CN115327622A - Imaging-oriented seismic data construction method - Google Patents
Imaging-oriented seismic data construction method Download PDFInfo
- Publication number
- CN115327622A CN115327622A CN202110509117.2A CN202110509117A CN115327622A CN 115327622 A CN115327622 A CN 115327622A CN 202110509117 A CN202110509117 A CN 202110509117A CN 115327622 A CN115327622 A CN 115327622A
- Authority
- CN
- China
- Prior art keywords
- seismic data
- imaging
- frequency
- construction method
- oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/32—Transforming one recording into another or one representation into another
- G01V1/325—Transforming one representation into another
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/34—Displaying seismic recordings or visualisation of seismic data or attributes
- G01V1/345—Visualisation of seismic data or attributes, e.g. in 3D cubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/70—Other details related to processing
- G01V2210/74—Visualisation of seismic data
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及油气勘探地震数据处理领域,特别是涉及到一种面向成像的地震数据构建方法。The invention relates to the field of oil and gas exploration seismic data processing, in particular to an imaging-oriented seismic data construction method.
背景技术Background technique
随着油气勘探开发的不断深入,油气藏类型逐渐转向复杂、隐蔽油气藏,对地震技术的提出了更高分辨率和更高保真度的要求,在这种情况下,单点高密度地震技术应运而生,要求单点接收、宽方位角、高炮道密度。这项技术已经在中国东部探区进行大范围推广应用,提高了成像分辨率和保真度。但是,有利勘探区域受地表障碍影响,在禁采区不能施工,在限采区激发和接收均受到限制,造成地震资料存在大量缺口,对地质目标的照明不足,影响成像质量。目前,常规的解决方案,一种是利用基于数学变换的算法进行地震数据规则化或者数据插值,然后进行叠加成像,这种方法并没有考虑地质目标的地下照明,对缺失地震资料成像改善效果不明显。另一种是利用通过拼接老资料然后进行叠加成像,但是由于老资料在频率、振幅、相位、时差等方面的差异,一致性较差,拼接效果也不理想,难以满足精细勘探的需求。With the continuous deepening of oil and gas exploration and development, the types of oil and gas reservoirs gradually shift to complex and subtle oil and gas reservoirs, which put forward higher resolution and higher fidelity requirements for seismic technology. In this case, single-point high-density seismic technology Emerged as the times require, single-point reception, wide azimuth, and high shot density are required. This technology has been widely used in eastern China, improving imaging resolution and fidelity. However, favorable exploration areas are affected by surface obstacles, construction cannot be carried out in prohibited mining areas, and excitation and reception are restricted in restricted mining areas, resulting in a large number of gaps in seismic data, insufficient illumination of geological targets, and affecting imaging quality. At present, one of the conventional solutions is to use mathematical transformation-based algorithms to regularize seismic data or data interpolation, and then perform stacked imaging. This method does not consider the underground lighting of geological targets, and the improvement effect on missing seismic data imaging is not good. obvious. The other is to combine old data and then superimpose imaging, but due to differences in frequency, amplitude, phase, and time difference of old data, the consistency is poor, and the stitching effect is not ideal, so it is difficult to meet the needs of fine exploration.
在申请号:CN201510346548.6的中国专利申请中,涉及到一种构建地震数据的速度模型的方法,包括:(A)获取地震数据的初始速度模型;(B)利用初始速度模型对测线进行偏移来获取原始偏移剖面;(C)获取初始速度模型分别在至少一个百分比速度因子下的各个参考速度模型;(D)利用各个参考速度模型获取共反射点道集;(E)将共反射点道集叠加为速度分析点的多道迷你剖面;(F)针对各个层位,确定优选迷你剖面,将速度分析点在与优选迷你剖面对应的百分比速度因子下的参考速度模型中的速度作为速度分析点在相应层位上的优选偏移速度;(G)将各个速度分析点分别在各个层位的优选偏移速度替代各个速度分析点在原始速度模型中的相应速度。In the Chinese patent application with application number: CN201510346548.6, it relates to a method of constructing a velocity model of seismic data, including: (A) obtaining the initial velocity model of seismic data; (B) using the initial velocity model to perform survey line (C) Obtain each reference velocity model with the initial velocity model under at least one percentage velocity factor; (D) Use each reference velocity model to obtain the common reflection point gather; (E) Collect the total The reflection point gathers are superimposed into multi-channel mini-profiles of velocity analysis points; (F) for each layer, the optimal mini-profile is determined, and the velocity of the velocity analysis point in the reference velocity model under the percentage velocity factor corresponding to the optimal mini-profile As the optimal migration velocity of the velocity analysis point in the corresponding horizon; (G) replace the corresponding velocity of each velocity analysis point in the original velocity model with the optimal migration velocity of each velocity analysis point in each horizon.
在申请号:CN202011229691.4的中国专利申请中,涉及到一种地震数据处理VIA双参数成像方法,包括:布置地震数据采集观测系统,包括设置炮点、检波点的位置以及二者的排列关系,利用地震数据采集观测系统采集地震数据,并设置地震波传播相关参数;计算VIA双参数成像方法的变换方程;通过上述变换方程,将t转换为t0,实现地震数据成像。In the Chinese patent application with application number: CN202011229691.4, it involves a VIA dual-parameter imaging method for seismic data processing, including: arranging the seismic data acquisition and observation system, including setting the positions of shot points and receiver points and the arrangement relationship between them , use the seismic data acquisition and observation system to collect seismic data, and set the relevant parameters of seismic wave propagation; calculate the transformation equation of the VIA dual-parameter imaging method; through the above transformation equation, convert t to t0 to realize seismic data imaging.
在申请号:CN201410049621.9的中国专利申请中,涉及到一种应用于陆上地震数据的逆时偏移成像的方法及系统,所述的方法包括:采集陆上地震数据;对所述的陆上地震数据进行强去噪处理,得到强去噪数据;对所述的陆上地震数据进行弱去噪处理,得到弱去噪数据;根据所述的陆上地震数据构建宽频子波;根据所述的强去噪数据构建速度模型;根据所述的弱去噪数据、宽频子波、速度模型进行逆时偏移成像,得到初始逆时偏移成像结果;对所述的初始逆时偏移成像结果进行低频噪声衰减,得到逆时偏移成像结果。In the Chinese patent application with application number: CN201410049621.9, it relates to a method and system for reverse time migration imaging applied to land seismic data. The method includes: collecting land seismic data; performing strong denoising processing on the land seismic data to obtain strong denoising data; performing weak denoising processing on the land seismic data to obtain weak denoising data; constructing broadband wavelets according to the land seismic data; Constructing a velocity model from the strong denoising data; performing reverse time migration imaging according to the weak denoising data, broadband wavelet, and velocity model to obtain an initial reverse time migration imaging result; The low-frequency noise attenuation is performed on the migration imaging results to obtain the reverse time migration imaging results.
以上现有技术均与本发明有较大区别,未能解决我们想要解决的技术问题,为此我们发明了一种新的面向成像的地震数据构建方法。The above existing technologies are quite different from the present invention, and cannot solve the technical problems we want to solve. Therefore, we have invented a new imaging-oriented seismic data construction method.
发明内容Contents of the invention
本发明的目的是提供一种以提高成像质量为目标,补偿地表障碍区采集变观造成的地震数据品质降低的面向成像的地震数据构建方法。The purpose of the present invention is to provide an imaging-oriented seismic data construction method aiming at improving the imaging quality and compensating the quality reduction of seismic data caused by the acquisition variation of the surface obstacle area.
本发明的目的可通过如下技术措施来实现:面向成像的地震数据构建方法,该面向成像的地震数据构建方法包括:The object of the present invention can be achieved through the following technical measures: an imaging-oriented seismic data construction method, the imaging-oriented seismic data construction method comprising:
步骤1:根据地下地质目标成像要求,设计目标观测系统;Step 1: Design the target observation system according to the imaging requirements of underground geological targets;
步骤2:将野外采集地震数据从时间域变换到频率域;Step 2: Transform the seismic data collected in the field from the time domain to the frequency domain;
步骤3:将频率域地震数据变换到频率波数域;Step 3: Transform the seismic data in the frequency domain to the frequency wavenumber domain;
步骤4:对于每个频率求取频率振幅值最大的傅里叶系数;Step 4: Find the Fourier coefficient with the largest frequency amplitude value for each frequency;
步骤5:求取得到最优重构系数;Step 5: Obtain the optimal reconstruction coefficient;
步骤6:利用最优重构系数进行傅里叶反变换,得到符合目标观测系统的优化构建地震数据。Step 6: Inverse Fourier transform is performed using the optimal reconstruction coefficient to obtain the optimally constructed seismic data in line with the target observation system.
本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:
在步骤1中,野外采集得到的地震数据记为D,对应的观测系统记为S;根据地下地质目标成像要求,考虑地下地质体照明,设计目标观测系统M。In step 1, the seismic data collected in the field is denoted as D, and the corresponding observation system is denoted as S; according to the imaging requirements of underground geological targets and considering the illumination of underground geological bodies, the target observation system M is designed.
在步骤2中,输入野外采集地震数据D,对每个地震道做傅里叶变换将时间域数据(t,x,y)变为频率域数据(f,x,y),其中,t表示时间,x和y表示空间的横、纵坐标,f表示频率。In step 2, the seismic data D collected in the field is input, and Fourier transform is performed on each seismic trace to change the time domain data (t, x, y) into frequency domain data (f, x, y), where t represents Time, x and y represent the horizontal and vertical coordinates of the space, and f represents the frequency.
在步骤3中,对频率域数据(f,x,y)做二维离散傅里叶变换,转换为频率波数域(f,kx,ky),其中,kx和ky表示x方向和y方向对应的波数。In step 3, two-dimensional discrete Fourier transform is performed on the frequency domain data (f, x, y) and converted into the frequency wavenumber domain (f, kx, ky), where kx and ky represent the correspondence between the x direction and the y direction wave number.
在步骤4中,求取每一个频率振幅值最大的傅里叶系数,将这个系数反变换回时间域后,从地震数据中减掉,直到完成所有频率的计算。In step 4, the Fourier coefficient with the largest amplitude value of each frequency is obtained, and after the coefficient is inversely transformed back to the time domain, it is subtracted from the seismic data until the calculation of all frequencies is completed.
在步骤4中,对于每一个频率f,选取振幅值最大的傅里叶系数记为(kx,ky)max,将其反变换回时间域后,从采集地震数据中减掉;每个频率f都按照这个方法进行操作。In step 4, for each frequency f, the Fourier coefficient with the largest amplitude value is selected as (kx, ky) max , and after inverse transformation back to the time domain, it is subtracted from the collected seismic data; each frequency f All operate in this way.
在步骤4中,频率f选取0到60Hz。In step 4, the frequency f is selected from 0 to 60 Hz.
在步骤4中,频率f选取0到65Hz。In step 4, the frequency f is selected from 0 to 65 Hz.
在步骤5中,重复步骤4,直到误差小于设定的阈值为止,求取得到最优重构系数。In step 5, step 4 is repeated until the error is smaller than the set threshold, and the optimal reconstruction coefficient is obtained.
在步骤6中,利用最优重构系数,以目标观测系统M作为量版,进行傅里叶反变换,得到目标观测系统M中各个震源、接收点位置处的成像优化构建地震数据R。In step 6, using the optimal reconstruction coefficient and taking the target observation system M as the scale, inverse Fourier transform is performed to obtain the imaging optimally constructed seismic data R at the positions of each seismic source and receiving point in the target observation system M.
本发明中的面向成像的地震数据构建方法,根据地下地质体的成像照明设计目标观测系统,指导地震数据波场构建,补偿地表障碍区的照明度,提高成像质量。与现有技术相比,本发明的面向成像的地震数据构建方法具有以下优点:In the imaging-oriented seismic data construction method of the present invention, the target observation system is designed according to the imaging illumination of the underground geological body, the wave field construction of the seismic data is guided, the illumination degree of the surface obstacle area is compensated, and the imaging quality is improved. Compared with the prior art, the imaging-oriented seismic data construction method of the present invention has the following advantages:
第一、该发明得到的地震资料频率、相位、振幅的一致性强,能够较好地补偿野外采集变观造成的地震数据缺失以及覆盖次数不足等问题,提高地震资料品质。First, the frequency, phase, and amplitude of the seismic data obtained by the invention have strong consistency, which can better compensate for the lack of seismic data and insufficient coverage times caused by field acquisition changes, and improve the quality of seismic data.
第二、该发明充分考虑了地下地质体的成像照明,设计了有利于成像的目标观测系统,能够得到优化的地震数据,提高地震成像质量。Second, the invention fully considers the imaging lighting of underground geological bodies, and designs a target observation system that is conducive to imaging, which can obtain optimized seismic data and improve the quality of seismic imaging.
附图说明Description of drawings
图1为本发明的面向成像的地震数据构建方法的一具体实施例的流程图;Fig. 1 is the flowchart of a specific embodiment of the imaging-oriented seismic data construction method of the present invention;
图2为本发明的一具体实施例中野外采集炮点实际位置的示意图;Fig. 2 is a schematic diagram of the actual position of the field acquisition shot point in a specific embodiment of the present invention;
图3为本发明的一具体实施例中根据成像需求设置的炮点目标观测系统的示意图;Fig. 3 is a schematic diagram of a shot point target observation system set according to imaging requirements in a specific embodiment of the present invention;
图4为本发明的一具体实施例中成像优化构建得到的地震单炮记录的示意图;Fig. 4 is a schematic diagram of a single-shot seismic record obtained by imaging optimization construction in a specific embodiment of the present invention;
图5为本发明的一具体实施例中成像优化构建数据的叠加剖面的示意图;Fig. 5 is a schematic diagram of a superposition section of imaging optimization construction data in a specific embodiment of the present invention;
图6为本发明的一具体实施例中常规方法重建数据的叠加剖面的示意图;Fig. 6 is a schematic diagram of a stacked profile of conventional method reconstruction data in a specific embodiment of the present invention;
图7为本发明的一具体实施例中野外采集炮点实际位置的示意图;Fig. 7 is a schematic diagram of the actual position of the shot point collected in the field in a specific embodiment of the present invention;
图8为本发明的一具体实施例中根据成像需求设置的炮点目标观测系统的示意图;8 is a schematic diagram of a shot point target observation system set according to imaging requirements in a specific embodiment of the present invention;
图9为本发明的一具体实施例中成像优化构建得到的地震单炮记录的示意图;Fig. 9 is a schematic diagram of a seismic single-shot record obtained by imaging optimization construction in a specific embodiment of the present invention;
图10为本发明的一具体实施例中成像优化构建数据的偏移剖面的示意图;Fig. 10 is a schematic diagram of a migration profile of imaging optimization construction data in a specific embodiment of the present invention;
图11为本发明的一具体实施例中常规方法重建数据的偏移剖面的示意图。FIG. 11 is a schematic diagram of a migration profile of data reconstructed by a conventional method in an embodiment of the present invention.
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations and/or combinations thereof.
本发明的面向成像的地震数据构建方法包括了以下步骤:The imaging-oriented seismic data construction method of the present invention includes the following steps:
(1)根据地下地质目标成像要求,考虑地下地质体照明,设计目标观测系统;(1) According to the imaging requirements of underground geological targets, consider the lighting of underground geological bodies, and design the target observation system;
(2)将野外采集地震数据从时间域变换到频率域;(2) Transform the seismic data collected in the field from the time domain to the frequency domain;
(3)将频率域地震数据变换到频率波数域;(3) Transform the seismic data in the frequency domain to the frequency wavenumber domain;
(4)求取每一个频率振幅值最大的傅里叶系数,将这个系数反变换回时间域后,从采集地震数据中减掉,直到完成所有频率的计算;(4) Find the Fourier coefficient with the largest amplitude value for each frequency, and after inversely transforming this coefficient back to the time domain, subtract it from the collected seismic data until the calculation of all frequencies is completed;
(5)重复步骤4,直到误差小于设定的阈值为止,求取得到最优重构系数;(5) Repeat step 4 until the error is less than the set threshold, and obtain the optimal reconstruction coefficient;
(6)利用最优重构系数进行傅里叶反变换,得到符合目标观测系统的成像优化构建地震数据。(6) Inverse Fourier transform is performed by using the optimal reconstruction coefficient to obtain the seismic data constructed by imaging optimization conforming to the target observation system.
在应用本发明的一具体实施例1中,本发明的面向成像的地震数据构建方法具体包括了以下步骤:In a specific embodiment 1 of the application of the present invention, the imaging-oriented seismic data construction method of the present invention specifically includes the following steps:
(1)野外采集得到的地震数据记为D,对应的观测系统记为S。根据地下地质目标成像要求,考虑地下地质体照明,设计目标观测系统M。(1) The seismic data collected in the field is marked as D, and the corresponding observation system is marked as S. According to the imaging requirements of underground geological targets, the target observation system M is designed considering the illumination of underground geological bodies.
(2)输入野外采集地震数据D,对每个地震道做傅里叶变换将时间域数据(t,x,y)变为频率域数据(f,x,y),其中,t表示时间,x和y表示空间的横、纵坐标,f表示频率。(2) Input the seismic data D collected in the field, and perform Fourier transform on each seismic trace to change the time domain data (t, x, y) into frequency domain data (f, x, y), where t represents time, x and y represent the horizontal and vertical coordinates of the space, and f represents the frequency.
(3)对频率域数据(f,x,y)做二维离散傅里叶变换,转换为频率波数域(f,kx,ky),其中,kx和ky表示x方向和y方向对应的波数。(3) Do a two-dimensional discrete Fourier transform on the frequency domain data (f, x, y) and convert it to the frequency wavenumber domain (f, kx, ky), where kx and ky represent the corresponding wavenumbers in the x direction and y direction .
(4)对于每一个频率f,选取振幅值最大的傅里叶系数记为(kx,ky)max,将其反变换回时间域后,从采集地震数据中减掉;每个频率f都按照这个方法进行操作。(4) For each frequency f, select the Fourier coefficient with the largest amplitude value as (kx, ky) max , inversely transform it back to the time domain, and subtract it from the collected seismic data; each frequency f is calculated according to This method operates.
(5)重复步骤4,直到误差小于设定的阈值为止,求取得到最优重构系数。(5) Repeat step 4 until the error is smaller than the set threshold, and obtain the optimal reconstruction coefficient.
(6)利用最优重构系数,以目标观测系统M作为量版,进行傅里叶反变换,得到目标观测系统M中各个震源、接收点位置处的成像优化构建地震数据R。(6) Using the optimal reconstruction coefficient and taking the target observation system M as the scale plate, inverse Fourier transform is performed to obtain the imaging optimal construction seismic data R at the positions of each source and receiver point in the target observation system M.
在应用本发明的一具体实施例2中,如图1所示,图1所示为面向成像的地震数据构建方法操作步骤。In a specific embodiment 2 of the present invention, as shown in FIG. 1 , FIG. 1 shows the operation steps of the imaging-oriented seismic data construction method.
在步骤101中,野外采集实际观测系统,由于地表障碍物的影响,观测系统S炮点缺失严重(图2),根据地质体照明需求,设置了针对炮点的目标观测系统M(图3)。In
步骤102,输入野外采集地震数据D,对每个地震道做傅里叶变换将时间域数据(t,x,y)变为频率域数据(f,x,y),其中,t表示时间,x和y表示空间的横、纵坐标,f表示频率。
步骤103,对频率域数据(f,x,y)做二维离散傅里叶变换,转换为频率波数域(f,kx,ky),其中,kx和ky表示x方向和y方向对应的波数。
步骤104,对于每一个频率f,选取振幅值最大的傅里叶系数记为(kx,ky)max,将其反变换回时间域后,从采集地震数据中减掉,每个频率f都按照这个方法进行操作,这里的频率f选取0到60Hz。
步骤105,重复步骤4,直到误差小于设定的阈值为止,求取得到最优重构系数。In
步骤106,利用最优重构系数,以目标观测系统M作为量版,进行傅里叶反变换,得到目标观测系统M中各个震源、接收点位置处的成像优化构建地震数据R(图4)。
为了说明面向成像的地震数据构建方法的优势,将野外采集观测系统S的地震数据D应用常规方法进行数据重建,与应用本发明设计的目标观测系统M进行优化构建得到的地震数据R,分别进行叠加,可以发现:本发明优化构建地震数据的叠加结果(图5)优于常规方法重建数据的叠加结果(图6),验证了本发明的实用效果。In order to illustrate the advantages of the imaging-oriented seismic data construction method, the seismic data D of the field acquisition observation system S is reconstructed using conventional methods, and the seismic data R obtained by applying the target observation system M designed by the present invention to optimize the construction are respectively carried out. Superposition, it can be found that the superposition result of the optimally constructed seismic data ( FIG. 5 ) of the present invention is better than the superposition result ( FIG. 6 ) of reconstructed data by the conventional method, which verifies the practical effect of the present invention.
在应用本发明的一具体实施例3中,本发明的面向成像的地震数据构建方法具体包括了以下步骤:In a specific embodiment 3 of the application of the present invention, the imaging-oriented seismic data construction method of the present invention specifically includes the following steps:
在步骤101中,野外采集实际观测系统,由于地表障碍物的影响,观测系统S炮点缺失严重(图7),根据地质体照明需求,设置了炮点的目标观测系统M(图8)。In
步骤102,输入野外采集地震数据D,对每个地震道做傅里叶变换将时间域数据(t,x,y)变为频率域数据(f,x,y),其中,t表示时间,x和y表示空间的横、纵坐标,f表示频率。
步骤103,对频率域数据(f,x,y)做二维离散傅里叶变换,转换为频率波数域(f,kx,ky),其中,kx和ky表示x方向和y方向对应的波数。
步骤104,对于每一个频率f,选取振幅值最大的傅里叶系数记为(kx,ky)max,将其反变换回时间域后,从采集地震数据中减掉,每个频率f都按照这个方法进行操作,这里的频率f选取0到65Hz。
步骤105,重复步骤4,直到误差小于设定的阈值为止,求取得到最优重构系数。In
步骤106,利用最优重构系数,以目标观测系统M作为量版,进行傅里叶反变换,得到目标观测系统M中各个震源、接收点位置处的成像优化构建地震数据R(图9)。
为了说明面向成像的地震数据构建方法的优势,将野外采集观测系统S的地震数据D应用常规方法进行数据重建,与应用本发明设计的目标观测系统M进行优化构建得到的地震数据R,分别进行叠前时间偏移,可以发现:本发明优化构建地震数据的偏移结果(图10)优于常规方法重建数据的偏移结果(图11),验证了本发明在提高地震资料成像质量方面的优势。In order to illustrate the advantages of the imaging-oriented seismic data construction method, the seismic data D of the field acquisition observation system S is reconstructed using conventional methods, and the seismic data R obtained by applying the target observation system M designed by the present invention to optimize the construction are respectively carried out. Pre-stack time migration, it can be found that the migration result (Fig. 10) of the present invention is better than the migration result (Fig. 11) of reconstructed data by the conventional method, which proves that the present invention improves the imaging quality of seismic data. Advantage.
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域技术人员来说,其依然可以对前述实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that: the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it can still The technical solutions described in the foregoing embodiments are modified, or some of the technical features are equivalently replaced. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
除说明书所述的技术特征外,均为本专业技术人员的已知技术。Except for the technical features described in the instructions, all are known technologies by those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110509117.2A CN115327622A (en) | 2021-05-11 | 2021-05-11 | Imaging-oriented seismic data construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110509117.2A CN115327622A (en) | 2021-05-11 | 2021-05-11 | Imaging-oriented seismic data construction method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115327622A true CN115327622A (en) | 2022-11-11 |
Family
ID=83912670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110509117.2A Pending CN115327622A (en) | 2021-05-11 | 2021-05-11 | Imaging-oriented seismic data construction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115327622A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048784A1 (en) * | 2007-08-16 | 2009-02-19 | Bp Corporation North America Inc. | 3d surface related multiple elimination for wide azimuth seismic data |
CN103852786A (en) * | 2014-02-13 | 2014-06-11 | 中国石油天然气股份有限公司 | Reverse time migration imaging method and system applied to land seismic data |
CN104932015A (en) * | 2015-06-19 | 2015-09-23 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | Method used for building seismic data velocity model |
CN105242304A (en) * | 2014-07-04 | 2016-01-13 | 中国石油化工股份有限公司 | Seismic data gap compensation method based on frequency-space domain wave field continuation |
CN110764135A (en) * | 2018-07-26 | 2020-02-07 | 中国石油化工股份有限公司 | Irregular seismic data full-band reconstruction method |
CN110954943A (en) * | 2018-09-26 | 2020-04-03 | 北京派特森科技股份有限公司 | Passive source seismic frequency resonance exploration method |
CN112346124A (en) * | 2020-11-06 | 2021-02-09 | 中国地震灾害防御中心 | VIA (visual image analysis) double-parameter imaging method for seismic data processing |
-
2021
- 2021-05-11 CN CN202110509117.2A patent/CN115327622A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048784A1 (en) * | 2007-08-16 | 2009-02-19 | Bp Corporation North America Inc. | 3d surface related multiple elimination for wide azimuth seismic data |
CN103852786A (en) * | 2014-02-13 | 2014-06-11 | 中国石油天然气股份有限公司 | Reverse time migration imaging method and system applied to land seismic data |
CN105242304A (en) * | 2014-07-04 | 2016-01-13 | 中国石油化工股份有限公司 | Seismic data gap compensation method based on frequency-space domain wave field continuation |
CN104932015A (en) * | 2015-06-19 | 2015-09-23 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | Method used for building seismic data velocity model |
CN110764135A (en) * | 2018-07-26 | 2020-02-07 | 中国石油化工股份有限公司 | Irregular seismic data full-band reconstruction method |
CN110954943A (en) * | 2018-09-26 | 2020-04-03 | 北京派特森科技股份有限公司 | Passive source seismic frequency resonance exploration method |
CN112346124A (en) * | 2020-11-06 | 2021-02-09 | 中国地震灾害防御中心 | VIA (visual image analysis) double-parameter imaging method for seismic data processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106597532B (en) | Pre-stack seismic data frequency band expanding method combining well data and horizon data | |
CN108037526B (en) | Reverse-time migration method based on all-wave wave field VSP/RVSP seismic data | |
CN109669212B (en) | Seismic data processing method, stratum quality factor estimation method and device | |
CN109407151B (en) | Time Domain Full Waveform Inversion Method Based on Local Correlation Time Shift of Wave Field | |
US20140372043A1 (en) | Full Waveform Inversion Using Perfectly Reflectionless Subgridding | |
CN113625337B (en) | Ultra-shallow water high-precision seismic data rapid imaging method | |
CN111522062B (en) | Underburden amplitude compensation method based on volcanic shielding quantitative analysis | |
CN109738951B (en) | Time-varying deconvolution method based on seismic event sub-spectrum | |
CN108983284A (en) | A kind of domain f-p ghost reflection drawing method suitable for marine tiltedly cable data | |
CN112327362B (en) | Submarine multiple prediction and tracking attenuation method in velocity domain | |
CN108445538A (en) | The method and system of Depth Domain layer Q model is established based on reflected seismic information | |
CN108254731A (en) | The multiple dimensioned staged layer stripping full waveform inversion method of Coherent Noise in GPR Record | |
CN104570116A (en) | Geological marker bed-based time difference analyzing and correcting method | |
CN115079283A (en) | High-precision reverse time migration method of ground penetrating radar based on speed estimation and artifact suppression | |
CN106873031A (en) | A kind of 3 D seismic observation system vertical resolution quantitative analysis evaluation method | |
CN108957545B (en) | Airgun Array Wavelet Directional Deconvolution Method and System | |
CN107238864A (en) | The seismic wave energy time-frequency compensation method constrained based on dominant frequency band | |
Li et al. | Warped-mapping based multi-gather joint prestack Q estimation | |
CN113376689B (en) | Elastic reflection wave travel time inversion method considering interlayer multiples | |
CN115327622A (en) | Imaging-oriented seismic data construction method | |
CN112578433A (en) | Seismic data processing method and device | |
CN113917533B (en) | TI medium double-linkage omnibearing imaging systematic realization method | |
RU2577792C1 (en) | Robust process for depth imaging in seismic survey based on operator adjustment by reference seismic record | |
CN114371505A (en) | A Multiwavelet Inversion Method and System Based on Seismic Frequency Division Technology | |
CN110673211A (en) | A Quality Factor Modeling Method Based on Logging and Seismic Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |