CN115331975B - Integrated anti-freezing supercapacitor and preparation method thereof - Google Patents
Integrated anti-freezing supercapacitor and preparation method thereof Download PDFInfo
- Publication number
- CN115331975B CN115331975B CN202211098368.7A CN202211098368A CN115331975B CN 115331975 B CN115331975 B CN 115331975B CN 202211098368 A CN202211098368 A CN 202211098368A CN 115331975 B CN115331975 B CN 115331975B
- Authority
- CN
- China
- Prior art keywords
- supercapacitor
- conductive polymer
- gel electrolyte
- persulfate
- integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000007710 freezing Methods 0.000 title claims abstract 6
- 230000002528 anti-freeze Effects 0.000 claims abstract description 48
- 239000011245 gel electrolyte Substances 0.000 claims abstract description 31
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 19
- 239000000178 monomer Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 239000008367 deionised water Substances 0.000 claims abstract description 10
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 9
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 5
- 239000003999 initiator Substances 0.000 claims abstract description 5
- 239000002105 nanoparticle Substances 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 4
- 238000005520 cutting process Methods 0.000 claims abstract 2
- 238000002156 mixing Methods 0.000 claims abstract 2
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical group [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 26
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 16
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 14
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 13
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical group [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 8
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical group C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 125000004386 diacrylate group Chemical group 0.000 claims description 4
- 235000005074 zinc chloride Nutrition 0.000 claims description 4
- 239000011592 zinc chloride Substances 0.000 claims description 4
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- 239000005543 nano-size silicon particle Substances 0.000 claims 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 abstract description 6
- 238000013329 compounding Methods 0.000 abstract description 2
- 231100000331 toxic Toxicity 0.000 abstract description 2
- 230000002588 toxic effect Effects 0.000 abstract description 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 108010053481 Antifreeze Proteins Proteins 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
技术领域Technical field
本发明涉及储能材料与器件领域,具体涉及一种一体式抗冻超级电容器及其制备方法。The invention relates to the field of energy storage materials and devices, and in particular to an integrated anti-freeze supercapacitor and a preparation method thereof.
背景技术Background technique
随着可穿戴电子技术的快速发展,柔性超级电容器因功率密度高、循环寿命长、充放电速率快等优点在工业界和学术界受到了广泛关注。为了满足可穿戴电子产品的在实际应用中的需求,超级电容器必须具备一定的抗形变能力和耐低温性能。柔性超级电容器的电化学性能一般由电极、电解质和器件构型共同决定的。柔性自支撑电极因决定柔性超级电容器的能量密度而被广泛研究,如碳纳米材料(如碳纳米管、石墨烯等)和导电聚合物(如聚苯胺、聚吡咯等)。柔性电解质一般为水凝胶电解质,由于水低温下结冰会使水凝胶电解质冻结,因此降低电解质中的离子迁移速率,从而降低超级电容器的电化学性能。此外,超级电容器的构型在一定程度上决定了超级电容器在实际工作过程中的抗形变特性。例如,超级电容器在拉伸、扭转、弯曲等过程中,如果电极电解质之间的界面接触不好会导致相邻层滑移甚至脱落,从而降低器件的性能。目前,采用电极原位聚合在电解质上在一定程度上促进了电极和电解质接触(113571343A),改善了超级电容器的机械性能,但是低温下依旧失效。因此,亟需通过调整电极、电解质性能和器件构型来开发一种具备一定的抗形变能力和耐低温性能的柔性超级电容器。With the rapid development of wearable electronics technology, flexible supercapacitors have received widespread attention in industry and academia due to their advantages such as high power density, long cycle life, and fast charge and discharge rates. In order to meet the needs of wearable electronic products in practical applications, supercapacitors must have certain deformation resistance and low temperature resistance. The electrochemical performance of flexible supercapacitors is generally determined by the electrode, electrolyte and device configuration. Flexible self-supporting electrodes, such as carbon nanomaterials (such as carbon nanotubes, graphene, etc.) and conductive polymers (such as polyaniline, polypyrrole, etc.), have been widely studied for determining the energy density of flexible supercapacitors. Flexible electrolytes are generally hydrogel electrolytes. Since water freezes at low temperatures, the hydrogel electrolyte will freeze, thus reducing the ion migration rate in the electrolyte, thereby reducing the electrochemical performance of the supercapacitor. In addition, the configuration of the supercapacitor determines the anti-deformation characteristics of the supercapacitor during actual operation to a certain extent. For example, during stretching, twisting, bending, etc. of a supercapacitor, if the interface contact between the electrodes and electrolytes is not good, the adjacent layers will slip or even fall off, thereby reducing the performance of the device. At present, the use of in-situ polymerization of electrodes on the electrolyte promotes the contact between the electrode and the electrolyte to a certain extent (113571343A) and improves the mechanical properties of the supercapacitor, but it still fails at low temperatures. Therefore, there is an urgent need to develop a flexible supercapacitor with certain deformation resistance and low temperature resistance by adjusting the electrode, electrolyte properties and device configuration.
发明内容Contents of the invention
解决的技术问题:为了改善柔性超级电容器的抗形变、耐低温性能不足的问题,本发明提供一种简便易行的一体式抗冻超级电容器及其制备方法。Technical problem solved: In order to improve the problems of insufficient deformation resistance and low temperature resistance of flexible supercapacitors, the present invention provides a simple and easy integrated anti-freeze supercapacitor and its preparation method.
技术方案:一体式抗冻超级电容器的制备方法,包括以下步骤:(1)将1~10g单体、1~10g纳米颗粒、1~10g电解质盐、1~100mg交联剂、1~100mg引发剂和2~20g小分子醇加入到2~20g去离子水中100~1000rmp搅拌共混,0~5℃下超声1~30分钟,超声功率为100~500W,50~120℃下聚合1~10小时得到抗冻凝胶电解质;(2)将抗冻凝胶电解质浸泡在导电聚合物单体溶液中10~150分钟,加入过硫酸盐反应10~200分钟,所述导电聚合物单体与过硫酸盐质量比为1~10:1~30;(3)裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。Technical solution: Preparation method of integrated antifreeze supercapacitor, including the following steps: (1) Combine 1~10g monomer, 1~10g nanoparticles, 1~10g electrolyte salt, 1~100mg cross-linking agent, 1~100mg initiator Add agent and 2~20g small molecular alcohol to 2~20g deionized water, stir and blend at 100~1000rmp, ultrasonic at 0~5℃ for 1~30 minutes, ultrasonic power is 100~500W, polymerize at 50~120℃ for 1~10 Obtain the antifreeze gel electrolyte in 2 hours; (2) Soak the antifreeze gel electrolyte in the conductive polymer monomer solution for 10 to 150 minutes, add persulfate and react for 10 to 200 minutes. The conductive polymer monomer reacts with the conductive polymer monomer. The sulfate mass ratio is 1~10:1~30; (3) Cut around the conductive polymer composite gel electrolyte to obtain an integrated anti-freeze supercapacitor.
优选的,上述步骤(1)中单体为聚乙二醇、丙烯酰胺或丙烯酸。Preferably, the monomer in the above step (1) is polyethylene glycol, acrylamide or acrylic acid.
优选的,上述步骤(1)中纳米颗粒为纳米二氧化硅或纳米羟基磷灰石。Preferably, the nanoparticles in the above step (1) are nanosilica or nanohydroxyapatite.
优选的,上述步骤(1)中电解质盐为氯化锂、氯化钾或氯化锌。Preferably, the electrolyte salt in the above step (1) is lithium chloride, potassium chloride or zinc chloride.
优选的,上述步骤(1)中交联剂为N,N'-亚甲基双丙烯酰胺或聚乙二醇双丙烯酸酯。Preferably, the cross-linking agent in the above step (1) is N,N'-methylene bisacrylamide or polyethylene glycol bisacrylamide.
优选的,上述步骤(1)中引发剂为过硫酸铵或过硫酸钾。Preferably, the initiator in the above step (1) is ammonium persulfate or potassium persulfate.
优选的,上述步骤(1)中小分子醇为乙二醇或甘油。Preferably, the small molecular alcohol in the above step (1) is ethylene glycol or glycerin.
优选的,上述步骤(2)中导电聚合物单体为苯胺或吡咯。Preferably, the conductive polymer monomer in the above step (2) is aniline or pyrrole.
优选的,上述步骤(2)中过硫酸盐为过硫酸铵或过硫酸钾。Preferably, the persulfate in the above step (2) is ammonium persulfate or potassium persulfate.
上述制备方法制得的一体式抗冻超级电容器。An integrated antifreeze supercapacitor prepared by the above preparation method.
本发明目的在于提供一种新的思路,首先制备出一种柔性抗冻水凝胶电解质,然后在该凝胶基体上原位聚合导电聚合物电极,得到一体式抗冻超级电容器,改善了柔性超级电容器抗形变、耐低温性能不足的问题,扩大了柔性超级电容器的应用范围。The purpose of the present invention is to provide a new idea. First, a flexible antifreeze hydrogel electrolyte is prepared, and then a conductive polymer electrode is polymerized in situ on the gel matrix to obtain an integrated antifreeze supercapacitor with improved flexibility. The problems of insufficient resistance to deformation and low temperature resistance of supercapacitors have expanded the application scope of flexible supercapacitors.
有益效果:1、采用复配方法制备耐低温水凝胶电解质,制备过程简单易行;2、采用原位聚合方式得到一体式柔性超级电容器,规避了有毒有害导电胶的使用;3、获得的一体式柔性超级电容器具备良好的抗形变能力和优异的耐低温性能,如实施例1制备的一体式抗冻超级电容器可在低温拉伸状态下为电子表供能,解决了柔性超级电容器在抗形变和耐低温方面性能不足的问题,扩大了柔性超级电容器在可穿戴电子上的应用范围。Beneficial effects: 1. The low-temperature resistant hydrogel electrolyte is prepared by a compounding method, and the preparation process is simple and easy; 2. An integrated flexible supercapacitor is obtained by in-situ polymerization, avoiding the use of toxic and harmful conductive glue; 3. Obtained The integrated flexible supercapacitor has good deformation resistance and excellent low-temperature resistance. For example, the integrated anti-freeze supercapacitor prepared in Example 1 can power an electronic watch under low-temperature stretching, which solves the problem of flexible supercapacitors’ resistance to resistance. The problems of insufficient performance in deformation and low temperature resistance have expanded the application range of flexible supercapacitors in wearable electronics.
附图说明Description of the drawings
图1是一体式抗冻超级电容器的制备示意图。该器件包括一个耐低温水凝胶电解质以及两层原位聚合在电解质上的导电聚合物电极。Figure 1 is a schematic diagram of the preparation of an integrated antifreeze supercapacitor. The device consists of a low-temperature-resistant hydrogel electrolyte and two layers of conductive polymer electrodes polymerized in situ on the electrolyte.
图2是实施例1所制备的一体式抗冻超级电容器在不同扫描速率下的循环伏安曲线。Figure 2 is a cyclic voltammogram curve of the integrated antifreeze supercapacitor prepared in Example 1 at different scan rates.
图3是实施例1所制备的一体式抗冻超级电容器在不同电流密度下的恒电流充放电曲线。Figure 3 is the galvanostatic charge and discharge curves of the integrated antifreeze supercapacitor prepared in Example 1 under different current densities.
图4是实施例1所制备的一体式抗冻超级电容器在低温拉伸状态下为电子表供电图,表明该一体式超级电容器良好的抗性变能力和优异的抗冻性能。Figure 4 is a diagram of the integrated anti-freeze supercapacitor prepared in Example 1 supplying power to an electronic watch in a low-temperature tensile state, indicating that the integrated supercapacitor has good resistance to change and excellent anti-freeze performance.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and understandable, the specific implementation modes of the present invention will be described in detail below in conjunction with the examples in the description.
实施例1:Example 1:
将4.5g丙烯酰胺、2.8g纳米羟基磷灰石、1.2g氯化锂、15mgN,N'-亚甲基双丙烯酰胺、50mg过硫酸钾和7g乙二醇加入到6g去离子水中500rmp搅拌混合,0℃下超声10分钟,超声功率为300W,85℃下聚合3小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在苯胺溶液中50分钟,加入过硫酸铵反应60分钟,所述苯胺与过硫酸铵质量比为2:5;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。本实施例制得的一体式抗冻超级电容器在不同扫描速率下的循环伏安曲线如图2所示,在不同电流密度下的恒电流充放电曲线如图3所示,在低温拉伸状态下为电子表供电如图4所示;恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为366mF/cm2,而且该器件可以在-20℃下工作。Add 4.5g acrylamide, 2.8g nano-hydroxyapatite, 1.2g lithium chloride, 15mg N,N'-methylenebisacrylamide, 50mg potassium persulfate and 7g ethylene glycol to 6g deionized water and stir at 500rmp to mix. , ultrasonic at 0℃ for 10 minutes, ultrasonic power is 300W, polymerize at 85℃ for 3 hours to obtain antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in aniline solution for 50 minutes, add ammonium persulfate and react for 60 minutes, so The mass ratio of aniline to ammonium persulfate is 2:5; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The cyclic voltammetry curves of the integrated antifreeze supercapacitor produced in this embodiment at different scan rates are shown in Figure 2, and the galvanostatic charge and discharge curves at different current densities are shown in Figure 3. In the low-temperature tensile state The electronic watch is powered as shown in Figure 4; the constant current charge and discharge test shows that the area specific capacitance of the integrated anti-freeze supercapacitor prepared in this embodiment is 366mF/cm 2 at 25°C, and the device can operate at -20°C. Next work.
实施例2:Example 2:
将4.1g丙烯酸、2.6g纳米羟基磷灰石、2.3g氯化锌、18mgN,N'-亚甲基双丙烯酰胺、42mg过硫酸铵和3g甘油加入到10g去离子水中300rmp搅拌混合,3℃下超声8分钟,超声功率为250W,75℃下聚合2小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在吡咯溶液中30分钟,加入过硫酸钾反应60分钟,所述吡咯与过硫酸钾质量比为1:2;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为343mF/cm2,但是该器件不可以在-20℃下工作。Add 4.1g acrylic acid, 2.6g nano-hydroxyapatite, 2.3g zinc chloride, 18mg N,N'-methylenebisacrylamide, 42mg ammonium persulfate and 3g glycerin to 10g deionized water, stir and mix at 300rmp, 3℃ Ultrasonicate for 8 minutes with an ultrasonic power of 250W and polymerize at 75°C for 2 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in a pyrrole solution for 30 minutes, add potassium persulfate and react for 60 minutes, and the pyrrole and The mass ratio of potassium persulfate is 1:2; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the area specific capacitance of the integrated antifreeze supercapacitor produced in this embodiment is 343mF/cm 2 at 25°C, but the device cannot operate at -20°C.
实施例3:Example 3:
将5.2g聚乙二醇、3g纳米二氧化硅、3.5g氯化钾、30mg聚乙二醇双丙烯酸酯、60mg过硫酸钾和11g甘油加入到10g去离子水中400rmp搅拌混合,0℃下超声10分钟,超声功率为300W,85℃下聚合3小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在吡咯溶液中50分钟,加入过硫酸铵反应60分钟,所述吡咯与过硫酸铵质量比为1:3;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为183mF/cm2,而且该器件可以在-20℃下工作。Add 5.2g polyethylene glycol, 3g nano-silica, 3.5g potassium chloride, 30mg polyethylene glycol diacrylate, 60mg potassium persulfate and 11g glycerin to 10g deionized water, stir and mix at 400rmp, and ultrasonic at 0°C 10 minutes, ultrasonic power is 300W, polymerize at 85°C for 3 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in a pyrrole solution for 50 minutes, add ammonium persulfate and react for 60 minutes, the pyrrole and persulfate The mass ratio of ammonium is 1:3; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the area specific capacitance of the integrated antifreeze supercapacitor produced in this embodiment is 183mF/cm 2 at 25°C, and the device can work at -20°C.
实施例4:Example 4:
将3.6g丙烯酸、2.1g纳米羟基磷灰石、2.1g氯化锂、28mg聚乙二醇双丙烯酸酯、55mg过硫酸钾和3g乙二醇加入到12g去离子水中600rmp搅拌混合,0℃下超声11分钟,超声功率为310W,90℃下聚合6小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在苯胺溶液中80分钟,加入过硫酸铵反应50分钟,所述苯胺与过硫酸铵质量比为1:1;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为372mF/cm2,但是该器件不可以在-20℃下工作。Add 3.6g acrylic acid, 2.1g nano-hydroxyapatite, 2.1g lithium chloride, 28mg polyethylene glycol diacrylate, 55mg potassium persulfate and 3g ethylene glycol to 12g deionized water, stir and mix at 600rmp, at 0°C Ultrasound for 11 minutes, with an ultrasonic power of 310W, and polymerize at 90°C for 6 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in an aniline solution for 80 minutes, add ammonium persulfate, and react for 50 minutes. The aniline reacts with persulfate The mass ratio of ammonium sulfate is 1:1; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the area specific capacitance of the integrated antifreeze supercapacitor produced in this embodiment is 372mF/cm 2 at 25°C, but the device cannot operate at -20°C.
实施例5:Example 5:
将3.9g丙烯酰胺、1.9g纳米二氧化硅、3.1g氯化锌、15mgN,N'-亚甲基双丙烯酰胺、48mg过硫酸铵和9g乙二醇加入到8g去离子水中550rmp搅拌混合,4℃下超声18分钟,超声功率为180W,95℃下聚合2小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在苯胺溶液中70分钟,加入过硫酸钾反应70分钟,所述苯胺与过硫酸钾质量比为3:5;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为312mF/cm2,而且该器件可以在-20℃下工作。Add 3.9g acrylamide, 1.9g nano-silica, 3.1g zinc chloride, 15mg N,N'-methylenebisacrylamide, 48mg ammonium persulfate and 9g ethylene glycol to 8g deionized water and stir at 550rmp to mix. Ultrasound for 18 minutes at 4°C, with an ultrasonic power of 180W, and polymerize at 95°C for 2 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in an aniline solution for 70 minutes, add potassium persulfate and react for 70 minutes. The mass ratio of aniline to potassium persulfate is 3:5; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the area specific capacitance of the integrated antifreeze supercapacitor produced in this embodiment is 312mF/cm 2 at 25°C, and the device can work at -20°C.
实施例6:Example 6:
将6.4g聚乙二醇、3.3g纳米羟基磷灰石、3g氯化锂、42mg聚乙二醇双丙烯酸酯、50mg过硫酸铵和9g乙二醇加入到7g去离子水中450rmp搅拌混合,1℃下超声11分钟,超声功率为320W,88℃下聚合3.5小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在苯胺溶液中85分钟,加入过硫酸铵反应65分钟,所述苯胺与过硫酸铵质量比为1:2;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为283mF/cm2,而且该器件可以在-20℃下工作。Add 6.4g polyethylene glycol, 3.3g nano-hydroxyapatite, 3g lithium chloride, 42mg polyethylene glycol diacrylate, 50mg ammonium persulfate and 9g ethylene glycol to 7g deionized water and stir at 450rmp to mix, 1 ℃, ultrasonic for 11 minutes, the ultrasonic power is 320W, polymerize at 88℃ for 3.5 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in an aniline solution for 85 minutes, add ammonium persulfate and react for 65 minutes, the aniline The mass ratio to ammonium persulfate is 1:2; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the integrated antifreeze supercapacitor produced in this embodiment has an area specific capacitance of 283mF/cm 2 at 25°C, and the device can work at -20°C.
实施例7:Example 7:
将4.9g丙烯酰胺、3g纳米羟基磷灰石、2.2g氯化锂、18mgN,N'-亚甲基双丙烯酰胺、46mg过硫酸钾和2g甘油和10.5g去离子水中580rmp搅拌混合,0℃下超声21分钟,超声功率为230W,92℃下聚合4小时得到抗冻凝胶电解质;然后将抗冻凝胶电解质浸泡在吡咯溶液中80分钟,加入过硫酸钾反应65分钟,所述吡咯与过硫酸钾质量比为3:5;最后裁剪导电聚合物复合凝胶电解质四周,得到一体式抗冻超级电容器。恒电流充放电测试表明,本实施例制得的一体式抗冻超级电容器25℃下面积比电容为362mF/cm2,但是该器件不可以在-20℃下工作。Mix 4.9g acrylamide, 3g nano-hydroxyapatite, 2.2g lithium chloride, 18mg N,N'-methylenebisacrylamide, 46mg potassium persulfate and 2g glycerin with 10.5g deionized water at 580rmp, 0℃ Ultrasonic for 21 minutes, the ultrasonic power is 230W, polymerize at 92°C for 4 hours to obtain an antifreeze gel electrolyte; then soak the antifreeze gel electrolyte in a pyrrole solution for 80 minutes, add potassium persulfate and react for 65 minutes, the pyrrole and The mass ratio of potassium persulfate is 3:5; finally, the conductive polymer composite gel electrolyte is cut around to obtain an integrated antifreeze supercapacitor. The constant current charge and discharge test shows that the area specific capacitance of the integrated antifreeze supercapacitor produced in this embodiment is 362mF/cm 2 at 25°C, but the device cannot operate at -20°C.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211098368.7A CN115331975B (en) | 2022-09-08 | 2022-09-08 | Integrated anti-freezing supercapacitor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211098368.7A CN115331975B (en) | 2022-09-08 | 2022-09-08 | Integrated anti-freezing supercapacitor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115331975A CN115331975A (en) | 2022-11-11 |
CN115331975B true CN115331975B (en) | 2024-03-26 |
Family
ID=83929533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211098368.7A Active CN115331975B (en) | 2022-09-08 | 2022-09-08 | Integrated anti-freezing supercapacitor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115331975B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117976425B (en) * | 2023-12-29 | 2025-01-24 | 中国林业科学研究院林产化学工业研究所 | A low-temperature resistant all-gel flexible supercapacitor with strong interface bonding performance and its preparation method and application |
CN117964859A (en) * | 2023-12-29 | 2024-05-03 | 中国林业科学研究院林产化学工业研究所 | Conductive gel electrolyte with strong bonding and antifreeze properties and preparation method thereof |
CN118027286B (en) * | 2024-01-17 | 2024-11-19 | 黑龙江大学 | A hydrogel polymer electrolyte and its preparation method and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105810448A (en) * | 2016-04-21 | 2016-07-27 | 贵州大学 | Method for constructing flexible super capacitor |
CN109074967A (en) * | 2016-04-01 | 2018-12-21 | 加利福尼亚大学董事会 | Polyaniline nanotube is directly grown on carbon cloth for flexible high-performance super capacitor |
CN110767470A (en) * | 2019-10-25 | 2020-02-07 | 华南理工大学 | A kind of supercapacitor based on antifreeze hydrogel electrolyte and preparation method thereof |
CN112898596A (en) * | 2021-01-21 | 2021-06-04 | 西南大学 | Hydrogel electrolyte and super capacitor thereof |
CN113096969A (en) * | 2021-04-09 | 2021-07-09 | 南京大学 | Polymer gel electrolyte-electrode and preparation method thereof, super capacitor and preparation method thereof |
CN113611545A (en) * | 2021-08-18 | 2021-11-05 | 齐鲁工业大学 | Stretchable, compressible and anti-freezing organic hydrogel electrolyte-based supercapacitor and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026112A1 (en) * | 2012-08-09 | 2014-02-13 | The Board Of Trustees Of The Leland Stanford Junior University | Li-ion battery electrodes having nanoparticles in a conductive polymer matrix |
US20210013551A1 (en) * | 2019-07-08 | 2021-01-14 | City University Of Hong Kong | Electrical energy storage device, an electrolyte for use in an electrical energy storage device, and a method of preparing the device |
-
2022
- 2022-09-08 CN CN202211098368.7A patent/CN115331975B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109074967A (en) * | 2016-04-01 | 2018-12-21 | 加利福尼亚大学董事会 | Polyaniline nanotube is directly grown on carbon cloth for flexible high-performance super capacitor |
CN105810448A (en) * | 2016-04-21 | 2016-07-27 | 贵州大学 | Method for constructing flexible super capacitor |
CN110767470A (en) * | 2019-10-25 | 2020-02-07 | 华南理工大学 | A kind of supercapacitor based on antifreeze hydrogel electrolyte and preparation method thereof |
CN112898596A (en) * | 2021-01-21 | 2021-06-04 | 西南大学 | Hydrogel electrolyte and super capacitor thereof |
CN113096969A (en) * | 2021-04-09 | 2021-07-09 | 南京大学 | Polymer gel electrolyte-electrode and preparation method thereof, super capacitor and preparation method thereof |
CN113611545A (en) * | 2021-08-18 | 2021-11-05 | 齐鲁工业大学 | Stretchable, compressible and anti-freezing organic hydrogel electrolyte-based supercapacitor and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors;Dingkun Wang等;《Chemical Engineering Journal》;第450卷;第138025-1-138025-11页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115331975A (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115331975B (en) | Integrated anti-freezing supercapacitor and preparation method thereof | |
Peng et al. | High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly (vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte | |
CN107481869B (en) | Double-network hydrogel electrolyte and preparation and application thereof | |
CN109796716B (en) | A kind of self-healing polymer electrolyte and its preparation method and application | |
Wan et al. | Polyanion-induced single zinc-ion gel polymer electrolytes for wide-temperature and interfacial stable zinc-ion hybrid capacitors | |
CN110444822A (en) | A kind of preparation method of the quasi- solid-state Zinc ion battery of integration | |
CN113337059A (en) | Stretchable self-healing conductive polymer hydrogel, preparation method and application thereof | |
CN109273287A (en) | Self-healing hydrogel polyelectrolyte and preparation and application thereof | |
CN107591252A (en) | A kind of flexibility can cut solid-state super capacitor and preparation method thereof | |
Chen et al. | Stretchable all-in-one supercapacitor enabled by poly (ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance | |
CN110157013A (en) | A preparation method of highly stretchable polyaniline-based flexible conductive hydrogel | |
CN113698718B (en) | Zwitterionic hydrogel, electrolyte, secondary battery or super capacitor, and electric equipment | |
CN111403182A (en) | Graphene oxide hybrid polyaniline-based flexible electrode material and preparation method and application thereof | |
CN106803462A (en) | A kind of flexible extensible ultracapacitor and its preparation based on graphene composite film | |
CN110767470B (en) | A kind of supercapacitor based on antifreeze hydrogel electrolyte and preparation method thereof | |
CN112599863A (en) | Repairable ionic gel electrolyte and preparation method and application thereof | |
CN113611545B (en) | Stretchable, compressible and anti-freezing organic hydrogel electrolyte-based supercapacitor and preparation method thereof | |
Li et al. | A zinc-ion battery-type self-powered strain sensing system by using a high-performance ionic hydrogel | |
CN113185735B (en) | A kind of antifreeze supramolecular hydrogel electrolyte film and its preparation and application | |
CN116970121A (en) | Anti-freezing hydrogel electrolyte and preparation method thereof, and supercapacitor and preparation method thereof | |
CN112920328B (en) | Weather-resistant oil-water mixed gel platform and preparation method and application thereof | |
Sun et al. | Carboxymethyl chitosan doped hydrogel electrolyte with wide temperature domain for high performance flexible supercapacitor | |
CN115911591A (en) | Intrinsic stretchable polymer electrolyte and preparation method and application thereof | |
CN115331974A (en) | Lignin gel-based full-gel supercapacitor and preparation method thereof | |
CN117976425B (en) | A low-temperature resistant all-gel flexible supercapacitor with strong interface bonding performance and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |