足够厚度的欧姆接触层,发光二极管1具有良好的电学特性,同时,透明导电单元30对出光吸收的影响较小,发光二极管1具有良好的发光特性。发光二极管1可广泛适用于以透明导电单元30作为欧姆接触的芯片产品或发光器件。The transparent conductive unit 30 (transparent conductive layer) may be made of an oxide material with high transparency, high electrical conductivity, and low contact resistance. For example, the transparent conductive unit can be indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZNO), cadmium tin oxide (CTO), indium oxide (InO), indium (In) doped zinc oxide (ZNO ), aluminum (Al) doped zinc oxide (ZNO), gallium (Ga) doped zinc oxide (ZNO), or any combination of the foregoing. The transparent conductive unit 30 can be used as an ohmic contact layer of the first semiconductor layer 21 to ensure that the light emitting diode 1 has good electrical characteristics. The transparent conductive unit 30 has a thickness of 0 angstroms to 500 angstroms, which can make it have good current conduction and current spreading performance with the first semiconductor layer 21 . In a preferred embodiment, the thickness of the transparent conductive unit 30 is 200 angstroms. At this time, there is an ohmic contact layer with sufficient thickness on the first semiconductor layer 21, and the light emitting diode 1 has good electrical characteristics. At the same time, the transparent conductive unit 30 The influence on light absorption is small, and the light-emitting diode 1 has good light-emitting characteristics. The light emitting diode 1 can be widely used in chip products or light emitting devices using the transparent conductive unit 30 as an ohmic contact.

当透明导电单元30承担欧姆接触层的功能时,透明导电单元30可以是具有周期性的图形结构。透明导电单元30的横截面可具有不同的形状,以增大透明导电单元30的横截面积,利于电流的扩散达到均匀分布,降低发光二极管1的正向电压。透明导电单元30的横截面可以为规则图形,如圆形、正方形、长方形,也可以为非规则图形,进而在第一半导体层21区域形成符合发光二极管1整体设计要求的光学特性。在一些实施例中,透明导电单元30的横截面为圆形时,圆形的直径为10μm至20μm。在一些优选的实施例中,透明导电单元30的横截面为圆形时,圆形的直径为10μm至15μm。When the transparent conductive unit 30 assumes the function of an ohmic contact layer, the transparent conductive unit 30 may have a periodic pattern structure. The cross-section of the transparent conductive unit 30 can have different shapes, so as to increase the cross-sectional area of the transparent conductive unit 30 , facilitate the diffusion of current to achieve uniform distribution, and reduce the forward voltage of the light emitting diode 1 . The cross-section of the transparent conductive unit 30 can be a regular pattern, such as a circle, a square, a rectangle, or an irregular pattern, so that the optical characteristics that meet the overall design requirements of the light emitting diode 1 are formed in the first semiconductor layer 21 region. In some embodiments, when the cross section of the transparent conductive unit 30 is a circle, the diameter of the circle is 10 μm to 20 μm. In some preferred embodiments, when the cross section of the transparent conductive unit 30 is a circle, the diameter of the circle is 10 μm to 15 μm.

为了使得若干个透明导电单元30在第一半导体层21区域能达到持续、稳定的光电性能,在各个透明导电单元30上形成有保护层40,以对透明导电单元30进行包覆、保护。如图1所示,保护层40覆盖透明导电单元30的侧壁区域及透明导电单元30远离第一半导体层21一侧的表面。In order to enable the several transparent conductive units 30 to achieve continuous and stable photoelectric performance in the region of the first semiconductor layer 21 , a protective layer 40 is formed on each transparent conductive unit 30 to cover and protect the transparent conductive units 30 . As shown in FIG. 1 , the protective layer 40 covers the sidewall region of the transparent conductive unit 30 and the surface of the transparent conductive unit 30 away from the first semiconductor layer 21 .

保护层40的材质可以为Au、Cr、Ni、Pt中的一种或者这些的任意组合之一。如图所示,在一些实施例中,保护层40的侧壁具有反射功能,可对第一半导体层21发出的光线进行反射,增强发光二极管1的整体光学特性。保护层40的厚度为100埃至200埃。保护层40的设置方式既可对透明导电单元30远离第一半导体层21一侧的表面进行覆盖保护,又可确保透明导电单元30的侧壁区域包覆有足够厚度的保护层40,进而使得透明导电单元30裸露在第一半导体层21区域的部分可被保护层40完全包覆。The material of the protective layer 40 may be one of Au, Cr, Ni, Pt or any combination thereof. As shown in the figure, in some embodiments, the sidewall of the protection layer 40 has a reflective function, which can reflect the light emitted by the first semiconductor layer 21 and enhance the overall optical properties of the light emitting diode 1 . The protective layer 40 has a thickness of 100 angstroms to 200 angstroms. The setting method of the protective layer 40 can not only cover and protect the surface of the transparent conductive unit 30 away from the first semiconductor layer 21, but also ensure that the sidewall area of the transparent conductive unit 30 is covered with a protective layer 40 of sufficient thickness, so that The exposed part of the transparent conductive unit 30 in the region of the first semiconductor layer 21 can be completely covered by the protective layer 40 .

保护层40对透明导电单元30的有效包覆可确保透明导电单元30具有较佳的电流导通性能,以使电流在第一半导体层21位于外延结构20之第一表面20a均匀扩展、或均匀分布。另外,保护层40对透明导电单元30的完全包覆可使透明导电单元30的厚度能保持稳定,使得发光二极管1在第一半导体层21区域的光电特性可持续、稳定地输出。The effective covering of the transparent conductive unit 30 by the protective layer 40 can ensure that the transparent conductive unit 30 has better current conduction performance, so that the current spreads uniformly or uniformly on the first surface 20a of the first semiconductor layer 21 located on the epitaxial structure 20 distributed. In addition, the complete coverage of the transparent conductive unit 30 by the protective layer 40 can keep the thickness of the transparent conductive unit 30 stable, so that the photoelectric characteristics of the light emitting diode 1 in the region of the first semiconductor layer 21 can be continuously and stably output.

在一些实施例中,如图2所示,保护层40与第一半导体层21远离发光层22的表面之间具有一倾斜角α,倾斜角α为30度至60度,确保对透明导电单元30的侧壁区域覆盖有足够厚度的保护层。在图示例中,可以理解为,保护层40与外延结构20之第一表面20a之间具有一倾斜角α,倾斜角α为30度至60度。为了使保护层40更好地包覆透明导电单元30的侧壁区域,较佳地,保护层40的侧壁与透明导电单元30的侧壁相平行。图示例中,透明导电单元30第一半导体层21远离发光层22的表面之间所形成的倾斜角也为30度至60度。In some embodiments, as shown in FIG. 2 , there is an inclination angle α between the protective layer 40 and the surface of the first semiconductor layer 21 away from the light-emitting layer 22 , and the inclination angle α is 30 degrees to 60 degrees to ensure the transparent conductive unit. The sidewall area of 30 is covered with a protective layer of sufficient thickness. In the illustrated example, it can be understood that there is an inclination angle α between the protective layer 40 and the first surface 20 a of the epitaxial structure 20 , and the inclination angle α is 30 degrees to 60 degrees. In order to make the protective layer 40 better cover the sidewall area of the transparent conductive unit 30 , preferably, the sidewall of the protective layer 40 is parallel to the sidewall of the transparent conductive unit 30 . In the illustrated example, the inclination angle formed between the surfaces of the first semiconductor layer 21 of the transparent conductive unit 30 away from the light-emitting layer 22 is also 30 degrees to 60 degrees.

透明导电单元30在第一半导体层21的投影位于保护层40在第一半导体层21的投影范围内,可以理解为,透明导电单元30在第一半导体层21一侧裸露的区域完全被保护层40所覆盖或包覆。如图2所示,在第一半导体层21远离发光层22的表面(图示例中为外延结构20之第一表面20a)沿水平方向,透明导电单元30的端点与其上的保护层40的端点之间的间距D2为1μm至5μm,以使透明导电单元30的侧壁区域覆盖有足够后厚度的保护层40,在后续的制程中,保护层40对透明导电单元30可长时间维持在有效包覆的状态,防止透明导电单元30的侧壁被刻蚀。在一较佳实施例中,透明导电单元30的端点与其上的保护层40的端点之间的间距D2可以为2μm至3μm。The projection of the transparent conductive unit 30 on the first semiconductor layer 21 is located within the projection range of the protective layer 40 on the first semiconductor layer 21. It can be understood that the exposed area of the transparent conductive unit 30 on one side of the first semiconductor layer 21 is completely covered by the protective layer. 40 covered or clad. As shown in FIG. 2 , on the surface of the first semiconductor layer 21 away from the light-emitting layer 22 (the first surface 20a of the epitaxial structure 20 in the example shown in the figure) along the horizontal direction, the terminal of the transparent conductive unit 30 and the terminal of the protective layer 40 thereon The distance D2 between them is 1 μm to 5 μm, so that the sidewall area of the transparent conductive unit 30 is covered with a protective layer 40 of sufficient thickness. The coated state prevents the sidewall of the transparent conductive unit 30 from being etched. In a preferred embodiment, the distance D2 between the end of the transparent conductive unit 30 and the end of the protective layer 40 may be 2 μm to 3 μm.

在一些实施例中,若干个透明导电单元30的总面积为大于第一半导体层21远离发光层22的总面积的5%,确保第一半导体层21在外延结构20之第一表面20a可形成良好的电流分布效果。在较佳的实施例中,若干个透明导电单元30的总面积为第一半导体层21远离发光层22的总面积的10%至40%,特别是在大电流的发光二极管1产品中,电流的均匀扩展效果更佳,发光二极管1的正向电压和整体亮度更为均匀。In some embodiments, the total area of several transparent conductive units 30 is greater than 5% of the total area of the first semiconductor layer 21 away from the light-emitting layer 22, ensuring that the first semiconductor layer 21 can be formed on the first surface 20a of the epitaxial structure 20 Good current distribution effect. In a preferred embodiment, the total area of several transparent conductive units 30 is 10% to 40% of the total area of the first semiconductor layer 21 away from the light-emitting layer 22, especially in high-current light-emitting diode 1 products, the current The uniform spreading effect of the light-emitting diode 1 is better, and the forward voltage and overall brightness of the light-emitting diode 1 are more uniform.

为了进一步保障这些透明导电单元30和保护层40的功能特性的稳定,保护层40上形成有绝缘层50,以对保护层40进行包覆保护。绝缘层50覆盖保护层40的部分表面及填充若干个透明导电单元30之间的间隙。绝缘层50可对透明导电单元30整体形成完整保护,防止透明导电单元30被过度刻蚀,确保发光二极管1中正向电压(VF)的稳定性。In order to further ensure the stability of the functional properties of these transparent conductive units 30 and the protective layer 40 , an insulating layer 50 is formed on the protective layer 40 to cover and protect the protective layer 40 . The insulating layer 50 covers part of the surface of the protection layer 40 and fills the gaps between the plurality of transparent conductive units 30 . The insulating layer 50 can completely protect the transparent conductive unit 30 , prevent the transparent conductive unit 30 from being over-etched, and ensure the stability of the forward voltage (VF) in the LED 1 .

绝缘层50还可承担电流阻挡层(EBL)的功能,防止第一半导体层21远离发光层22一侧区域的电流出现拥堵现象,形成均匀分布。绝缘层50也可以承担光反射面的功能,增加第一半导体层21的出光量,提升发光二极管1的发光性能。The insulating layer 50 can also take on the function of an electric current blocking layer (EBL), preventing the current from congesting in the area of the first semiconductor layer 21 away from the light-emitting layer 22 and forming a uniform distribution. The insulating layer 50 can also serve as a light reflecting surface to increase the light output of the first semiconductor layer 21 and improve the light emitting performance of the light emitting diode 1 .

在图示例中,外延结构20中的第一半导体层21可通过键合层11与一基板10相键合。基板10可含有导电材料。在一些实施例中,绝缘层50与键合层11之间还可设有镜面反射层12,增加发光二极管1的出光强度,提升亮度。绝缘层50上可设有开孔51,可裸露出保护层40的部分表面。镜面反射层12填充绝缘层50上的开孔51并覆盖绝缘层50远离第一半导体层21一侧的表面。In the illustrated example, the first semiconductor layer 21 in the epitaxial structure 20 can be bonded to a substrate 10 through the bonding layer 11 . The substrate 10 may contain a conductive material. In some embodiments, a specular reflective layer 12 may also be provided between the insulating layer 50 and the bonding layer 11 to increase the light intensity of the LED 1 and improve the brightness. An opening 51 may be provided on the insulating layer 50 to expose part of the surface of the protective layer 40 . The specular reflection layer 12 fills the opening 51 on the insulating layer 50 and covers the surface of the insulating layer 50 away from the first semiconductor layer 21 .

发光二极管1对亮度的要求较高时,若透明导电单元30横截面为圆形,开孔51也为圆形,开孔51的直径小于透明导电单元30的直径。开孔51的端点与透明导电单元30的端点之间的间距D3为3μm至8μm。开孔51在第一半导体层21的投影位于透明导电单元30在第一半导体层21的投影范围内。如此,可增大透明导电单元30和保护层40和镜面反射层12的接触面,形成全角反射镜(ODR)系统,提升发光二极管1的亮度。发光二极管1对亮度的要求不高时,若透明导电单元30横截面为圆形,开孔51也为圆形,开孔51的直径可大于透明导电单元30的直径,减少透明导电单元30和保护层40和镜面反射层12的接触面。When the light-emitting diode 1 has a higher requirement on brightness, if the cross section of the transparent conductive unit 30 is circular, the opening 51 is also circular, and the diameter of the opening 51 is smaller than that of the transparent conductive unit 30 . The distance D3 between the end of the opening 51 and the end of the transparent conductive unit 30 is 3 μm to 8 μm. The projection of the opening 51 on the first semiconductor layer 21 is located within the projection range of the transparent conductive unit 30 on the first semiconductor layer 21 . In this way, the contact surface between the transparent conductive unit 30 and the protective layer 40 and the specular reflection layer 12 can be enlarged to form an ODR system and improve the brightness of the LED 1 . When the light-emitting diode 1 does not require high brightness, if the cross section of the transparent conductive unit 30 is circular, the opening 51 is also circular, and the diameter of the opening 51 can be larger than the diameter of the transparent conductive unit 30, reducing the number of transparent conductive units 30 and The contact surface of the protective layer 40 and the specular reflection layer 12 .

发光二极管1还可包括有第一电极60和第二电极70,且两者之间相互分离。第一电极60设置于基板10远离键合层11的一侧,且与第一半导体层21电性连接。第二电极70设置于第二半导体层23远离发光层22的一侧,且与第二半导体层23电性连接。第一电极60和第二电极70可由金属材料构成,例如铬(Cr)、钛(Ti)、钨(W)、金(Au)、铝(Al)、铟(In)、锡(Sn)、镍(Ni)、铑(Rh)、铂(Pt)、锗(Ge)、铍(Be)、金锗(AuGe)、金锗镍(AuGeNi)、铍金(BeAu)、金锌(AuZn)等中的一种或者多种的组合。第一电极60和第二电极70可以为单层结构或叠层结构,例如,可以是Ti/Au、Ti/Pt/Au、Cr/Au、Cr/Pt/Au、Ni/Au、Ni/Pt/Au、Cr/Al/Cr/Ni/Au、Au/AuGeNi/Au或Au/BeAu/Au等。图示例中,第一电极60为P电极,第二电极70为N电极。The light emitting diode 1 can also include a first electrode 60 and a second electrode 70, and the two are separated from each other. The first electrode 60 is disposed on a side of the substrate 10 away from the bonding layer 11 and is electrically connected to the first semiconductor layer 21 . The second electrode 70 is disposed on a side of the second semiconductor layer 23 away from the light emitting layer 22 , and is electrically connected to the second semiconductor layer 23 . The first electrode 60 and the second electrode 70 may be made of metal materials such as chromium (Cr), titanium (Ti), tungsten (W), gold (Au), aluminum (Al), indium (In), tin (Sn), Nickel (Ni), rhodium (Rh), platinum (Pt), germanium (Ge), beryllium (Be), gold germanium (AuGe), gold germanium nickel (AuGeNi), beryllium gold (BeAu), gold zinc (AuZn), etc. one or a combination of more. The first electrode 60 and the second electrode 70 can be a single-layer structure or a laminated structure, for example, can be Ti/Au, Ti/Pt/Au, Cr/Au, Cr/Pt/Au, Ni/Au, Ni/Pt /Au, Cr/Al/Cr/Ni/Au, Au/AuGeNi/Au or Au/BeAu/Au, etc. In the illustrated example, the first electrode 60 is a P electrode, and the second electrode 70 is an N electrode.

发光二极管1还可包括钝化层80,以对外延结构20、第二电极70等进行绝缘保护,从而确保发光二极管1整体具有良好的光电性能。钝化层80设置在第二半导体层23上。钝化层80覆盖第二半导体层23远离发光层22的一侧表面中未被第二电极70覆盖的区域,以及第一半导体层21、发光层22和第二半导体层23的侧壁区域。The light emitting diode 1 may further include a passivation layer 80 to insulate and protect the epitaxial structure 20, the second electrode 70, etc., so as to ensure that the light emitting diode 1 as a whole has good photoelectric performance. The passivation layer 80 is disposed on the second semiconductor layer 23 . The passivation layer 80 covers the area of the surface of the second semiconductor layer 23 away from the light-emitting layer 22 not covered by the second electrode 70 , and the sidewall areas of the first semiconductor layer 21 , the light-emitting layer 22 and the second semiconductor layer 23 .

本发明一实施例提供的一种发光二极管1的制备方法,可用于制造具有如前所述结构的发光二极管1。A method for manufacturing a light-emitting diode 1 provided by an embodiment of the present invention can be used to manufacture a light-emitting diode 1 with the aforementioned structure.

结合图1参阅图3,图3为本发明中发光二极管1一实施例的制备方法流程示意图,不过本发明中的发光二极管1的制备方法、流程不限于图3所示。采用如图1所示的发光二极管1的制备方法获取如图1所示的发光二极管1的制备方法流程说明如下。Referring to FIG. 3 in conjunction with FIG. 1 , FIG. 3 is a schematic flowchart of a manufacturing method of an embodiment of the light-emitting diode 1 in the present invention, but the manufacturing method and process of the light-emitting diode 1 in the present invention are not limited to those shown in FIG. 3 . The flow chart of the preparation method for obtaining the light emitting diode 1 shown in FIG. 1 by using the preparation method of the light emitting diode 1 shown in FIG. 1 is described as follows.

发光二极管1的制备方法至少可包括以下步骤:生长外延结构20、制作透明导电层、制作绝缘层50、转移外延结构20。在此以图示所示结构的发光二极管1为例阐明本发明中发光二极管1的制备方法各步骤的具体实施过程。The manufacturing method of the light emitting diode 1 may at least include the following steps: growing the epitaxial structure 20 , making a transparent conductive layer, making an insulating layer 50 , and transferring the epitaxial structure 20 . Here, the light-emitting diode 1 with the structure shown in the figure is taken as an example to illustrate the specific implementation process of each step of the manufacturing method of the light-emitting diode 1 in the present invention.

步骤S11:生长外延结构20Step S11: growing the epitaxial structure 20

如图4所示,提供一生长衬底100,在生长衬底100的上表面依次生长第二半导体层23、发光层22和第一半导体层21,从而在生长衬底100的上表面长成外延结构20。As shown in FIG. 4, a growth substrate 100 is provided, and a second semiconductor layer 23, a light-emitting layer 22, and a first semiconductor layer 21 are sequentially grown on the upper surface of the growth substrate 100, so that Epitaxial structure 20.

图示实施例中,生长衬底100为GaAs衬底。在GaAs衬底100上生长的外延结构20可具有相对的第一表面20a和第二表面20b。外延结构20自第二表面20b至第一表面20a包含依次堆叠的第二半导体层23、发光层22(或称有源层22、活性层22)和第一半导体层21,第二半导体层23为N型半导体层,第一半导体层21为P型半导体层。第一表面20a为第一半导体层21远离发光层22一侧的表面,第二表面20b为第二半导体层23远离发光层22一侧的表面。第一半导体层21中可掺杂有GaP,GaP可设置于第一半导体层21中邻近外延结构20中第一表面20a的区域。In the illustrated embodiment, the growth substrate 100 is a GaAs substrate. The epitaxial structure 20 grown on the GaAs substrate 100 may have opposing first and second surfaces 20a, 20b. The epitaxial structure 20 includes a second semiconductor layer 23, a light emitting layer 22 (or active layer 22, active layer 22) and a first semiconductor layer 21, a second semiconductor layer 23 stacked in sequence from the second surface 20b to the first surface 20a. is an N-type semiconductor layer, and the first semiconductor layer 21 is a P-type semiconductor layer. The first surface 20 a is the surface of the first semiconductor layer 21 away from the light emitting layer 22 , and the second surface 20 b is the surface of the second semiconductor layer 23 away from the light emitting layer 22 . The first semiconductor layer 21 may be doped with GaP, and the GaP may be disposed in a region of the first semiconductor layer 21 adjacent to the first surface 20 a of the epitaxial structure 20 .

步骤S12:制作透明导电层Step S12: Making a transparent conductive layer

如图5所示,在步骤S11中所制得的外延结构20中第一半导体层21远离发光层22的表面(图示例中为外延结构20中的第一表面20a)形成若干个间隔设置的透明导电单元30,并在每个透明导电单元30形成保护层40。保护层40可对透明导电单元30中裸露于第一表面20a的区域进行全覆盖,以形成包覆保护。As shown in FIG. 5 , in the epitaxial structure 20 prepared in step S11, the surface of the first semiconductor layer 21 far away from the light-emitting layer 22 (the first surface 20a in the epitaxial structure 20 in the example shown in the figure) forms several intervals. transparent conductive units 30 , and a protective layer 40 is formed on each transparent conductive unit 30 . The protection layer 40 can completely cover the area of the transparent conductive unit 30 exposed on the first surface 20 a to form a coating protection.

图示例中,第一半导体层21为P型半导体层,若干个间隔设置的透明导电单元30可作为P型半导体层区域的透明导电层,以对P型半导体层区域的电流进行横向扩展,使得发光二极管1中的电流可均匀分布。透明导电单元30可承担欧姆接触层的功能,利于第一半导体层21(P层)区域的电流顺畅导通。In the illustrated example, the first semiconductor layer 21 is a P-type semiconductor layer, and several transparent conductive units 30 arranged at intervals can be used as transparent conductive layers in the P-type semiconductor layer region to laterally expand the current in the P-type semiconductor layer region, so that The current in the LED 1 can be evenly distributed. The transparent conductive unit 30 can assume the function of an ohmic contact layer, which facilitates the smooth conduction of the current in the region of the first semiconductor layer 21 (P layer).

步骤S13:制作绝缘层50Step S13: Making the insulating layer 50

如图6所示,在完成透明导电层制程后,在外延结构20中的第一表面20a上形成一绝缘层50。绝缘层50覆盖保护层40裸露于第一表面20a的区域及第一半导体层21(P层)位于第一表面20a的一侧未被透明导电单元30和保护层40覆盖的区域。绝缘层50可对第一半导体层21(P层)、保护层40进行覆盖保护,还可承担第一半导体层21(P层)区域电流横向扩展的功能。As shown in FIG. 6 , after the process of the transparent conductive layer is completed, an insulating layer 50 is formed on the first surface 20 a of the epitaxial structure 20 . The insulating layer 50 covers the exposed area of the protective layer 40 on the first surface 20 a and the area of the first semiconductor layer 21 (P layer) on the first surface 20 a not covered by the transparent conductive unit 30 and the protective layer 40 . The insulating layer 50 can cover and protect the first semiconductor layer 21 (P layer) and the protective layer 40 , and can also undertake the function of lateral expansion of the current in the region of the first semiconductor layer 21 (P layer).

如图7所示,在一些实施例中,绝缘层50制程后还可包括以下步骤:绝缘层50上设置开孔51及设置镜面反射层12。对绝缘层50中位于保护层40上方对应区域进行刻蚀,形成开孔51以露出保护层40的部分表面,而后于绝缘层50上形成镜面反射层12。镜面反射层12填充开孔51区域和覆盖绝缘层50远离第一半导体层21的一侧表面。镜面反射层12与保护层40相接触,可增加发光二极管1的出光量。As shown in FIG. 7 , in some embodiments, after the insulating layer 50 is manufactured, the following steps may be further included: setting an opening 51 on the insulating layer 50 and setting a specular reflection layer 12 . Etching the corresponding area of the insulating layer 50 above the passivation layer 40 to form an opening 51 to expose part of the surface of the passivation layer 40 , and then forming the specular reflection layer 12 on the insulating layer 50 . The specular reflection layer 12 fills the region of the opening 51 and covers the surface of the insulating layer 50 on a side away from the first semiconductor layer 21 . The specular reflection layer 12 is in contact with the protection layer 40 to increase the light output of the LED 1 .

在绝缘层50上刻蚀形成开孔51的过程中,透明导电单元30因被保护层40完全包覆而不会被刻蚀,进而确保发光二极管1的正向电压(VF)的稳定性。During the process of etching and forming the opening 51 on the insulating layer 50 , the transparent conductive unit 30 will not be etched because it is completely covered by the protection layer 40 , thereby ensuring the stability of the forward voltage (VF) of the LED 1 .

步骤S14:转移外延结构20Step S14: Transferring the epitaxial structure 20

在一些实施例中,在步骤S13中所制得的外延结构20中绝缘层50的表面沉积键合层11,并对该键合层11进行平坦化处理。键合层11可以采用透明材料沉积而成,而后采用抛光法对所形成的透明键合层11进行表面平坦处理,确保外延结构20在转移至其它衬底时具有平整或平坦的接触面,进而使得发光二极管1在外延结构20转移时整体的光电性能不受影响。In some embodiments, the bonding layer 11 is deposited on the surface of the insulating layer 50 in the epitaxial structure 20 prepared in step S13 , and the bonding layer 11 is planarized. The bonding layer 11 can be formed by depositing a transparent material, and then the surface of the formed transparent bonding layer 11 is flattened by polishing to ensure that the epitaxial structure 20 has a flat or flat contact surface when transferred to other substrates, and then The overall photoelectric performance of the light emitting diode 1 is not affected when the epitaxial structure 20 is transferred.

经由键合层11将外延结构20键合于一基板10上,并去除生长衬底100。基板10可以是导电基板、金属基板等,其材质可依据发光二极管1的实际需求情况而选取、确定。图示例中,外延结构20中第一半导体层21一侧通过键合层11与一基板10相键合。The epitaxial structure 20 is bonded on a substrate 10 through the bonding layer 11, and the growth substrate 100 is removed. The substrate 10 can be a conductive substrate, a metal substrate, etc., and its material can be selected and determined according to the actual requirements of the light emitting diode 1 . In the illustrated example, one side of the first semiconductor layer 21 in the epitaxial structure 20 is bonded to a substrate 10 through the bonding layer 11 .

如图8所示,在另一些实施例中,绝缘层50的表面设置有镜面反射层12,再于镜面反射层12上沉积形成有键合层11,并对该键合层11进行平坦化处理。外延结构20经由键合层11键合至基板10上,并去除生长衬底100。镜面反射层12设置与否及其厚度,可依据发光二极管1的实际需求情况而确定。As shown in FIG. 8 , in some other embodiments, a specular reflection layer 12 is provided on the surface of the insulating layer 50, and then a bonding layer 11 is deposited and formed on the specular reflection layer 12, and the bonding layer 11 is planarized. deal with. The epitaxial structure 20 is bonded to the substrate 10 via the bonding layer 11, and the growth substrate 100 is removed. Whether the specular reflection layer 12 is provided or not and its thickness can be determined according to the actual demand of the light emitting diode 1 .

在转移外延结构20的制程步骤之后,发光二极管1的制备方法还可包括步骤:设置电极60/70。第一电极60设置于基板10远离键合层11的一侧,且与第一半导体层21电性连接。第二电极70设置于第二半导体层23远离发光层22的一侧,且与第二半导体层23电性连接。第二半导体层23上还可设置有钝化层80。钝化层80覆盖第二半导体层23远离发光层22的一侧表面中未被第二电极70覆盖的区域,以及第一半导体层21、发光层22和第二半导体层23的侧壁区域。钝化层80可对外延结构20、第二电极70等进行绝缘保护,从而确保发光二极管1整体具有良好的光电性能。After the process step of transferring the epitaxial structure 20 , the manufacturing method of the light emitting diode 1 may further include a step of: disposing the electrodes 60 / 70 . The first electrode 60 is disposed on a side of the substrate 10 away from the bonding layer 11 and is electrically connected to the first semiconductor layer 21 . The second electrode 70 is disposed on a side of the second semiconductor layer 23 away from the light emitting layer 22 , and is electrically connected to the second semiconductor layer 23 . A passivation layer 80 may also be disposed on the second semiconductor layer 23 . The passivation layer 80 covers the area of the surface of the second semiconductor layer 23 away from the light-emitting layer 22 not covered by the second electrode 70 , and the sidewall areas of the first semiconductor layer 21 , the light-emitting layer 22 and the second semiconductor layer 23 . The passivation layer 80 can insulate and protect the epitaxial structure 20, the second electrode 70, etc., so as to ensure that the light-emitting diode 1 as a whole has good photoelectric performance.

本发明所提供的一种发光二极管1中,若干个间隔分布的透明导电单元30、保护层40和绝缘层50的设置,可防止透明导电单元30在制程中不被刻蚀且具有足够的厚度,有利于第一半导体层21(P层)区域的电流导通和电流的均匀分布,进而确保发光二极管1中正向电压(VF)的稳定性和均匀性,可降低发光二极管1的制造成本。另外,发光二极管1中,绝缘层50与键合层11之间设置的镜面反射层12可增加发光二极管1的出光量,提升发光二极管1的整体发光性能。本发明所提供的一种发光二极管1的整体设置,可提升发光二极管的可靠性以确保芯片具有近于设计要求的光电性能。In a light-emitting diode 1 provided by the present invention, the arrangement of several transparent conductive units 30 distributed at intervals, the protective layer 40 and the insulating layer 50 can prevent the transparent conductive unit 30 from being etched during the manufacturing process and have a sufficient thickness , which is conducive to the current conduction and uniform distribution of the current in the first semiconductor layer 21 (P layer) region, thereby ensuring the stability and uniformity of the forward voltage (VF) in the light emitting diode 1 and reducing the manufacturing cost of the light emitting diode 1 . In addition, in the light-emitting diode 1 , the specular reflection layer 12 disposed between the insulating layer 50 and the bonding layer 11 can increase the light output of the light-emitting diode 1 and improve the overall light-emitting performance of the light-emitting diode 1 . The overall arrangement of the light emitting diode 1 provided by the present invention can improve the reliability of the light emitting diode to ensure that the chip has the photoelectric performance close to the design requirement.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (15)

1.一种发光二极管,其特征在于:至少包括:1. A light-emitting diode, characterized in that: at least comprising: 外延结构,具有相对的第一表面和第二表面,自所述第一表面至所述第二表面包含依次堆叠的第一半导体层、发光层和第二半导体层;an epitaxial structure having opposite first and second surfaces, comprising a first semiconductor layer, a light emitting layer and a second semiconductor layer stacked in sequence from the first surface to the second surface; 若干个透明导电单元,间隔地设置于所述第一半导体层远离所述发光层的表面上;Several transparent conductive units are arranged at intervals on the surface of the first semiconductor layer away from the light-emitting layer; 保护层,形成于各个所述透明导电单元上,并包覆各个所述透明导电单元;a protective layer formed on each of the transparent conductive units and covering each of the transparent conductive units; 绝缘层,形成于所述保护层上,并露出所述保护层的部分表面。The insulating layer is formed on the protection layer and exposes part of the surface of the protection layer. 2.根据权利要求1所述的发光二极管,其特征在于:相邻两个所述透明导电单元之间的间距为10μm至40μm。2 . The light emitting diode according to claim 1 , wherein the distance between two adjacent transparent conductive units is 10 μm to 40 μm. 3.根据权利要求1所述的发光二极管,其特征在于:所述透明导电单元的横截面为规则图形、非规则图形中的一种。3. The light emitting diode according to claim 1, characterized in that: the cross-section of the transparent conductive unit is one of a regular pattern and an irregular pattern. 4.根据权利要求3所述的发光二极管,其特征在于:所述透明导电单元的横截面为圆形,所述圆形的直径为10μm至20μm。4 . The light emitting diode according to claim 3 , wherein the cross section of the transparent conductive unit is a circle, and the diameter of the circle is 10 μm to 20 μm. 5.根据权利要求1所述的发光二极管,其特征在于:所述透明导电单元的厚度为0埃至500埃,所述透明导电单元为具有高透明、高电导率、低接触电阻的氧化物材料。5. The light emitting diode according to claim 1, characterized in that: the thickness of the transparent conductive unit is 0 angstroms to 500 angstroms, and the transparent conductive unit is an oxide with high transparency, high conductivity and low contact resistance Material. 6.根据权利要求1所述的发光二极管,其特征在于:所述保护层的厚度为100埃至200埃,所述保护层至少为Au、Cr、Ni、Pt中的一种。6 . The light emitting diode according to claim 1 , wherein the protective layer has a thickness of 100 angstroms to 200 angstroms, and the protective layer is at least one of Au, Cr, Ni, and Pt. 7.根据权利要求1所述的发光二极管,其特征在于:所述保护层与所述第一半导体层远离所述发光层的表面之间具有一倾斜角,所述倾斜角为30度至60度。7. The light-emitting diode according to claim 1, wherein there is an inclination angle between the protective layer and the surface of the first semiconductor layer away from the light-emitting layer, and the inclination angle is 30° to 60° Spend. 8.根据权利要求1所述的发光二极管,其特征在于:所述透明导电单元在所述第一半导体层的投影位于所述保护层在所述第一半导体层的投影范围内,在所述第一半导体层远离所述发光层的表面沿水平方向,所述透明导电单元的端点与其上的所述保护层的端点之间的间距为1μm至5μm。8. The light emitting diode according to claim 1, characterized in that: the projection of the transparent conductive unit on the first semiconductor layer is located within the projection range of the protective layer on the first semiconductor layer, in the The surface of the first semiconductor layer away from the light-emitting layer is along the horizontal direction, and the distance between the end of the transparent conductive unit and the end of the protection layer thereon is 1 μm to 5 μm. 9.根据权利要求1所述的发光二极管,其特征在于:所述若干个透明导电单元的总面积为大于所述第一半导体层远离所述发光层的总面积的5%。9. The light emitting diode according to claim 1, wherein the total area of the plurality of transparent conductive units is greater than 5% of the total area of the first semiconductor layer away from the light emitting layer. 10.根据权利要求1所述的发光二极管,其特征在于:所述绝缘层上设有开孔,所述开孔在所述第一半导体层的投影位于所述透明导电单元在所述第一半导体层的投影范围内。10. The light emitting diode according to claim 1, characterized in that: the insulating layer is provided with an opening, and the projection of the opening on the first semiconductor layer is located at the position of the transparent conductive unit on the first semiconductor layer. Within the projection range of the semiconductor layer. 11.根据权利要求1至10任一项所述的发光二极管,其特征在于:所述发光二极管还包括基板,所述外延结构中的所述第一半导体层通过键合层与所述基板相键合。11. The light emitting diode according to any one of claims 1 to 10, wherein the light emitting diode further comprises a substrate, and the first semiconductor layer in the epitaxial structure is in contact with the substrate through a bonding layer. Bond. 12.根据权利要求11所述的发光二极管,其特征在于:所述绝缘层与所述键合层之间设有镜面反射层。12 . The light emitting diode according to claim 11 , wherein a specular reflective layer is disposed between the insulating layer and the bonding layer. 13 . 13.根据权利要求11所述的发光二极管,其特征在于:所述发光二极管还包括:13. The light emitting diode according to claim 11, characterized in that: said light emitting diode further comprises: 第一电极,设置于所述基板远离所述键合层的一侧,且与所述第一半导体层电性连接;a first electrode, disposed on a side of the substrate away from the bonding layer, and electrically connected to the first semiconductor layer; 第二电极,设置于所述第二半导体层远离所述发光层的一侧,且与所述第二半导体层电性连接;a second electrode, disposed on a side of the second semiconductor layer away from the light-emitting layer, and electrically connected to the second semiconductor layer; 钝化层,设于所述第二半导体层上,覆盖所述第二半导体层远离所述发光层的一侧表面中未被所述第二电极覆盖的区域,以及所述第一半导体层、所述发光层和所述第二半导体层的侧壁区域。a passivation layer, disposed on the second semiconductor layer, covering the area of the second semiconductor layer not covered by the second electrode on the surface of the second semiconductor layer away from the light-emitting layer, and the first semiconductor layer, The light-emitting layer and the sidewall regions of the second semiconductor layer. 14.一种发光二极管的制备方法,其特征在于,所述制备方法至少包括:14. A method for preparing a light-emitting diode, characterized in that the method at least comprises: 生长外延结构,在一生长衬底上依次生长第二半导体层、发光层和第一半导体层,以形成外延结构;growing an epitaxial structure, sequentially growing a second semiconductor layer, a light emitting layer and a first semiconductor layer on a growth substrate to form an epitaxial structure; 制作透明导电层,在所述第一半导体层远离所述发光层的表面形成若干个间隔设置的透明导电单元,并在每个所述透明导电单元形成保护层;Making a transparent conductive layer, forming several transparent conductive units arranged at intervals on the surface of the first semiconductor layer away from the light-emitting layer, and forming a protective layer on each of the transparent conductive units; 制作绝缘层,在所述保护层上形成绝缘层,并露出所述保护层的部分表面;making an insulating layer, forming an insulating layer on the protective layer, and exposing part of the surface of the protective layer; 转移外延结构,所述外延结构中所述第一半导体层一侧通过键合层与一基板相键合,并去除所述生长衬底。transferring an epitaxial structure, in which one side of the first semiconductor layer is bonded to a substrate through a bonding layer, and removing the growth substrate. 15.根据权利要求14所述的发光二极管的制备方法,其特征在于:在实施所述转移外延结构的步骤前,还包括以下步骤:15. The method for manufacturing a light-emitting diode according to claim 14, characterized in that: before implementing the step of transferring the epitaxial structure, the following steps are further included: 绝缘层开孔,在所述绝缘层中位于所述保护层的上方设置开孔,所述开孔露出所述保护层的部分表面;以及an opening in the insulating layer, an opening is provided in the insulating layer above the protective layer, and the opening exposes a part of the surface of the protective layer; and 设置镜面反射层,于所述绝缘层上形成镜面反射层,所述镜面反射层覆盖所述开孔和所述绝缘层远离所述第一半导体层的一侧表面。A specular reflection layer is provided to form a specular reflection layer on the insulating layer, and the specular reflection layer covers the opening and the surface of the insulating layer on a side away from the first semiconductor layer.
CN202211003671.4A 2022-08-19 2022-08-19 Light-emitting diode and method of making the same Pending CN115332423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211003671.4A CN115332423A (en) 2022-08-19 2022-08-19 Light-emitting diode and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211003671.4A CN115332423A (en) 2022-08-19 2022-08-19 Light-emitting diode and method of making the same

Publications (1)

Publication Number Publication Date
CN115332423A true CN115332423A (en) 2022-11-11

Family

ID=83926869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211003671.4A Pending CN115332423A (en) 2022-08-19 2022-08-19 Light-emitting diode and method of making the same

Country Status (1)

Country Link
CN (1) CN115332423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136759A (en) * 2024-04-30 2024-06-04 南昌凯捷半导体科技有限公司 A reverse polarity LED chip and its manufacturing method
CN118867096A (en) * 2024-09-25 2024-10-29 西湖烟山科技(杭州)有限公司 A light emitting diode structure and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200903850A (en) * 2007-07-10 2009-01-16 Delta Electronics Inc Light emitting diode apparatus and manufacturing method thereof
CN101937960A (en) * 2010-08-20 2011-01-05 厦门市三安光电科技有限公司 A vertical structure AlGaInP light-emitting diode and its manufacturing method
CN103700734A (en) * 2012-09-28 2014-04-02 上海蓝光科技有限公司 Manufacturing method of light-emitting diode
US20150021639A1 (en) * 2013-07-17 2015-01-22 Genesis Photonics Inc. Light emitting diode structure
CN108461508A (en) * 2018-03-06 2018-08-28 友达光电股份有限公司 Display device and method for manufacturing the same
CN113921676A (en) * 2021-09-14 2022-01-11 厦门三安光电有限公司 Light emitting diode and light emitting module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200903850A (en) * 2007-07-10 2009-01-16 Delta Electronics Inc Light emitting diode apparatus and manufacturing method thereof
CN101937960A (en) * 2010-08-20 2011-01-05 厦门市三安光电科技有限公司 A vertical structure AlGaInP light-emitting diode and its manufacturing method
CN103700734A (en) * 2012-09-28 2014-04-02 上海蓝光科技有限公司 Manufacturing method of light-emitting diode
US20150021639A1 (en) * 2013-07-17 2015-01-22 Genesis Photonics Inc. Light emitting diode structure
CN108461508A (en) * 2018-03-06 2018-08-28 友达光电股份有限公司 Display device and method for manufacturing the same
CN113921676A (en) * 2021-09-14 2022-01-11 厦门三安光电有限公司 Light emitting diode and light emitting module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨雨其;张莉;王瑞雪;范昌君;杨晓晖;: "以环氧化的聚氮丙啶(PEIE)作为电子注入层的有机发光器件的研究", 西南师范大学学报(自然科学版), no. 05, 20 May 2015 (2015-05-20) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136759A (en) * 2024-04-30 2024-06-04 南昌凯捷半导体科技有限公司 A reverse polarity LED chip and its manufacturing method
CN118867096A (en) * 2024-09-25 2024-10-29 西湖烟山科技(杭州)有限公司 A light emitting diode structure and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI758400B (en) Light-emitting device
US9455378B2 (en) High efficiency light emitting diode and method for fabricating the same
CN111433921A (en) a light emitting diode
CN113707782B (en) Flip-chip light emitting diode and preparation method thereof
CN115332423A (en) Light-emitting diode and method of making the same
KR101719623B1 (en) Light emitting diode
TWI718358B (en) Light-emitting device
CN114141925B (en) Light emitting diode
KR101203138B1 (en) Luminous device and the method therefor
CN115295695A (en) Light-emitting diode and method of making the same
KR20080079844A (en) Vertical Light Emitting Diode and Manufacturing Method Thereof
CN115799413A (en) Micro light-emitting diode and light-emitting device
CN115224173A (en) Light-emitting diode, light-emitting device and manufacturing method thereof
KR20110083290A (en) Semiconductor light emitting device and manufacturing method thereof
CN114284411B (en) Light emitting diode and preparation method thereof
KR102794687B1 (en) Light-emitting device
TWI864391B (en) Light-emitting element
TWI870695B (en) Light-emitting element and method for manufacturing the same
CN103682027A (en) Light emitting device and method for manufacturing the same
CN117878210A (en) Light emitting diode and display device
TWI804437B (en) Light-emitting device
CN117199211A (en) Light emitting diode and method of manufacturing the same
WO2024087087A1 (en) Light-emitting diode and light-emitting device
KR101633814B1 (en) light emitting device
CN119855317A (en) Light emitting diode and light emitting device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination