CN115323230B - Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof - Google Patents
Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof Download PDFInfo
- Publication number
- CN115323230B CN115323230B CN202210907398.1A CN202210907398A CN115323230B CN 115323230 B CN115323230 B CN 115323230B CN 202210907398 A CN202210907398 A CN 202210907398A CN 115323230 B CN115323230 B CN 115323230B
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- aluminum
- heat
- copper
- cerium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
Abstract
本发明公开了一种铝铜铈系耐热铝合金及其制备方法,按质量百分比计,包括Cu 6%~9%,Ce 0.75%~1.5%,Mn 0.5%~1.2%,RE 0.05%~0.4%,Zr 0.1%~0.5%,余量为Al,解决了含铜的铝合金中θ′‑Al2Cu沉淀相在300℃~350℃下易于粗化,进而逐步丧失强化效果,致使合金高温寿命有限的突出问题,调配了共晶相和沉淀相的体积分数配比,显著地提高了耐热铸造铝合金在高温下的长期服役能力,其在300℃下100h的持久强度大于100MPa,300℃下400h的持久强度为90MPa,350℃下100h的持久强度大于70MPa。
The invention discloses an aluminum-copper-cerium-based heat-resistant aluminum alloy and a preparation method thereof, comprising Cu 6%-9%, Ce 0.75%-1.5%, Mn 0.5%-1.2%, RE 0.05%- 0.4%, Zr 0.1% ~ 0.5%, the balance is Al, which solves the problem that the θ′-Al 2 Cu precipitate phase in copper-containing aluminum alloys is easy to coarsen at 300 ° C ~ 350 ° C, and then gradually loses the strengthening effect, resulting in the alloy For the outstanding problem of limited high-temperature life, the volume fraction ratio of the eutectic phase and the precipitated phase has been adjusted, which has significantly improved the long-term service ability of heat-resistant cast aluminum alloys at high temperatures. The enduring strength of 400h at 300°C is 90MPa, and the enduring strength of 100h at 350°C is greater than 70MPa.
Description
技术领域technical field
本发明涉及金属材料领域,具体为一种铝铜铈系耐热铝合金及其制备方法。The invention relates to the field of metal materials, in particular to an aluminum-copper-cerium heat-resistant aluminum alloy and a preparation method thereof.
背景技术Background technique
近些年来,航空航天和交通运输等领域的快速发展对可在更高温度下服役的铝合金材料提出了现实需求。例如,采用铝合金铸造汽车发动机缸体和汽缸盖等部件。然而,受燃机效率提升和排放标准提高的驱动,发动机需进一步提升燃烧压力,这意味着燃机运行温度将高于250℃,超出当前应用的Al-Si体系的耐热极限。在航空航天等领域,目前在250℃~350℃温度区间主要使用钛合金材料,如能用在250℃~350℃温度区间长期稳定服役的铝合金材料替代钛合金构件,则可实现对飞行器减重的重要设计指标。In recent years, the rapid development of aerospace and transportation has put forward a realistic demand for aluminum alloy materials that can serve at higher temperatures. For example, aluminum alloys are used to cast parts such as automobile engine blocks and cylinder heads. However, driven by the improvement of gas engine efficiency and emission standards, the engine needs to further increase the combustion pressure, which means that the operating temperature of the gas turbine will be higher than 250 °C, which exceeds the heat resistance limit of the currently used Al-Si system. In aerospace and other fields, titanium alloy materials are currently mainly used in the temperature range of 250°C to 350°C. If titanium alloy components can be replaced by aluminum alloy materials that have been in stable service for a long time in the temperature range of 250°C to 350°C, the aircraft can be reduced. important design indicators.
目前,我国应用最多的耐热铝合金主要为以ZL204A、ZL205A、ZL206、ZL207和ZL208为代表的2系铸造铝合金,国外主要有美国的A201、206和RR350合金。表征材料在高温下长时间服役能力的力学性能指标主要为高温持久强度或高温蠕变强度,在以上合金中,我国的ZL206合金高温持久强度和蠕变强度最佳。ZL206的化学成分为Cu:7.6~8.4wt.%,RE:1.5~2.3wt.%,Mn:0.7~1.1wt.%,Zr:0.1~0.25wt.%,Al为余量,其中RE为混合稀土。在T6状态下,其300℃下400h的持久强度约为60MPa,350℃下100h持久强度约为50MPa,在300℃~350℃下存在蠕变速率急剧升高、蠕变持久强度锐减的突出问题。现有的铝合金材料高温持久强度性能指标已经难以满足当前汽车和航空航天领域的最新需求。At present, the most widely used heat-resistant aluminum alloys in my country are mainly 2-series cast aluminum alloys represented by ZL204A, ZL205A, ZL206, ZL207 and ZL208. Foreign countries mainly include A201, 206 and RR350 alloys in the United States. The mechanical performance indicators that characterize the long-term service ability of materials at high temperatures are mainly high-temperature enduring strength or high-temperature creep strength. Among the above alloys, my country's ZL206 alloy has the best high-temperature enduring strength and creep strength. The chemical composition of ZL206 is Cu: 7.6~8.4wt.%, RE: 1.5~2.3wt.%, Mn: 0.7~1.1wt.%, Zr: 0.1~0.25wt.%, Al is the balance, and RE is mixed rare earth. In the T6 state, the enduring strength of 400h at 300°C is about 60MPa, and the enduring strength of 100h at 350°C is about 50MPa. At 300°C to 350°C, there is a sharp increase in creep rate and a sharp decrease in creep enduring strength. question. The existing high-temperature durable strength performance indicators of aluminum alloy materials have been difficult to meet the latest needs of the current automotive and aerospace fields.
发明内容Contents of the invention
针对现有耐热铸造铝合金在300℃~350℃下蠕变速率急剧升高、蠕变持久强度锐减的突出问题,本发明提供了一种铝铜铈系耐热铝合金及其制备方法,显著提高了耐热铸造铝合金在高温下的长期服役能力。Aiming at the outstanding problems that the existing heat-resistant cast aluminum alloys have a sharp increase in creep rate and a sharp decrease in creep durable strength at 300°C to 350°C, the invention provides an aluminum-copper-cerium-based heat-resistant aluminum alloy and a preparation method thereof , significantly improving the long-term service capability of heat-resistant cast aluminum alloys at high temperatures.
本发明是通过以下技术方案来实现:The present invention is achieved through the following technical solutions:
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 6%~9%,Ce 0.75%~1.5%,Mn 0.5%~1.2%,RE 0.05%~0.4%,Zr 0.1%~0.5%,余量为Al。An aluminum-copper-cerium heat-resistant aluminum alloy, including Cu 6%-9%, Ce 0.75%-1.5%, Mn 0.5%-1.2%, RE 0.05%-0.4%, Zr 0.1%-0.5% by mass percentage %, the balance is Al.
优选的,所述Cu和Ce的比例为(4-8):1。Preferably, the ratio of Cu and Ce is (4-8):1.
优选的,所述RE为Y、Er、Sc和Yb中的至少一种。Preferably, the RE is at least one of Y, Er, Sc and Yb.
一种铝铜铈系耐热铝合金的制备方法,包括以下步骤:A method for preparing an aluminum-copper-cerium-based heat-resistant aluminum alloy, comprising the following steps:
步骤1、将铝合金铸锭在200℃~300℃保温12h~48h,然后升温至400℃~500℃下保温5h~15h;Step 1. Heat the aluminum alloy ingot at 200°C-300°C for 12h-48h, then raise the temperature to 400°C-500°C for 5h-15h;
步骤2、将步骤1铝合金铸锭在520℃~537℃下保温5h~30h后进行淬火;Step 2. Heat the aluminum alloy ingot in step 1 at 520° C. to 537° C. for 5 hours to 30 hours and then quench it;
步骤3、将步骤2得到的铝合金铸锭在150℃~200℃下保温5h~30h,然后再升温到250℃~300℃下保温1h以上后冷却至室温,得到铝铜铈系耐热铝合金。Step 3, heat the aluminum alloy ingot obtained in step 2 at 150°C-200°C for 5h-30h, then raise the temperature to 250°C-300°C for more than 1h, then cool to room temperature to obtain aluminum-copper-cerium-based heat-resistant aluminum alloy.
优选的,步骤1中采用单质铝和铝合金的中间合金,熔炼制备铝合金铸锭。Preferably, in step 1, an intermediate alloy of elemental aluminum and aluminum alloy is used to prepare an aluminum alloy ingot by melting.
优选的,步骤2所述淬火处理的方式为水淬处理。Preferably, the quenching treatment in step 2 is water quenching.
优选的,步骤3所述冷却方式为空冷。Preferably, the cooling method described in step 3 is air cooling.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明提供的一种铝铜铈系耐热铝合金,通过控制铜和铈元素的配比,以及在铝合金中加入稀土元素,显著提高了耐热铸造铝合金在高温下的长期服役能力,其在300℃下100h的持久强度大于100MPa,300℃下400h的持久强度为90MPa,350℃下100h的持久强度大于70MPa。The invention provides an aluminum-copper-cerium-based heat-resistant aluminum alloy. By controlling the ratio of copper and cerium elements and adding rare earth elements to the aluminum alloy, the long-term service ability of the heat-resistant cast aluminum alloy at high temperature is significantly improved. Its enduring strength at 300°C for 100h is greater than 100MPa, its enduring strength at 300°C for 400h is 90MPa, and its enduring strength at 350°C for 100h is greater than 70MPa.
该铝铜铈系耐热铝合金的制备过程中,采用200℃~300℃/12h~48h固溶前处理形成高密度RE元素溶质原子团簇,采用400℃~500℃/5h~15h固溶前处理,以高密度RE溶质原子团簇为异质形核质点,形成高密度Al3Zr纳米沉淀相,采用520℃~537℃固溶处理回熔Al2Cu金属间化合物,并保证高密度Al3Zr纳米沉淀相不显著粗化,采用150℃~200℃/5h~30h+250℃~300℃/>1h双级时效处理工艺,以Al3Zr纳米沉淀相为异质形核质点析出θ′-Al2Cu沉淀相,并促使RE和Zr元素在θ′-Al2Cu沉淀相界面偏聚,形成“扩散阻隔层”,大幅提升θ′-Al2Cu沉淀相在300℃~350℃下的热稳定性,解决了含铜的铝合金中θ′-Al2Cu沉淀相在300℃~350℃下易于粗化,进而逐步丧失强化效果,致使合金高温寿命有限的突出问题。In the preparation process of the aluminum-copper-cerium heat-resistant aluminum alloy, high-density RE element solute atomic clusters are formed by 200°C-300°C/12h-48h solid solution pretreatment, and 400°C-500°C/5h-15h solid solution pretreatment Treatment, using high-density RE solute atomic clusters as heterogeneous nucleation particles to form high-density Al 3 Zr nano-precipitated phases, using 520°C to 537°C solid solution treatment to remelt Al 2 Cu intermetallic compounds, and ensure high-density Al 3 The Zr nano-precipitation phase is not significantly coarsened, and the 150℃~200℃/5h~30h+250℃~300℃/>1h double-stage aging treatment process is adopted, and the Al 3 Zr nanoprecipitation phase is used as the heterogeneous nucleation particle to precipitate θ′ -Al 2 Cu precipitation phase, and promote the segregation of RE and Zr elements at the interface of θ′-Al 2 Cu precipitation phase, forming a “diffusion barrier layer”, which greatly improves the temperature of θ′-Al 2 Cu precipitation phase at 300℃~350℃ Excellent thermal stability, which solves the prominent problem that the θ′-Al 2 Cu precipitate phase in copper-containing aluminum alloys is easy to coarsen at 300 ° C to 350 ° C, and then gradually loses the strengthening effect, resulting in a limited high-temperature service life of the alloy.
进一步,Cu:Ce的比例应为4:1到8:1,优选为5.3:1,以优化纳米沉淀相和微米结晶相的体积分数配比,其中纳米析出相为含Cu的θ′-Al2Cu沉淀相,微米结晶相为含Cu的Al20Cu2Mn3、Al8Cu4Ce、Al24Cu8Ce3Mn相,θ′-Al2Cu纳米沉淀相提升高温蠕变抗力的机制为阻碍位错攀移,微米结晶相提升高温蠕变抗力的机制为载荷传递。在Cu含量一定的情况下,含Cu纳米沉淀相和含Cu微米结晶相的体积分数此消彼长,相对含量由Cu:Ce比控制,优选的Cu:Ce比使θ′-Al2Cu纳米沉淀相和微米结晶相的体积分数合理匹配,从而使阻碍位错攀移和载荷传递两种强化机制产生最佳的协同效力,提升高温力学性能。Further, the ratio of Cu:Ce should be 4:1 to 8:1, preferably 5.3:1, to optimize the volume fraction ratio of nano-precipitated phase and micro-crystalline phase, wherein the nano-precipitated phase is Cu-containing θ′-Al 2 Cu precipitated phase, the micron crystalline phase is Cu-containing Al 20 Cu 2 Mn 3 , Al 8 Cu 4 Ce, Al 24 Cu 8 Ce 3 Mn phase, the mechanism of θ′-Al 2 Cu nano-precipitated phase improving high temperature creep resistance In order to hinder dislocation climbing, the mechanism of micron crystal phase to improve high temperature creep resistance is load transfer. In the case of a certain Cu content, the volume fractions of the Cu-containing nano-precipitated phase and the Cu-containing micro-crystalline phase will ebb and flow, and the relative content is controlled by the Cu:Ce ratio. The preferred Cu:Ce ratio makes the θ′-Al 2 Cu nano The volume fraction of the precipitated phase and the micro-crystalline phase is reasonably matched, so that the two strengthening mechanisms of hindering dislocation climbing and load transfer can produce the best synergistic effect and improve the high-temperature mechanical properties.
附图说明Description of drawings
图1为本发明铝铜铈系耐热铝合金在300℃下的持久强度测试数据,以及其与ZL201A,ZL206和ZL207合金的对比。Figure 1 shows the durability test data of the aluminum-copper-cerium heat-resistant aluminum alloy of the present invention at 300°C, and its comparison with ZL201A, ZL206 and ZL207 alloys.
图2为本发明铝铜铈系耐热铝合金在350℃下的持久强度测试数据,以及其与ZL206和ZL207合金的对比。Fig. 2 is the endurance strength test data of the aluminum-copper-cerium-based heat-resistant aluminum alloy of the present invention at 350°C, and its comparison with ZL206 and ZL207 alloys.
图3为本发明铝铜铈系耐热铝合金的金相显微组织照片,其显示了微米尺度结晶相。Fig. 3 is a photo of the metallographic microstructure of the aluminum-copper-cerium-based heat-resistant aluminum alloy of the present invention, which shows micron-scale crystal phases.
图4为本发明铝铜铈系耐热铝合金的透射电子显微照片,其显示了纳米尺度的θ′-Al2Cu沉淀相。Fig. 4 is a transmission electron micrograph of the aluminum-copper-cerium-based heat-resistant aluminum alloy of the present invention, which shows a nanoscale θ'-Al 2 Cu precipitated phase.
图5为本发明铝铜铈系耐热铝合金的高分辨电子显微照片,其显示了θ′-Al2Cu界面处的偏聚结构,即“扩散阻隔层”。Fig. 5 is a high-resolution electron micrograph of the aluminum-copper-cerium-based heat-resistant aluminum alloy of the present invention, which shows the segregated structure at the θ'-Al 2 Cu interface, that is, the "diffusion barrier layer".
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with the accompanying drawings, which are explanations rather than limitations of the present invention.
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 6%~9%,Ce 0.75%~1.5%,Mn 0.5%~1.2%,RE 0.05%~0.4%,Zr 0.1%~0.5%,余量为Al。An aluminum-copper-cerium heat-resistant aluminum alloy, including Cu 6%-9%, Ce 0.75%-1.5%, Mn 0.5%-1.2%, RE 0.05%-0.4%, Zr 0.1%-0.5% by mass percentage %, the balance is Al.
所述RE为稀土,具体为Y、Er、Sc、Yb中的一种或者多种。The RE is a rare earth, specifically one or more of Y, Er, Sc, and Yb.
所述Cu和Ce的比例为(4-8):1,优选为5.3:1。The ratio of Cu and Ce is (4-8):1, preferably 5.3:1.
上述铝铜铈系耐热铝合金的制备方法,包括以下步骤:The preparation method of the above-mentioned aluminum-copper-cerium heat-resistant aluminum alloy comprises the following steps:
步骤1、按照铝铜铈系耐热铝合金的质量百分比,准备铝和中间合金,采用熔炼的方法制备铝合金铸锭,具体方法如下:Step 1. According to the mass percentage of aluminum-copper-cerium series heat-resistant aluminum alloy, aluminum and intermediate alloy are prepared, and aluminum alloy ingot is prepared by smelting. The specific method is as follows:
在电阻炉中对各原料进行熔炼,然后在铝合金溶液通入惰性气体进行精炼除气和扒渣后,将铝合金溶液浇铸至模具中形成铝合金铸锭。The raw materials are smelted in a resistance furnace, and then the aluminum alloy solution is poured into a mold to form an aluminum alloy ingot after the aluminum alloy solution is fed with an inert gas for refining degassing and slag removal.
所述惰性气体为氮气或氩气。The inert gas is nitrogen or argon.
步骤2、对步骤1得到的铝合金铸锭进行多级固溶前处理,方法如下:Step 2, performing multi-stage solid solution pretreatment on the aluminum alloy ingot obtained in step 1, the method is as follows:
S21、将铝合金铸锭在200℃~300℃保温12h~48h,形成高密度RE元素溶质原子团簇(数量密度大于1024m-3),用作Al3Zr相的异质形核质点。S21. Heat the aluminum alloy ingot at 200°C-300°C for 12h-48h to form high-density RE element solute atomic clusters (number density greater than 10 24 m -3 ), which are used as heterogeneous nucleation points for Al 3 Zr phase.
S22、将步骤S21得到的铝合金铸锭在400℃~500℃下保温5h~15h,以高密度RE溶质原子团簇为核心,形成Al3Zr纳米沉淀相。S22. Heat the aluminum alloy ingot obtained in step S21 at 400° C. to 500° C. for 5 hours to 15 hours to form an Al 3 Zr nano-precipitate phase with high-density RE solute atomic clusters as the core.
步骤3、对步骤2得到的铝合金铸锭进行固溶处理和时效处理,得到铝铜铈系耐热铝合金,具体方法如下:Step 3, performing solution treatment and aging treatment on the aluminum alloy ingot obtained in step 2 to obtain an aluminum-copper-cerium heat-resistant aluminum alloy, the specific method is as follows:
S31、将铝合金铸锭在520℃~537℃下保温5h~30h,而后进行淬火,完成固溶处理,使凝固过程中形成的含铜金属间化合物回熔于铝基体。S31. Heat the aluminum alloy ingot at 520° C. to 537° C. for 5 hours to 30 hours, and then perform quenching to complete solution treatment, so that the copper-containing intermetallic compound formed during the solidification process is melted back into the aluminum matrix.
S32、将步骤S31得到的铝合金铸锭在150℃~200℃下保温5h~30h,然后再升温到250℃~300℃下保温1h以上后空冷至室温,完成时效处理,得到铝铜铈系耐热铝合金。S32. Heat the aluminum alloy ingot obtained in step S31 at 150°C-200°C for 5h-30h, then raise the temperature to 250°C-300°C for more than 1h, then air-cool to room temperature, and complete the aging treatment to obtain aluminum-copper-cerium series Heat-resistant aluminum alloy.
本发明合金以Al3Zr纳米沉淀相为异质形核质点析出θ′-Al2Cu沉淀相,并促使RE和Zr元素在θ′-Al2Cu沉淀相界面偏聚,形成“扩散阻隔层”,大幅提升θ′-Al2Cu沉淀相在300℃~350℃下的热稳定性。The alloy of the present invention uses the Al 3 Zr nano-precipitation phase as the heterogeneous nucleation particle to precipitate the θ′-Al 2 Cu precipitation phase, and promote the segregation of RE and Zr elements at the interface of the θ′-Al 2 Cu precipitation phase to form a “diffusion barrier layer ”, greatly improving the thermal stability of the θ′-Al 2 Cu precipitated phase at 300°C to 350°C.
实施例1Example 1
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 7%,Ce 1%,Mn 0.8%,RE0.085%,Zr 0.17%,余量为铝。An aluminum-copper-cerium-based heat-resistant aluminum alloy, comprising 7% Cu, 1% Ce, 0.8% Mn, 0.085% RE, 0.17% Zr, and the balance is aluminum.
该铝铜铈系耐热铝合金的制备方法如下,包括以下步骤:The preparation method of the aluminum-copper-cerium heat-resistant aluminum alloy is as follows, comprising the following steps:
步骤1、按照上述质量百分比,准备铝和中间合金,采用熔炼的方法制备铝合金铸锭,具体方法如下:Step 1. Prepare aluminum and intermediate alloys according to the above mass percentages, and prepare aluminum alloy ingots by smelting. The specific method is as follows:
S11、将Al和Al-Mn中间合金在石墨坩埚放入电阻炉中进行融化,并在720℃-820℃下保温2.5h;S11. Melting Al and Al-Mn master alloys in graphite crucibles in a resistance furnace, and keeping the temperature at 720°C-820°C for 2.5h;
S12、在步骤S11的金属溶液中加入Al-Cu中间合金、Al-Zr中间合金和Al-RE中间合金进行融化,并在720℃-820℃下保温1.5h;S12. Add Al-Cu master alloy, Al-Zr master alloy and Al-RE master alloy to the metal solution in step S11 for melting, and keep warm at 720°C-820°C for 1.5h;
S13、在700℃-720℃下,对步骤S12得到的铝合金溶液通入氩气进行精炼除气,然后进行静置扒渣后,将铝合金溶液浇铸至砂模中形成铝合金铸锭。S13. At 700°C-720°C, pour argon into the aluminum alloy solution obtained in step S12 for refining and degassing, and then put the aluminum alloy solution into a sand mold to form an aluminum alloy ingot after standing still for slag removal.
步骤2、将铝合金铸锭200℃保温24h,然后升温至500℃保温12h。Step 2. Heat the aluminum alloy ingot at 200°C for 24 hours, then raise the temperature to 500°C for 12 hours.
步骤3、将步骤2得到的铝合金铸锭在530℃下保温15h后进行水淬处理,然后将得到的铝合金铸锭在150℃下保温18h,然后再升温到250℃下保温50h后空冷至室温,得到铝铜铈系耐热铝合金。Step 3. Heat the aluminum alloy ingot obtained in step 2 at 530°C for 15 hours, then perform water quenching, then heat the obtained aluminum alloy ingot at 150°C for 18 hours, then heat it up to 250°C for 50 hours, and then air cool to room temperature to obtain aluminum-copper-cerium heat-resistant aluminum alloy.
对得到的铝铜铈系耐热铝合金进行性能测试,测试指标如下:The obtained aluminum copper cerium series heat-resistant aluminum alloy is subjected to performance test, and the test index is as follows:
该铝铜铈系耐热铝合金在300℃下的持久强度为100MPa,300℃下的抗拉强度为165MPa,屈服强度为132MPa,延伸率为8%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 100 MPa at 300° C., a tensile strength of 165 MPa at 300° C., a yield strength of 132 MPa, and an elongation of 8%.
该铝铜铈系耐热铝合金在350℃下的持久强度为60MPa,350℃下的抗拉强度为121MPa,屈服强度为99MPa,延伸率为11%。The aluminum-copper-cerium-based heat-resistant aluminum alloy has a durable strength of 60 MPa at 350° C., a tensile strength of 121 MPa at 350° C., a yield strength of 99 MPa, and an elongation of 11%.
该铝铜铈系耐热铝合金在400℃下的抗拉强度为71MPa,屈服强度为62MPa,延伸率为10%。The tensile strength at 400° C. of the aluminum-copper-cerium-based heat-resistant aluminum alloy is 71 MPa, the yield strength is 62 MPa, and the elongation is 10%.
该铝铜铈系耐热铝合金在室温下抗拉强度为400MPa,屈服强度为243MPa,延伸率为7%。The aluminum-copper-cerium heat-resistant aluminum alloy has a tensile strength of 400 MPa, a yield strength of 243 MPa and an elongation of 7% at room temperature.
实施例2Example 2
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 8.0%,Ce 1.3%,Mn 0.8%,RE 0.085%,Zr 0.17%,余量为铝。An aluminum-copper-cerium heat-resistant aluminum alloy, by mass percentage, including Cu 8.0%, Ce 1.3%, Mn 0.8%, RE 0.085%, Zr 0.17%, and the balance is aluminum.
该铝铜铈系耐热铝合金的制备方法如下,包括以下步骤:The preparation method of the aluminum-copper-cerium heat-resistant aluminum alloy is as follows, comprising the following steps:
步骤1、按照上述质量百分比,准备铝和中间合金,采用熔炼的方法制备铝合金铸锭,具体方法如下:Step 1. Prepare aluminum and intermediate alloys according to the above mass percentages, and prepare aluminum alloy ingots by smelting. The specific method is as follows:
S11、将Al和Al-Mn中间合金在石墨坩埚放入电阻炉中进行融化,并在720℃-820℃下保温2.5h;S11. Melting Al and Al-Mn master alloys in graphite crucibles in a resistance furnace, and keeping the temperature at 720°C-820°C for 2.5h;
S12、在步骤S11的金属溶液中加入Al-Cu中间合金、Al-Zr中间合金和Al-RE中间合金进行融化,并在720℃-820℃下保温1.5h;S12. Add Al-Cu master alloy, Al-Zr master alloy and Al-RE master alloy to the metal solution in step S11 for melting, and keep warm at 720°C-820°C for 1.5h;
S13、在700℃-720℃下,对步骤S12得到的铝合金溶液通入氩气进行精炼除气,然后进行静置10-30min后扒渣,将铝合金溶液浇铸至砂模中形成铝合金铸锭。S13. At 700°C-720°C, pour argon into the aluminum alloy solution obtained in step S12 for refining and degassing, then let stand for 10-30 minutes, remove slag, and cast the aluminum alloy solution into a sand mold to form an aluminum alloy Ingot.
步骤2、将铝合金铸锭250℃保温24h,然后升温至450℃保温12h。Step 2. Heat the aluminum alloy ingot at 250°C for 24 hours, then raise the temperature to 450°C for 12 hours.
步骤3、将步骤2得到的铝合金铸锭在537℃下保温15h后进行水淬处理,然后将得到的铝合金铸锭在175℃下保温10h,然后再升温到250℃下保温24h后空铜铈系耐热铝合金。蠕变测试前材料在300℃下保温24h后测试。Step 3. Heat the aluminum alloy ingot obtained in step 2 for 15 hours at 537° C., then perform water quenching, then heat the obtained aluminum alloy ingot at 175° C. for 10 hours, and then heat it up to 250° C. for 24 hours. Copper-cerium heat-resistant aluminum alloy. Before the creep test, the material was tested at 300°C for 24 hours.
参阅图1-5,对得到的铝铜铈系耐热铝合金进行性能测试,测试指标如下:Referring to Figures 1-5, the performance test of the obtained aluminum-copper-cerium heat-resistant aluminum alloy is carried out, and the test indicators are as follows:
该铝铜铈系耐热铝合金在300℃下100h的持久强度为105MPa,300℃下400h的持久强度为92MPa,300℃下的抗拉强度为178MPa,屈服强度为128MPa,延伸率为9.5%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 105MPa at 300°C for 100h, a durable strength of 92MPa at 300°C for 400h, a tensile strength of 178MPa at 300°C, a yield strength of 128MPa, and an elongation of 9.5%. .
该铝铜铈系耐热铝合金在350℃下的持久强度为70MPa,350℃下的抗拉强度为139MPa,屈服强度为108MPa,延伸率为13%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 70 MPa at 350° C., a tensile strength of 139 MPa at 350° C., a yield strength of 108 MPa, and an elongation of 13%.
该铝铜铈系耐热铝合金在400℃下的抗拉强度为72MPa,屈服强度为69MPa,延伸率为13%。The tensile strength at 400° C. of the aluminum-copper-cerium-based heat-resistant aluminum alloy is 72 MPa, the yield strength is 69 MPa, and the elongation is 13%.
该铝铜铈系耐热铝合金在室温抗拉强度为412MPa,屈服强度为225MPa,延伸率为3.0%。The aluminum-copper-cerium heat-resistant aluminum alloy has a tensile strength of 412 MPa at room temperature, a yield strength of 225 MPa, and an elongation of 3.0%.
本实施例2制备的铝铜铈系耐热铝合金与现有各牌号的耐热铝合金的性能的比较结果如表1所示。Table 1 shows the performance comparison results between the aluminum-copper-cerium-based heat-resistant aluminum alloy prepared in Example 2 and the existing heat-resistant aluminum alloys of various grades.
图1figure 1
可见,本发明的铝铜铈系耐热铝合金在300℃和350℃下的高温持久强度显著超过现有牌号的耐热铝合金。本发明通过合金成分控制,并结合多级热处理工艺,实现了RE元素和Zr元素在θ′-Al2Cu沉淀相界面偏聚,提高了强化相的高温稳定性,优化了沉淀相和结晶相之间的体积分数配比,进而获得优异的持久强度(300℃下400小时的持久强度和350℃下100小时的持久强度尤为突出)。It can be seen that the high-temperature durability strength of the aluminum-copper-cerium-based heat-resistant aluminum alloy of the present invention at 300° C. and 350° C. is significantly higher than that of existing brands of heat-resistant aluminum alloys. The invention realizes the segregation of RE elements and Zr elements at the θ′-Al 2 Cu precipitation phase interface through the control of alloy composition and combined with multi-stage heat treatment process, improves the high temperature stability of the strengthening phase, and optimizes the precipitation phase and crystal phase The ratio of the volume fraction between them can obtain excellent durable strength (the durable strength of 400 hours at 300°C and the durable strength of 100 hours at 350°C are particularly outstanding).
实施例3Example 3
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 6.0%,Ce 0.75%,Mn0.5%,RE 0.4%,Zr 0.5%,余量为铝。An aluminum-copper-cerium heat-resistant aluminum alloy, by mass percentage, including Cu 6.0%, Ce 0.75%, Mn 0.5%, RE 0.4%, Zr 0.5%, and the balance is aluminum.
该铝铜铈系耐热铝合金的制备方法如下,包括以下步骤:The preparation method of the aluminum-copper-cerium heat-resistant aluminum alloy is as follows, comprising the following steps:
步骤1、按照上述质量百分比,准备铝和中间合金,采用熔炼的方法制备铝合金铸锭,具体方法如下:Step 1. Prepare aluminum and intermediate alloys according to the above mass percentages, and prepare aluminum alloy ingots by smelting. The specific method is as follows:
S11、将Al和Al-Mn中间合金在石墨坩埚放入电阻炉中进行融化,并在720℃-820℃下保温2.5h;S11. Melting Al and Al-Mn master alloys in graphite crucibles in a resistance furnace, and keeping the temperature at 720°C-820°C for 2.5h;
S12、在步骤S11的金属溶液中加入Al-Cu中间合金、Al-Zr中间合金和Al-RE中间合金进行融化,并在720℃-820℃下保温1.5h;S12. Add Al-Cu master alloy, Al-Zr master alloy and Al-RE master alloy to the metal solution in step S11 for melting, and keep warm at 720°C-820°C for 1.5h;
S13、在700℃-720℃下,对步骤S12得到的铝合金溶液通入氩气进行精炼除气,然后进行静置10-30min后扒渣,将铝合金溶液浇铸至砂模中形成铝合金铸锭。S13. At 700°C-720°C, pour argon into the aluminum alloy solution obtained in step S12 for refining and degassing, then let stand for 10-30 minutes, remove slag, and cast the aluminum alloy solution into a sand mold to form an aluminum alloy Ingot.
步骤2、将铝合金铸锭300℃保温12h,然后升温至400℃保温15h。Step 2. Heat the aluminum alloy ingot at 300°C for 12 hours, then raise the temperature to 400°C for 15 hours.
步骤3、将步骤2得到的铝合金铸锭在520℃下保温30h后进行水淬处理,然后将得到的铝合金铸锭在200℃下保温5h,然后再升温到300℃下保温50h后空冷至室温得到铝铜铈系耐热铝合金。Step 3. Heat the aluminum alloy ingot obtained in step 2 for 30 hours at 520° C. and then perform water quenching, then heat the obtained aluminum alloy ingot at 200° C. for 5 hours, then heat it up to 300° C. for 50 hours, and then air-cool to room temperature to obtain aluminum-copper-cerium heat-resistant aluminum alloy.
对得到的铝铜铈系耐热铝合金进行性能测试,测试指标如下:The obtained aluminum copper cerium series heat-resistant aluminum alloy is subjected to performance test, and the test index is as follows:
该铝铜铈系耐热铝合金在300℃下100小时的持久强度为85MPa,300℃下的抗拉强度为153MPa,屈服强度为110MPa,延伸率为12%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 85 MPa at 300° C. for 100 hours, a tensile strength of 153 MPa at 300° C., a yield strength of 110 MPa, and an elongation of 12%.
该铝铜铈系耐热铝合金在350℃下100小时的持久强度为54MPa,350℃下的抗拉强度为116MPa,屈服强度为92MPa,延伸率为16%。The aluminum-copper-cerium-based heat-resistant aluminum alloy has a durable strength of 54 MPa at 350° C. for 100 hours, a tensile strength at 350° C. of 116 MPa, a yield strength of 92 MPa, and an elongation of 16%.
该铝铜铈系耐热铝合金在400℃下的抗拉强度为55MPa,屈服强度为51MPa,延伸率为17%。The tensile strength at 400° C. of the aluminum-copper-cerium-based heat-resistant aluminum alloy is 55 MPa, the yield strength is 51 MPa, and the elongation is 17%.
该铝铜铈系耐热铝合金在室温抗拉强度为359MPa,屈服强度为203MPa,延伸率为3.4%。The aluminum-copper-cerium heat-resistant aluminum alloy has a tensile strength of 359 MPa at room temperature, a yield strength of 203 MPa, and an elongation of 3.4%.
实施例4Example 4
一种铝铜铈系耐热铝合金,按质量百分比计,包括Cu 9.0%,Ce 1.5%,Mn 1.2%,Sc 0.05%,Zr 0.1%,余量为铝。An aluminum-copper-cerium heat-resistant aluminum alloy, comprising Cu 9.0%, Ce 1.5%, Mn 1.2%, Sc 0.05%, Zr 0.1%, and the balance is aluminum.
该铝铜铈系耐热铝合金的制备方法如下,包括以下步骤:The preparation method of the aluminum-copper-cerium heat-resistant aluminum alloy is as follows, comprising the following steps:
步骤1、按照上述质量百分比,准备铝和中间合金共50Kg合金,采用熔炼的方法制备铝合金铸锭,具体方法如下:Step 1, according to the above-mentioned mass percentage, prepare aluminum and master alloy altogether 50Kg alloy, adopt the method for smelting to prepare aluminum alloy ingot, specific method is as follows:
S11、将Al和Al-Mn中间合金在石墨坩埚放入电阻炉中进行融化,并在720℃-820℃下保温2.5h;S11. Melting Al and Al-Mn master alloys in graphite crucibles in a resistance furnace, and keeping the temperature at 720°C-820°C for 2.5h;
S12、在步骤S11的金属溶液中加入Al-Cu中间合金、Al-Zr中间合金和Al-RE中间合金进行融化,并在720℃-820℃下保温1.5h;S12. Add Al-Cu master alloy, Al-Zr master alloy and Al-RE master alloy to the metal solution in step S11 for melting, and keep warm at 720°C-820°C for 1.5h;
S13、在700℃-720℃下,对步骤S12得到的铝合金溶液通入氩气进行精炼除气,然后进行静置10-30min后扒渣,将铝合金溶液浇铸至砂模中形成铝合金铸锭。S13. At 700°C-720°C, pour argon into the aluminum alloy solution obtained in step S12 for refining and degassing, then let stand for 10-30 minutes, remove slag, and cast the aluminum alloy solution into a sand mold to form an aluminum alloy Ingot.
步骤2、将铝合金铸锭300℃保温48h,然后升温至500℃保温5h。Step 2. Heat the aluminum alloy ingot at 300°C for 48 hours, then raise the temperature to 500°C for 5 hours.
步骤3、将步骤2得到的铝合金铸锭在537℃下保温5h后进行水淬处理,然后将得到的铝合金铸锭在175℃下保温30h,然后再升温到250℃下保温24h后空冷至室温,得到铝铜铈系耐热铝合金。蠕变测试前材料在300℃保温24h后进行测试。Step 3. Heat the aluminum alloy ingot obtained in step 2 at 537°C for 5 hours, then perform water quenching, then heat the obtained aluminum alloy ingot at 175°C for 30 hours, then heat it up to 250°C for 24 hours, then air cool to room temperature to obtain aluminum-copper-cerium heat-resistant aluminum alloy. Before the creep test, the material was tested at 300°C for 24 hours.
对得到的铝铜铈系耐热铝合金进行性能测试,测试指标如下:The obtained aluminum copper cerium series heat-resistant aluminum alloy is subjected to performance test, and the test index is as follows:
该铝铜铈系耐热铝合金在300℃下100h的持久强度为91MPa,300℃下的抗拉强度为162MPa,屈服强度为116MPa,延伸率为10.5%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 91 MPa at 300° C. for 100 hours, a tensile strength at 300° C. of 162 MPa, a yield strength of 116 MPa, and an elongation of 10.5%.
该铝铜铈系耐热铝合金在350℃下100h的持久强度为61MPa,350℃下的抗拉强度为122MPa,屈服强度为95MPa,延伸率为14.2%。The aluminum-copper-cerium heat-resistant aluminum alloy has a durable strength of 61 MPa at 350° C. for 100 hours, a tensile strength at 350° C. of 122 MPa, a yield strength of 95 MPa, and an elongation of 14.2%.
该铝铜铈系耐热铝合金在400℃下的抗拉强度为63MPa,屈服强度为60MPa,延伸率为15.3%。The tensile strength at 400° C. of the aluminum-copper-cerium-based heat-resistant aluminum alloy is 63 MPa, the yield strength is 60 MPa, and the elongation is 15.3%.
该铝铜铈系耐热铝合金在室温抗拉强度为384MPa,屈服强度为258MPa,延伸率为2.76%。The aluminum-copper-cerium heat-resistant aluminum alloy has a tensile strength of 384 MPa at room temperature, a yield strength of 258 MPa, and an elongation of 2.76%.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical ideas of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solutions according to the technical ideas proposed in the present invention shall fall within the scope of the claims of the present invention. within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210907398.1A CN115323230B (en) | 2022-07-29 | 2022-07-29 | Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210907398.1A CN115323230B (en) | 2022-07-29 | 2022-07-29 | Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115323230A CN115323230A (en) | 2022-11-11 |
CN115323230B true CN115323230B (en) | 2023-05-16 |
Family
ID=83919019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210907398.1A Active CN115323230B (en) | 2022-07-29 | 2022-07-29 | Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115323230B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287910A (en) * | 2023-01-17 | 2023-06-23 | 西安交通大学 | Cerium-containing high-strength creep-resistant aluminum-copper-scandium alloy and preparation method thereof |
CN116555635A (en) * | 2023-05-04 | 2023-08-08 | 江苏大学 | A low-cost cast heat-resistant aluminum alloy that can meet 350-degree service and its preparation method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0621326B2 (en) * | 1988-04-28 | 1994-03-23 | 健 増本 | High strength, heat resistant aluminum base alloy |
JPH09104940A (en) * | 1995-10-09 | 1997-04-22 | Furukawa Electric Co Ltd:The | High-tensile aluminum-copper base alloy excellent in weldability |
CN102021428B (en) * | 2009-09-18 | 2013-10-02 | 贵州华科铝材料工程技术研究有限公司 | Sc-RE aluminium alloy material with high strength and heat resistance and preparation method thereof |
CN109797326B (en) * | 2019-03-14 | 2020-10-20 | 南京玖铸新材料研究院有限公司 | High-strength heat-resistant aluminum alloy and preparation method thereof |
CN111455241B (en) * | 2020-04-23 | 2021-11-19 | 西安交通大学 | High-strength heat-resistant low-scandium composite microalloyed Al-Cu alloy and heat treatment process thereof |
CN113564435A (en) * | 2021-06-21 | 2021-10-29 | 昆明船舶设备集团有限公司 | High-strength cast aluminum alloy and preparation method thereof |
CN114438383A (en) * | 2022-01-21 | 2022-05-06 | 常州工学院 | Multistage intermetallic compound reinforced heat-resistant alloy and preparation method thereof |
-
2022
- 2022-07-29 CN CN202210907398.1A patent/CN115323230B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115323230A (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100545286C (en) | High-strength creep-resistant magnesium alloy and preparation method thereof | |
CA2770531C (en) | Multi-element heat-resistant aluminum alloy material with high strength and preparation method thereof | |
CN115323230B (en) | Aluminum-copper-cerium series heat-resistant aluminum alloy and preparation method thereof | |
CN113136505B (en) | High-strength and high-toughness heat-resistant aluminum alloy armature material and preparation method thereof | |
CN104928546B (en) | A kind of high strength and modulus casting magnesium-rare earth alloy and preparation method thereof | |
CN113584370A (en) | Low-density high-strength high-entropy high-temperature alloy and preparation method thereof | |
CN110724865A (en) | A kind of Al-Cu-Mg-Ag-Si-Sc heat-resistant alloy and preparation process | |
CN109930045B (en) | High strength, toughness and heat resistance Mg-Gd alloy suitable for gravity casting and preparation method thereof | |
CN110079711B (en) | Heat-resistant high-pressure casting Al-Si-Ni-Cu aluminum alloy and preparation method thereof | |
CN110129629B (en) | Heat-resistant cast Al-Si-Ni-Cu aluminum alloy and gravity casting preparation | |
CN113528993A (en) | Heat treatment method of nickel-based single crystal superalloy | |
CN116590583A (en) | A kind of high strength and toughness casting aluminum alloy material and preparation method thereof | |
CN109930044B (en) | High strength, toughness and heat resistance Mg-Gd-Y alloy suitable for gravity casting and preparation method thereof | |
JP3164587B2 (en) | Alloys with excellent thermal fatigue resistance, aluminum alloys with excellent thermal fatigue resistance, and aluminum alloy members with excellent thermal fatigue resistance | |
CN100460545C (en) | Anti-recrystallization Al-Zn-Mg-(Cu) alloy | |
CN112095038A (en) | A kind of method to increase the amount of disperse phase in aluminum alloy | |
CN110257674A (en) | A high-strength, toughness, fatigue-resistant and deformation-resistant aluminum alloy and its preparation method | |
CN113502421B (en) | A kind of Al-Zn-Mg-Fe series aluminum alloy material and its preparation method and application | |
CN109943759B (en) | High strength, toughness and heat resistance Mg-Er alloy suitable for gravity casting and preparation method thereof | |
CN109943757B (en) | High strength, toughness and heat resistance Mg-Y-Er alloy suitable for low pressure casting and preparation method thereof | |
CN109797332B (en) | High-strength-toughness heat-resistant Mg-Gd-Y alloy suitable for low-pressure casting and preparation method thereof | |
WO2023133978A1 (en) | High-thermal-conductivity magnesium alloy containing high-solid-solubility rare earth element and preparation method therefor | |
CN113355576A (en) | High-strength and high-toughness cast magnesium alloy with low oxide inclusion tendency and preparation method thereof | |
CN117488148B (en) | Cast aluminum alloy and preparation method and application thereof | |
CN110004343B (en) | High-strength, toughness and heat-resistant Mg-Gd-Er alloy suitable for gravity casting and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240509 Address after: Room 10406, 4th Floor, Anke Plaza, Lizhi East Road, Fengxi New City, Xixian New District, Xi'an City, Shaanxi Province, 712046 Patentee after: Shaanxi Gongxing Smart Information Consulting Partnership Enterprise (Limited Partnership) Country or region after: China Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241022 Address after: Room 204A, Building A7, Bio Nano Park, No. 218 Xinghu Street, Suzhou Industrial Park, Suzhou Area, Jiangsu Province 215000 Patentee after: Suzhou Jiaohang Zhongxin New Materials Co.,Ltd. Country or region after: China Address before: Room 10406, 4th Floor, Anke Plaza, Lizhi East Road, Fengxi New City, Xixian New District, Xi'an City, Shaanxi Province, 712046 Patentee before: Shaanxi Gongxing Smart Information Consulting Partnership Enterprise (Limited Partnership) Country or region before: China |