[go: up one dir, main page]

CN115332057A - 一种提高氮化硼二维材料结晶质量的外延生长方法 - Google Patents

一种提高氮化硼二维材料结晶质量的外延生长方法 Download PDF

Info

Publication number
CN115332057A
CN115332057A CN202211018717.XA CN202211018717A CN115332057A CN 115332057 A CN115332057 A CN 115332057A CN 202211018717 A CN202211018717 A CN 202211018717A CN 115332057 A CN115332057 A CN 115332057A
Authority
CN
China
Prior art keywords
boron nitride
nitride
boron
epitaxial growth
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211018717.XA
Other languages
English (en)
Inventor
李传皓
李忠辉
彭大青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202211018717.XA priority Critical patent/CN115332057A/zh
Publication of CN115332057A publication Critical patent/CN115332057A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种提高氮化硼二维材料结晶质量的外延生长方法,基于金属有机物化学气相沉积(MOCVD)等材料外延生长方式,通过在单晶衬底表面生长氮化铝过渡层,提升衬底表面催化活性,降低后续氮化硼二维材料成核所需的活化能;引入氮化硅隔离层,降低氮化硼二维材料来自衬底的杂质引入;并在氮化铝过渡层/氮化硼二维材料界面引入气流零过渡工艺,降低界面温场、流场的扰动来改善氮化硼二维材料的有序成核,提升结晶质量。此种外延生长方法能够实现表面平整、结晶质量较高的氮化硼二维材料,促进氮化硼基深紫外光电器件、范德华异质结等新型器件性能的提升。

Description

一种提高氮化硼二维材料结晶质量的外延生长方法
技术领域
本发明属于半导体外延材料技术领域,特别涉及一种提高氮化硼二维材料结晶质量的外延生长方法。
背景技术
当前限制深紫外光电器件性能的一个关键“卡脖子”技术是常规V/III族氮化物的P型掺杂效率偏低,致使V/III族氮化物P型重掺杂外延工艺实现难度大。有研究表明,相比于常规V/III族氮化物材料,如氮化铝、氮化镓等,氮化硼材料中镁掺杂所需的激活能较低,即P型重掺杂宽禁带氮化硼材料的工艺实现难度较低,因此基于氮化硼材料易于实现高性能深紫外光电器件的研制;氮化硼与石墨烯原子结构相似,且与石墨烯晶格失配仅为1.7%,因此可作为石墨烯生长的理想衬底,有报道称在氮化硼衬底上生长的石墨烯迁移率能达到1.4*105cm2/(V·s),为迄今最高;氮化硼二维材料因表面无悬挂键,具有原子层级的平整表面,因此可作为顶栅-石墨烯场效应管的介质层,能够显著降低石墨烯与介质界面的陷阱及杂质浓度,抑制光学声子散射,大幅提升器件性能;此外,氮化硼二维材料与石墨烯等二维材料结合形成的范德华异质结,在室温超导体、能量收集器、新型场效应管等方面具有较大的应用潜力。
氮化硼二维材料应用空间广阔,而当前制备氮化硼二维材料的主要技术包括离子束溅射沉积和在具有催化活性的金属衬底上CVD生长技术等,虽然上述技术制备的材料质量和工艺成熟度均较高,但材料尺寸较低,不足1cm×1cm;且在器件研制期间,需将氮化硼二维材料转移至半绝缘衬底上,转移期间极易引入污染和褶皱,严重限制了二维材料质量和器件性能。近期,国外报道了基于MOCVD技术研制氮化硼二维材料的研究,能够直接在半绝缘衬底上实现2英寸晶圆级材料的研制,有效克服了离子束溅射沉积技术和基于金属衬底CVD生长技术的难题。然而,由于半绝缘衬底普遍缺乏催化活性,氮化硼二维材料在半绝缘衬底成核所需的活化能较高,导致材料成核困难、结晶质量较差;且MOCVD外延期间金属硼原子表面迁移速率低下,导致氮化硼材料难于合并成膜,表面较为粗糙。因此,基于MOCVD工艺通过外延技术改良和工艺控制,在半绝缘衬底上实现晶圆级高结晶质量氮化硼二维材料的研制,对于高性能氮化硼基深紫外光电器件、范德华异质结等新型器件的研制有着极为重要的意义。
目前采用的常规氮化硼二维材料的外延生长方法,包括以下步骤:
步骤(1):选取2英寸碳化硅单晶衬底,置于MOCVD设备内的基座上;
步骤(2):设置反应室压力80torr,通入流量为100slm的H2,系统升温至1070℃,烘烤衬底10分钟,去除衬底表面沾污;
步骤(3):在H2流量为120slm的气氛下设定反应室压力50torr,设定温度1100℃,通入8slm的NH3并保持5分钟,对碳化硅衬底表面进行氮化处理;
步骤(4):设置反应室压力30Torr,H2流量为80slm,温度为1050℃,通入三乙基硼和NH3,并通过调整三乙基硼流量,使NH3和三乙基硼的摩尔比值达到2800,生长2nm厚氮化硼二维材料,关闭三乙基硼;
步骤(5):在NH3气氛保护下降至室温,取出外延材料。
发明内容
本发明的目的,在于提供一种提高氮化硼二维材料结晶质量的外延生长方法,基于MOCVD等材料外延生长方式,通过技术改良和工艺控制,提升衬底表面催化活性,改善氮化硼二维材料的成核质量,实现表面平整、结晶质量高的氮化硼二维材料研制。
为了达成上述目的,本发明的解决方案是:
一种提高氮化硼二维材料结晶质量的外延生长方法,包括以下步骤:
步骤(1):选取单晶衬底,置于金属有机物化学气相沉积(MOCVD)等材料生长的设备内基座上;
步骤(2):设置反应室压力50~100torr,通入氢气(H2),升温至1000~1100℃,烘烤衬底5~15分钟,去除衬底表面沾污;
步骤(3):在H2气氛下设定反应室压力30~150torr,设定温度900~1300℃,通入氨气(NH3)并保持1~20分钟,对衬底表面进行氮化处理;
步骤(4):保持反应室压力及温度不变,关闭NH3的同时通入铝源,持续供铝5~25秒;然后关闭铝源的同时通入NH3,持续供氨5~25秒;重复进行铝源和NH3分时供应的脉冲工艺,生长10~100nm厚氮化铝过渡层,关闭铝源。在氮化铝过渡层生长期间,通过调整NH3和铝源流量,使NH3和铝源的摩尔比值达到N1
步骤(5):保持反应室压力、温度及气体流量不变,通入硅烷(SiH4),生长1~3nm厚氮化硅隔离层,关闭SiH4
步骤(6):保持反应室压力、温度及气体流量不变,通入金属有机硼源,并通过调整硼源流量,使NH3和硼源的摩尔比值达到N2,生长1~3nm厚氮化硼二维材料,关闭硼源;
步骤(7):在NH3气氛保护下降至室温,取出外延材料。
在本发明中,步骤(4)中的氮化铝过渡层作为步骤(6)中的氮化硼二维材料成核的过渡层,能够显著提升单晶衬底表面的催化活性,有效降低氮化硼二维材料成核所需的活化能,从而提升氮化硼二维材料的成核质量及材料致密性;同时,氮化铝过渡层的生长采用铝源和NH3分时供应的脉冲工艺,能够等效增加铝原子的表面迁移速率,从而改善氮化铝过渡层的结晶质量及表面形貌,为后续氮化硼二维材料生长提供高质量的成核基板;此外,氮化铝过渡层NH3和铝源的摩尔比值N1范围是200~2000。摩尔比值较低(N1<200),富铝气氛会导致氮化铝表面产生铝富集锥状突起,恶化氮化铝过渡层的表面形貌,而摩尔比值较高(N1>2000),富氨气氛会导致铝原子的表面迁移速率退化,引发岛状生长模式,造成氮化铝过渡层结晶质量的退化。
在本发明中,步骤(4)中的氮化铝过渡层、步骤(5)中的氮化硅隔离层和步骤(6)中的氮化硼二维材料,其外延生长压力、温度及气体流量均一致,即在氮化铝过渡层/氮化硼二维材料界面引入了气流零过渡工艺,一方面减小了界面高温生长中断的时间,抑制氮化铝过渡层表层分解;另一方面抑制了氮化硼二维材料生长初期温场、流场的扰动,促进氮化硼二维材料的有序成核,提高了氮化硼二维材料的结晶质量。
在本发明中,步骤(6)中的氮化硼二维材料,其NH3和硼源的摩尔比值N2范围是1000~5000。摩尔比值较低(N2<1000),则氮化硼初始成核的格点密度低,无法完成岛间横向合并,导致材料表面粗糙,结晶质量偏低;摩尔比值较高(N2>5000),则氮化硼初始成核的格点密度基本达到饱和,且硼原子表面迁移速率会下降,同样不利于岛间合并成膜,且加重了NH3和硼源间的预反应,恶化表面形貌,因此N2范围是1000~5000。
除碳化硅单晶衬底外,本方法同样适用于蓝宝石、氮化镓及其它适合V/III族氮化物外延生长的半绝缘衬底。
采用上述方案后,本发明与现有技术相比,其有益效果是:氮化硼二维材料的表面平整度和结晶质量得到较为显著的改善。
附图说明
图1(a)和(b)分别是常规工艺制备的、本发明实施例中引用氮化铝过渡层、氮化硅隔离层及界面气流零过渡工艺技术制备的2nm厚氮化硼二维材料表面形貌(原子力显微镜测试,测试范围为1μm×1μm);
图2是常规工艺制备的、本发明实施例中引用氮化铝过渡层、氮化硅隔离层及界面气流零过渡工艺技术制备的2nm厚氮化硼二维材料拉曼光谱对比示意图;
图3是本发明的流程图。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例:
配合图3所述,本发明实施例提供的在MOCVD系统中一种提升氮化硼二维材料结晶质量的外延生长方法,包括以下步骤:
步骤(1):选取2英寸碳化硅单晶衬底,置于MOCVD设备内的基座上;
步骤(2):设置反应室压力80torr,通入流量为100slm的H2,系统升温至1070℃,烘烤衬底10分钟,去除衬底表面沾污;
步骤(3):在H2流量为120slm的气氛下设定反应室压力50torr,设定温度1100℃,通入8slm的NH3并保持5分钟,对碳化硅衬底表面进行氮化处理;
步骤(4):保持H2流量、反应室压力及温度不变,关闭NH3的同时通入三甲基铝,持续供铝12秒;然后关闭三甲基铝的同时通入NH3,持续供氨12秒;重复进行三甲基铝和NH3分时供应的脉冲工艺,生长25nm厚氮化铝过渡层,关闭三甲基铝。在氮化铝过渡层生长期间,通过调整三甲基铝和NH3流量,使NH3和三甲基铝的摩尔比值达到480;
步骤(5):保持反应室压力、温度及气体流量不变,通入净流量为1.2sccm的SiH4,生长1.5nm厚氮化硅隔离层,关闭SiH4
步骤(6):保持反应室压力、温度及气体流量不变,通入三乙基硼,并通过调整三乙基硼流量,使NH3和三乙基硼的摩尔比值达到2800,生长2nm厚氮化硼二维材料,关闭三乙基硼;
步骤(7):在NH3气氛保护下降至室温,取出外延材料。
如图1(a)、(b)所示,与常规工艺相比,本发明实施例中引入氮化铝过渡层、氮化硅隔离层及界面气流零过渡工艺技术制备的2nm厚氮化硼二维材料1μm×1μm表面粗糙度(rms)由4.0nm降至0.4nm,表明材料表面平整度得到较为明显的提高。
如图2所示,与常规工艺相比,本发明实施例中引入氮化铝过渡层、氮化硅隔离层及界面气流零过渡工艺技术制备的2nm厚氮化硼二维材料在E2g模式下的拉曼峰半高宽由92cm-1降至54cm-1,表明结晶质量得到较为明显的提高。
综上,本发明基于金属有机物化学气相沉积(MOCVD)等材料外延生长方式,通过在单晶衬底表面生长氮化铝过渡层,提升衬底表面催化活性,降低后续氮化硼二维材料成核所需的活化能;引入氮化硅隔离层,降低氮化硼二维材料来自衬底的杂质引入;并在氮化铝过渡层/氮化硼二维材料界面引入气流零过渡工艺,降低界面温场、流场的扰动来改善氮化硼二维材料的有序成核,提升结晶质量。本方法能够实现表面平整、结晶质量较高的氮化硼二维材料,促进氮化硼基深紫外光电器件、范德华异质结等新型器件性能的提升。
上述实施例仅用以说明本发明的技术方案而非对其限制,制作方法上实际可采用的制作方案是很多的,凡依本发明的权利要求所做的均等变化与装饰,均属于本发明的涵盖范围。

Claims (5)

1.一种提高氮化硼二维材料结晶质量的外延生长方法,其特征在于包括如下步骤:
步骤1,选取单晶衬底,置于MOCVD设备内基座上;
步骤2,设置反应室压力50~100torr,通入H2,升温至1000~1100℃,烘烤衬底5~15分钟,去除衬底表面沾污;
步骤3、在H2气氛下设定反应室压力30~150torr,设定温度900~1300℃,通入NH3并保持1~20分钟,对衬底表面进行氮化处理;
步骤4、保持反应室压力及温度不变,关闭NH3的同时通入铝源,持续供铝5~25秒;然后关闭铝源的同时通入NH3,持续供氨5~25秒;重复进行铝源和NH3分时供应的脉冲工艺,生长10~100nm厚氮化铝过渡层,关闭铝源;在氮化铝过渡层生长期间,通过调整NH3和铝源流量,使NH3和铝源的摩尔比值达到N1
步骤5,保持反应室压力、温度及气体流量不变,通入金属有机硼源,并通过调整硼源流量,使NH3和硼源的摩尔比值达到N2,生长1~3nm厚氮化硼二维材料,关闭硼源;
步骤6,在NH3气氛保护下降至室温,取出外延材料。
2.如权利要求1所述的提高氮化硼二维材料结晶质量的外延生长方法,其特征在于:所述步骤4中,NH3和铝源的摩尔比值N1范围是200~2000。
3.如权利要求1所述的提高氮化硼二维材料结晶质量的外延生长方法,其特征在于:所述步骤5中,NH3和硼源的摩尔比值N2范围是1000~5000。
4.如权利要求1所述的提高氮化硼二维材料结晶质量的外延生长方法,其特征在于:所述步骤4与步骤5之间还包括步骤a:保持反应室压力、温度及气体流量不变,通入SiH4,生长1~3nm厚氮化硅隔离层,关闭SiH4
5.如权利要求1所述的提高氮化硼二维材料结晶质量的外延生长方法,其特征在于:所述步骤1中,单晶衬底采用碳化硅单晶衬底或适合V/III族氮化物外延生长的半绝缘衬底。
CN202211018717.XA 2022-08-24 2022-08-24 一种提高氮化硼二维材料结晶质量的外延生长方法 Pending CN115332057A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211018717.XA CN115332057A (zh) 2022-08-24 2022-08-24 一种提高氮化硼二维材料结晶质量的外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211018717.XA CN115332057A (zh) 2022-08-24 2022-08-24 一种提高氮化硼二维材料结晶质量的外延生长方法

Publications (1)

Publication Number Publication Date
CN115332057A true CN115332057A (zh) 2022-11-11

Family

ID=83926016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211018717.XA Pending CN115332057A (zh) 2022-08-24 2022-08-24 一种提高氮化硼二维材料结晶质量的外延生长方法

Country Status (1)

Country Link
CN (1) CN115332057A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504827A (zh) * 2023-06-30 2023-07-28 江西兆驰半导体有限公司 Hemt外延片及其制备方法、hemt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695999A (zh) * 2013-12-02 2014-04-02 中国电子科技集团公司第五十五研究所 一种交替供源制备的氮化物单晶薄膜及方法
CN113802178A (zh) * 2021-08-06 2021-12-17 中国电子科技集团公司第五十五研究所 一种改善氮化镓异质外延与衬底间界面形貌的外延方法
CN114005730A (zh) * 2021-09-30 2022-02-01 中国电子科技集团公司第五十五研究所 一种提升六方氮化硼材料质量的外延生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695999A (zh) * 2013-12-02 2014-04-02 中国电子科技集团公司第五十五研究所 一种交替供源制备的氮化物单晶薄膜及方法
CN113802178A (zh) * 2021-08-06 2021-12-17 中国电子科技集团公司第五十五研究所 一种改善氮化镓异质外延与衬底间界面形貌的外延方法
CN114005730A (zh) * 2021-09-30 2022-02-01 中国电子科技集团公司第五十五研究所 一种提升六方氮化硼材料质量的外延生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKHAIL CHUBAROV ET AL: "Epitaxial CVD growth of sp2-hybridized boron nitride using aluminum nitride as buffer layer", 《PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS》, vol. 5, no. 11, 10 October 2011 (2011-10-10), pages 398 - 399 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504827A (zh) * 2023-06-30 2023-07-28 江西兆驰半导体有限公司 Hemt外延片及其制备方法、hemt
CN116504827B (zh) * 2023-06-30 2023-09-08 江西兆驰半导体有限公司 Hemt外延片及其制备方法、hemt

Similar Documents

Publication Publication Date Title
CN113235047B (zh) 一种AlN薄膜的制备方法
CN105655238B (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
CN109065438B (zh) AlN薄膜的制备方法
CN104409319B (zh) 一种石墨烯基底上生长高质量GaN 缓冲层的制备方法
CN110541157A (zh) 一种Si衬底上外延生长GaN薄膜的方法
JPH04297023A (ja) 窒化ガリウム系化合物半導体の結晶成長方法
CN105861987A (zh) 基于六方氮化硼和磁控溅射氮化铝的氮化镓生长方法
CN1228478C (zh) 制备氮化镓单晶薄膜的方法
WO2020215444A1 (zh) 氧化镓半导体及其制备方法
CN114005730A (zh) 一种提升六方氮化硼材料质量的外延生长方法
CN108428618A (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN113802178A (zh) 一种改善氮化镓异质外延与衬底间界面形貌的外延方法
CN101901756B (zh) 基于c面Al2O3衬底上极性c面GaN薄膜的MOCVD生长方法
KR20240101577A (ko) 헤테로 에피택셜 웨이퍼의 제조방법
CN114023646B (zh) 一种高阻值GaN基HEMT器件及其制备方法
CN115332057A (zh) 一种提高氮化硼二维材料结晶质量的外延生长方法
CN101901759A (zh) 基于r面Al2O3衬底上非极性a面GaN薄膜的MOCVD生长方法
KR20240069717A (ko) 헤테로 에피택셜 웨이퍼의 제조방법
CN114420756A (zh) 具有杂质阻挡层的高电子迁移率晶体管外延片及制备方法
CN114420754A (zh) 改善高阻层的高电子迁移率晶体管外延片及其制备方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
CN112687525A (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
CN114220729B (zh) 提高高电子迁移率晶体管外延片的质量的制备方法
CN117637943A (zh) 一种紫外led外延片及其制备方法、led芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination