CN115332377A - Double-groove type silicon carbide neutron detector - Google Patents
Double-groove type silicon carbide neutron detector Download PDFInfo
- Publication number
- CN115332377A CN115332377A CN202210993292.8A CN202210993292A CN115332377A CN 115332377 A CN115332377 A CN 115332377A CN 202210993292 A CN202210993292 A CN 202210993292A CN 115332377 A CN115332377 A CN 115332377A
- Authority
- CN
- China
- Prior art keywords
- groove
- trench
- silicon carbide
- double
- neutron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 68
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 abstract description 26
- 239000004065 semiconductor Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009501 film coating Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/29—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to radiation having very short wavelengths, e.g. X-rays, gamma-rays or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1215—The active layers comprising only Group IV materials comprising at least two Group IV elements, e.g. SiGe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体中子探测领域,尤其涉及一种双沟槽型碳化硅中子探测器。The invention relates to the field of semiconductor neutron detection, in particular to a double-groove silicon carbide neutron detector.
背景技术Background technique
半导体中子探测器一般由中子转换材料和半导体二极管组成,由于中子不带电,因此在穿过半导体材料时不会发生电离反应,但是中子会与转换材料发生核反应而产生次级带电粒子,这些次级带电粒子在通过半导体二极管器件时可以电离出大量的电子空穴对,通过外接电极对这些电子空穴对进行收集便可以间接实现对中子的探测。中子探测器广泛应用于航天器上宇宙射线检测和辐射检测,以及对反应堆核材料的核功率测量和堆芯中子注量率的分布测量。Semiconductor neutron detectors are generally composed of neutron conversion materials and semiconductor diodes. Since neutrons are not charged, ionization reactions will not occur when passing through semiconductor materials, but neutrons will undergo nuclear reactions with conversion materials to produce secondary charged particles. , these secondary charged particles can ionize a large number of electron-hole pairs when passing through the semiconductor diode device, and the detection of neutrons can be realized indirectly by collecting these electron-hole pairs through external electrodes. Neutron detectors are widely used in cosmic ray detection and radiation detection on spacecraft, as well as nuclear power measurement of reactor nuclear materials and distribution measurement of neutron fluence rate in the core.
基于硅(Si)、锗(Ge)等常规半导体材料制备的中子探测器只能在低温或常温环境作业,同时辐射损伤还会降低其性能,因而不能应用于高温强辐射等极端环境中的中子探测。基于第三代宽带隙半导体材料4H-SiC制成的中子探测器具有能量线性度好、禁带能宽、耐高温、抗辐射等众多优点。相比于3He正比计数管、塑料闪烁体探测器和常规的半导体中子探测器,4H-SiC中子探测器具有无可比拟的优势。Neutron detectors based on conventional semiconductor materials such as silicon (Si) and germanium (Ge) can only operate in low temperature or normal temperature environments, and radiation damage will also reduce their performance, so they cannot be used in extreme environments such as high temperature and strong radiation. Neutron detection. The neutron detector based on the third-generation wide-
平面型的碳化硅中子探测器由于中子转换材料的自吸收作用,导致中子探测效率不会高于5%。而沟槽型碳化硅中子探测器可以通过提升转换材料的填充量和次级粒子进入SiC检测器中的概率,进而可以大幅提升中子探测效率。单沟槽型的碳化硅中子探测器可在单个元胞中刻蚀出多个宽度相同的沟槽,然后将中子转换材料填充到沟槽中,相比之下传统的单沟槽型结构中子探测器由于填充的中子转换材料单一,导致本征探测效率较低。The neutron detection efficiency of the planar silicon carbide neutron detector will not be higher than 5% due to the self-absorption of the neutron conversion material. The trench-type silicon carbide neutron detector can greatly improve the neutron detection efficiency by increasing the filling amount of the conversion material and the probability of secondary particles entering the SiC detector. The single-trench silicon carbide neutron detector can etch multiple trenches with the same width in a single cell, and then fill the trenches with neutron conversion material, compared with the traditional single-trench Structural neutron detectors are filled with a single neutron conversion material, resulting in low intrinsic detection efficiency.
发明内容Contents of the invention
本发明提供一种双沟槽型碳化硅中子探测器,以克服传统单沟槽型结构中子探测器探测效率低的问题。The invention provides a double-groove silicon carbide neutron detector to overcome the problem of low detection efficiency of the traditional single-groove structure neutron detector.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, technical scheme of the present invention is:
一种双沟槽型碳化硅中子探测器,包括:4H-SiC衬底、4H-SiC外延层、离子注入形成的P+区、多个宽度不同的第一沟槽和第二沟槽;A double-trench silicon carbide neutron detector, comprising: a 4H-SiC substrate, a 4H-SiC epitaxial layer, a P + region formed by ion implantation, a plurality of first trenches and second trenches with different widths;
所述4H-SiC外延层在4H-SiC衬底的上方,4H-SiC外延层正面开设第一沟槽和第二沟槽,所述第一沟槽和第二沟槽交错排列;The 4H-SiC epitaxial layer is above the 4H-SiC substrate, and the front side of the 4H-SiC epitaxial layer is provided with a first groove and a second groove, and the first groove and the second groove are arranged alternately;
所述离子注入形成的P+区在所述第一沟槽和第二沟槽的内壁、底面和台阶面上;The P + region formed by the ion implantation is on the inner wall, bottom surface and step surface of the first trench and the second trench;
所述中子转换材料在第一沟槽和第二沟槽内。The neutron conversion material is within the first trench and the second trench.
进一步地,还包括P型欧姆接触电极和N型欧姆接触电极,所述P型欧姆接触电极在所述4H-SiC外延层台面上的离子注入形成的P+区上方,所述N型欧姆接触电极在所述4H-SiC外延层背面。Further, it also includes a P-type ohmic contact electrode and an N-type ohmic contact electrode, the P-type ohmic contact electrode is above the P + region formed by ion implantation on the 4H-SiC epitaxial layer mesa, and the N-type ohmic contact electrode The electrodes are on the back of the 4H-SiC epitaxial layer.
进一步地,中子转换材料包括10B粉末和6LiF粉末,10B粉末在所述第一沟槽内,6LiF粉末在所述第二沟槽内。Further, the neutron conversion material includes 10 B powder and 6 LiF powder, the 10 B powder is in the first groove, and the 6 LiF powder is in the second groove.
进一步地,所述第一沟槽的宽度范围为1-10μm,所述第二沟槽的宽度范围为10-50μm。Further, the first groove has a width in the range of 1-10 μm, and the second groove has a width in the range of 10-50 μm.
进一步地,所述第一沟槽和第二沟槽的深度均为25μm。Further, the depths of the first groove and the second groove are both 25 μm.
进一步地,所述第一沟槽和第二沟槽之间的4H-SiC外延层的台面区域的宽度取值范围为1-10μm。Further, the width of the mesa region of the 4H-SiC epitaxial layer between the first trench and the second trench is in the range of 1-10 μm.
有益效果:本发明提出的双沟槽型碳化硅中子探测器,相较于传统的单沟槽型碳化硅中子探测器,充分利用了10B和6LiF与热中子发生核反应的特点,由于10B的热中子捕获截面较大,但反应产物能量低且射程短,因此被填充在沟槽宽度较小的沟槽内部,既可保证中子的吸收量又可保证反应产物很容易就进入到SiC检测器区域;在沟槽宽度较大的沟槽内部填充6LiF材料是因为6LiF与热中子的反应产物能量较大很容易进入到SiC检测器区域。针对碳化硅只能做浅沟槽刻蚀技术现状下,双沟槽型结构相较于单沟槽型结构不需要增加沟槽深度就可使本征探测效率大幅提升。Beneficial effects: Compared with the traditional single-groove silicon carbide neutron detector, the dual-groove silicon carbide neutron detector proposed by the present invention makes full use of the characteristics of nuclear reactions between 10 B and 6 LiF and thermal neutrons , because 10 B has a large thermal neutron capture cross-section, but the reaction product has low energy and short range, so it is filled inside the trench with a small trench width, which can not only ensure the neutron absorption amount but also ensure that the reaction product is very small. It is easy to enter the SiC detector area; the reason why the 6 LiF material is filled inside the trench with a larger trench width is that the reaction product of 6 LiF and thermal neutrons has higher energy and can easily enter the SiC detector area. In view of the current situation that silicon carbide can only be used for shallow trench etching technology, compared with the single trench structure, the double trench structure can greatly improve the intrinsic detection efficiency without increasing the trench depth.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是现有技术中传统平面型碳化硅中子探测器结构示意图;Fig. 1 is a schematic structural diagram of a traditional planar silicon carbide neutron detector in the prior art;
图2是现有技术中传统单沟槽型碳化硅中子探测器结构示意图;Fig. 2 is a schematic structural diagram of a traditional single-groove silicon carbide neutron detector in the prior art;
图3是本发明的双沟槽型碳化硅中子探测器结构示意图;Fig. 3 is a schematic structural diagram of a double-groove silicon carbide neutron detector of the present invention;
图4是三种结构探测效率随着LLD的变化情况示意图;Figure 4 is a schematic diagram of the variation of detection efficiency of three structures with LLD;
图5是三种结构探测效率的比较示意图;Figure 5 is a schematic diagram of the comparison of detection efficiencies of the three structures;
图6是三种结构的能量淀积谱。Figure 6 is the energy deposition spectrum of the three structures.
附图标记:1、4H-SiC衬底;2、4H-SiC外延层;3、离子注入形成的P+区;4、P型欧姆接触电极;5、N型欧姆接触电极;6、第一沟槽;7、第二沟槽。Reference signs: 1. 4H-SiC substrate; 2. 4H-SiC epitaxial layer; 3. P + region formed by ion implantation; 4. P-type ohmic contact electrode; 5. N-type ohmic contact electrode; 6. First Groove; 7, the second groove.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
实施例1Example 1
本实施例提供了一种双沟槽型碳化硅中子探测器,如图3所示,包括:4H-SiC衬底1、设置在4H-SiC衬底1上方的4H-SiC外延层2、开设在4H-SiC外延层2正面的宽度为2.5μm的第一沟槽6和宽度为15μm的第二沟槽7,所述第一沟槽6和第二沟槽7交错设置,所述第一沟槽6内回填有中子转换材料10B,所述第二沟槽7内回填有中子转换材料6LiF;所述第一沟槽6和第二沟槽7的侧壁、底面及台面均有离子注入形成的P+区3;所述4H-SiC外延层2正面台面上设有P型欧姆接触电极4,背面台面上设有N型欧姆接触电极5。This embodiment provides a double-trench type silicon carbide neutron detector, as shown in FIG. The
如图1所示为传统平面型碳化硅中子探测器,只在4H-SiC二极管的正面淀积一层中子转换材料;As shown in Figure 1, it is a traditional planar silicon carbide neutron detector, and only a layer of neutron conversion material is deposited on the front of the 4H-SiC diode;
如图2所示为单沟槽型碳化硅中子探测器,只在4H-SiC外延层2的正面进行等间距的沟槽刻蚀,然后将同一种中子转换材料回填到沟槽内;As shown in Figure 2, it is a single-groove silicon carbide neutron detector, and only grooves are etched at equal intervals on the front side of the 4H-SiC
相比于图1、图2中所示的平面型和单沟槽型碳化硅中子探测器,本发明提供的一种双沟槽型碳化硅中子探测器不仅能增加中子转换材料的填充量,还能在不同宽度的沟槽中回填两种中子转换材料,进一步提高本征探测效率。Compared with the planar and single-groove silicon carbide neutron detectors shown in Fig. 1 and Fig. 2, a double-groove silicon carbide neutron detector provided by the present invention can not only increase the neutron conversion material The amount of filling can also be backfilled with two types of neutron conversion materials in trenches of different widths, further improving the intrinsic detection efficiency.
实施例2Example 2
在本实施例中,如图4所示,采用蒙特卡洛软件Geant4对图1、图2、图3这三种结构的中子探测器结构的本征中子探测效率进行仿真验证和对比讨论,以验证本发明提出的双沟槽型碳化硅中子探测器结构的优势。In this embodiment, as shown in Figure 4, the Monte Carlo software Geant4 is used to perform simulation verification and comparative discussion on the intrinsic neutron detection efficiency of the neutron detector structures of the three structures shown in Figure 1, Figure 2, and Figure 3 , to verify the advantages of the double-groove silicon carbide neutron detector structure proposed by the present invention.
在本实施例中,当取值为最佳方案:第一沟槽6的宽度为2.5μm、第二沟槽7的宽度为15μm、第一沟槽6与第二沟槽7的深度均为25μm、第一沟槽6与第二沟槽7之间的4H-SiC外延层2的台面区域宽度为2μm时,平面型中子探测器的探测效率随着LLD的变化最小,即稳定性最好;而双沟槽型中子探测器的探测效率随着LLD变化最大,即稳定性最差。由于伽马射线和背景噪声的存在会对探测器的能谱测量结果造成干扰,但是在实际应用中通过将LLD设置为300keV时就可以完全滤除掉这些干扰。此外当LLD为300keV时双沟槽型中子探测器的拥有着最高的探测效率,显著的提升了器件的探测性能。In this embodiment, when the value is the best solution: the width of the
实施例3Example 3
在本实施例中,如图5所示,为三种中子探测器结构在LLD设置在300keV时探测效率的比较,可以看出,当取值为实施例2中的最佳方案时,与平面型结构相比,单沟槽型探测器的中子探测效率提升了3.5%;而与单沟槽型结构相比,双沟槽型探测器的中子探测效率提升了4.6%。显然,本发明提出的双沟槽型碳化硅中子探测器可以有效提升探测效率;而且从碳化硅的工艺出发,深沟槽刻蚀是很难实现的,而本发明提出的双沟槽型结构可以在有限的沟槽深度内尽可能的提升中子探测效率。In the present embodiment, as shown in Figure 5, it is the comparison of the detection efficiency when the LLD is set at 300keV for three kinds of neutron detector structures, it can be seen that when the value is the best solution in the
实施例4Example 4
在本实施例中,如图6所示,为三种结构中子探测器的能量淀积谱。为满足动量守恒定律,热中子与中子转换材料发生核反应后的产物将以相反的两个方向喷射。因此对于平面型碳化硅中子探测器,每次核反应后只有一个次级粒子可以进入碳化硅区域并被检测到,而对于沟槽式碳化硅中子探测器,每次核反应后,两个次级粒子可以一起进入碳化硅检测器。结合图6的能量淀积谱可以发现,薄膜涂层探测器在2.05MeV左侧可以看到明显的α峰,在2.73MeV左侧可以看到明显的3H峰,能量截断值是能量较高的3H粒子的能量值。综上,单沟槽型探测器的计数在整个能谱上都高于薄膜涂层探测器,并且在能谱中有能量高于2.73MeV的计数,是α和3H粒子一起进入碳化硅区域形成的高能峰。In this embodiment, as shown in FIG. 6 , it is the energy deposition spectrum of neutron detectors with three structures. In order to satisfy the law of conservation of momentum, the products of the nuclear reaction between thermal neutrons and neutron conversion materials will be ejected in two opposite directions. Therefore, for planar SiC neutron detectors, only one secondary particle can enter the SiC region and be detected after each nuclear reaction, while for trench SiC neutron detectors, after each nuclear reaction, two secondary particles Class particles can enter the silicon carbide detector together. Combined with the energy deposition spectrum in Figure 6, it can be found that the thin-film coating detector can see an obvious α peak on the left side of 2.05MeV, and an obvious 3H peak can be seen on the left side of 2.73MeV, and the energy cutoff value is higher energy The energy value of the 3H particle. In summary, the counts of single-groove detectors are higher than those of thin-film coating detectors in the entire energy spectrum, and there are counts with energy higher than 2.73MeV in the energy spectrum, which is formed by the entry of α and 3H particles into the silicon carbide region. high energy peak.
与单沟槽型探测器相比,双沟槽型中子探测器的计数在低能区显著增加,在高能区仅略有下降,这主要是由于热中子和10B的反应产物的能量较低,因此贡献了大量的低能范围计数。由于探测器的表面积固定为1x1cm2,所以插入10B沟槽将导致6LiF填充减少,使6LiF与热中子之间的反应产物数量略有减少,从而导致高能区的数量略有下降。对于单沟槽型和双沟槽型碳化硅中子探测器,由于沟槽间隙较小,次级粒子只能将部分能量沉积在碳化硅区域,导致在1MeV以下的低能范围内出现大量计数,因此,当LLD从0增加到1MeV时,沟槽型探测器的检测效率将显著下降。此外,10B沟槽的高热中子吸收截面会增加热中子的吸收概率,大幅增加低能区的计数,而仅略微减少高能区的计数,这也是双沟槽型碳化硅中子探测器的本征探测效率较单沟槽型结构有显著提高的本质原因。Compared with the single-trench detector, the count of the double-trench neutron detector increases significantly in the low-energy region and only slightly decreases in the high-energy region, which is mainly due to the lower energy of the reaction products of thermal neutrons and 10 B. Low, thus contributing a large number of low-energy range counts. Since the surface area of the detector is fixed at 1x1 cm 2 , insertion of the 10 B trench will result in a decrease in the filling of 6 LiF and a slight reduction in the number of reaction products between 6 LiF and thermal neutrons, resulting in a slight decrease in the number of high energy regions. For single-trench and double-trench neutron detectors, secondary particles can only deposit part of their energy in the SiC region due to the small gap between the trenches, resulting in a large number of counts in the low-energy range below 1 MeV, Therefore, when the LLD increases from 0 to 1 MeV, the detection efficiency of the trench detector will drop significantly. In addition, the high thermal neutron absorption cross-section of the 10 B groove will increase the absorption probability of thermal neutrons, greatly increase the count in the low-energy region, and only slightly reduce the count in the high-energy region, which is also the advantage of the double-trench silicon carbide neutron detector. The intrinsic reason why the intrinsic detection efficiency is significantly improved compared with the single trench structure.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210993292.8A CN115332377A (en) | 2022-08-18 | 2022-08-18 | Double-groove type silicon carbide neutron detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210993292.8A CN115332377A (en) | 2022-08-18 | 2022-08-18 | Double-groove type silicon carbide neutron detector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115332377A true CN115332377A (en) | 2022-11-11 |
Family
ID=83926087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210993292.8A Pending CN115332377A (en) | 2022-08-18 | 2022-08-18 | Double-groove type silicon carbide neutron detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115332377A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050258372A1 (en) * | 2002-10-29 | 2005-11-24 | Mcgregor Douglas S | High-efficiency neutron detectors and methods of making same |
CN107407624A (en) * | 2014-12-23 | 2017-11-28 | 贺利氏传感器技术有限责任公司 | For detecting sensor, sensing system, the method for operating sensor, the manufacture method of this type sensor and this type sensor applications of conductive and/or polarizable particle |
CN111490124A (en) * | 2020-03-30 | 2020-08-04 | 杭州电子科技大学 | Step-type micro-trench neutron detector and preparation method thereof |
CN113189637A (en) * | 2021-06-07 | 2021-07-30 | 杭州电子科技大学 | Silicon carbide neutron detector based on double-sided T-shaped grooves |
CN113206166A (en) * | 2021-04-27 | 2021-08-03 | 杭州电子科技大学 | Trench type silicon carbide neutron detector based on double conversion layers |
CN114156292A (en) * | 2021-10-29 | 2022-03-08 | 中国科学院微电子研究所 | A kind of silicon pixel detector and preparation method thereof |
-
2022
- 2022-08-18 CN CN202210993292.8A patent/CN115332377A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050258372A1 (en) * | 2002-10-29 | 2005-11-24 | Mcgregor Douglas S | High-efficiency neutron detectors and methods of making same |
CN107407624A (en) * | 2014-12-23 | 2017-11-28 | 贺利氏传感器技术有限责任公司 | For detecting sensor, sensing system, the method for operating sensor, the manufacture method of this type sensor and this type sensor applications of conductive and/or polarizable particle |
CN111490124A (en) * | 2020-03-30 | 2020-08-04 | 杭州电子科技大学 | Step-type micro-trench neutron detector and preparation method thereof |
CN113206166A (en) * | 2021-04-27 | 2021-08-03 | 杭州电子科技大学 | Trench type silicon carbide neutron detector based on double conversion layers |
CN113189637A (en) * | 2021-06-07 | 2021-07-30 | 杭州电子科技大学 | Silicon carbide neutron detector based on double-sided T-shaped grooves |
CN114156292A (en) * | 2021-10-29 | 2022-03-08 | 中国科学院微电子研究所 | A kind of silicon pixel detector and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McGregor et al. | Present status of microstructured semiconductor neutron detectors | |
US20130154438A1 (en) | Power-Scalable Betavoltaic Battery | |
RU2452060C2 (en) | Beta radiation-to-electrical energy semiconductor converter | |
CN111490124A (en) | Step-type micro-trench neutron detector and preparation method thereof | |
Nikolic et al. | 6: 1 aspect ratio silicon pillar based thermal neutron detector filled with 10 B | |
CN113206166A (en) | Trench type silicon carbide neutron detector based on double conversion layers | |
KR20120071241A (en) | Apparatus for beta-battery and method of making same | |
CN102956739B (en) | Micro photo-electric sensing unit as well as back reading type semiconductor photomultiplier tube and assembly of photomultiplier tube | |
Conway et al. | Numerical simulations of pillar structured solid state thermal neutron detector: efficiency and gamma discrimination | |
CN111863845A (en) | A silicon pixel detector with a single-sided cathode with a spiral ring structure and its array | |
CN205542848U (en) | Use silicon drift chamber detector of hexagon spiral ring divider | |
Bellinger et al. | Characteristics of 3D micro-structured semiconductor high efficiency neutron detectors | |
Menichelli et al. | Status and perspectives of hydrogenated amorphous silicon detectors for MIP detection and beam flux measurements | |
CN113189637A (en) | Silicon carbide neutron detector based on double-sided T-shaped grooves | |
Rahastama et al. | Optimization of surface passivation parameters in [147Pm]-Si planar pn junction betavoltaic based on analytical 1-D minority carrier diffusion equation approaches | |
US11769603B2 (en) | H-3 silicon carbide PN-type radioisotopic battery and manufacturing method of the same | |
CN115332377A (en) | Double-groove type silicon carbide neutron detector | |
Bellinger et al. | Characteristics of the stacked microstructured solid state neutron detector | |
CN114784133B (en) | Silicon carbide micro-groove neutron detector structure with NP layers alternately epitaxial | |
Rahastama et al. | The self-absorption effect of Ni-63 beta source to the silicon carbide based betavoltaic battery | |
CN112863727B (en) | Nuclear battery and method for providing electric energy | |
JPH058595B2 (en) | ||
Bellinger et al. | Improved fabrication technique for microstructured solid-state neutron detectors | |
Reisi Fard et al. | SiC semiconductor detector power monitors for space nuclear reactors | |
GB2484028A (en) | Power-Scalable Betavoltaic Battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |