CN115312646A - Semiconductor light-emitting element - Google Patents
Semiconductor light-emitting element Download PDFInfo
- Publication number
- CN115312646A CN115312646A CN202210788450.6A CN202210788450A CN115312646A CN 115312646 A CN115312646 A CN 115312646A CN 202210788450 A CN202210788450 A CN 202210788450A CN 115312646 A CN115312646 A CN 115312646A
- Authority
- CN
- China
- Prior art keywords
- ohmic contact
- semiconductor light
- finger electrodes
- adjacent
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 239000010410 layer Substances 0.000 description 229
- 239000000758 substrate Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 4
- 229910001634 calcium fluoride Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical group [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910002601 GaN Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体发光元件。The invention relates to a semiconductor light emitting element.
背景技术Background technique
LED发光二极管包括第一类型导电性半导体层(N型掺杂)、发光层和第二类型导电性半导体层(P型掺杂)。在第一类型导电性半导体层和第二类型导电性半导体层之间如何进行电流扩展是影响内量子效率的关键因素。如通过主电流注入电极侧横向设置扩展电极以增加注入电流面积以及改善注入电流的均匀性,或通过绝缘层设置电极与半导体序列之间,并在绝缘层上设置多个开口来形成电极的多个欧姆接触区域改善电极到半导体序列一侧的电流扩展是目前主要的改善方式。其中扩展电极或绝缘层开口多个欧姆接触区域的位置关系也会严重影响到电流扩展和传输的效率。LED light-emitting diodes include a first-type conductive semiconductor layer (N-type doped), a light-emitting layer and a second-type conductive semiconductor layer (P-type doped). How to spread the current between the first-type conductive semiconductor layer and the second-type conductive semiconductor layer is a key factor affecting the internal quantum efficiency. For example, the extension electrode is laterally arranged on the side of the main current injection electrode to increase the injection current area and improve the uniformity of the injection current, or an insulating layer is provided between the electrode and the semiconductor sequence, and multiple openings are provided on the insulating layer to form multiple electrodes. Improving the current spread from the electrode to the side of the semiconductor sequence with an ohmic contact area is currently the main improvement method. The positional relationship of multiple ohmic contact regions of the expansion electrode or the opening of the insulating layer will also seriously affect the efficiency of current expansion and transmission.
发明内容Contents of the invention
本发明提供如下一种半导体发光元件,其包括半导体发光序列,半导体发光序列沿着厚度方向包括第一类型导电性半导体层、第二类型导电性半导体层以及两者之间的发光层;多条指状电极,位于半导体发光序列厚度方向的一侧;多个欧姆接触区域,与多条指状电极位于半导体发光序列相反侧,其特征在于:从半导体发光序列的多条指状电极所在一侧观察,每两条相邻指状电极之间的多个欧姆接触区域沿着指状电极延伸的方向排列成多列,其中最靠近一指状电极的第一列的任意一个欧姆接触区域(A)与同一列相邻的一个欧姆接触区域(B)之间的距离大于所述任意一个欧姆接触区域(A)与靠近指状电极的第二列的相邻一个欧姆接触区域(C)之间的距离,相邻两列的多个欧姆接触区域在垂直于指状电极的方向错开排列。The present invention provides the following semiconductor light-emitting element, which includes a semiconductor light-emitting sequence, and the semiconductor light-emitting sequence includes a first-type conductive semiconductor layer, a second-type conductive semiconductor layer, and a light-emitting layer between them along the thickness direction; a plurality of The finger electrodes are located on one side of the thickness direction of the semiconductor light-emitting sequence; the multiple ohmic contact regions are located on the opposite side of the semiconductor light-emitting sequence from the multiple finger electrodes, and are characterized in that: from the side where the multiple finger electrodes of the semiconductor light-emitting sequence are located Observe that multiple ohmic contact areas between every two adjacent finger electrodes are arranged in multiple columns along the direction of finger electrode extension, among which any ohmic contact area in the first column closest to a finger electrode (A ) The distance between an ohmic contact region (B) adjacent to the same column is greater than that between any one ohmic contact region (A) and an adjacent ohmic contact region (C) of the second column close to the finger electrode The multiple ohmic contact regions of two adjacent columns are arranged staggered in the direction perpendicular to the finger electrodes.
更优选的,所述的多条指状电极主要部分相互平行,更优选的,沿着多条指状电极相互平行延伸的部分之间,所述的多个欧姆接触区域沿着延伸方向排列成多列。More preferably, the main parts of the plurality of finger electrodes are parallel to each other, more preferably, between the parts extending parallel to each other along the plurality of finger electrodes, the plurality of ohmic contact regions are arranged along the extending direction multiple columns.
更优选的,所述的多个接触区域为阵列式排列。More preferably, the plurality of contact regions are arranged in an array.
更优选的,非最靠近指状电极的一列的任意一个欧姆接触区域周围有四个等距的欧姆接触区域。More preferably, there are four equidistant ohmic contact regions around any ohmic contact region in a column that is not the closest to the finger electrodes.
更优选的,所述四个等距的欧姆接触区域构成一个直角方形结构。More preferably, the four equidistant ohmic contact regions form a right-angled square structure.
更优选的,所述的多个接触区域的排列方式为一个接触区域周围等距地有六个欧姆接触区域。More preferably, the plurality of contact regions are arranged in such a way that there are six ohmic contact regions equidistantly around one contact region.
更优选的,沿着垂直于指状电极的延伸方向看,所述第二列的相邻一个欧姆接触区域(C)位于最靠近指状电极的一列的临近两个第二欧姆接触区域(A)和(B)之间。More preferably, one adjacent ohmic contact region (C) of the second column is located in the adjacent two second ohmic contact regions (A ) and (B).
更优选的,任意一个欧姆接触区域(A)与相邻一列的相邻一个欧姆接触区域(C)之间的距离大于等于相邻两列之间的距离的两倍。More preferably, the distance between any ohmic contact region (A) and an adjacent ohmic contact region (C) of an adjacent column is greater than or equal to twice the distance between two adjacent columns.
更优选的,从半导体发光序列厚度方向上看,其中多条指状电极与多个欧姆接触区域不重叠。More preferably, when viewed from the thickness direction of the semiconductor light-emitting sequence, the multiple finger electrodes do not overlap with the multiple ohmic contact regions.
更优选的,其中任意一个接触区域与临近指状电极之间的距离介于两临近指状电极之间的水平距离的5%~50%,所述的水平距离为从半导体发光序列一侧进行俯视观察获得的水平距离。More preferably, the distance between any one of the contact regions and the adjacent finger electrodes is 5% to 50% of the horizontal distance between two adjacent finger electrodes, and the horizontal distance is carried out from the side of the semiconductor light emitting sequence. The horizontal distance obtained from looking down.
更优选的,每两条相邻指状电极之间的多个接触区域沿着指状电极方向排列成多列,所述多列的任意临近两列之间的距离介于1~50μm。More preferably, the multiple contact areas between every two adjacent finger electrodes are arranged in multiple rows along the direction of the finger electrodes, and the distance between any two adjacent rows of the multiple rows is 1-50 μm.
更优选的,所述的多个欧姆接触区域的每一个的尺寸1~50μm。More preferably, the size of each of the plurality of ohmic contact regions is 1-50 μm.
更优选的,所述的多个欧姆接触区域占半导体发光序列临近一侧的面积的3~50%。More preferably, the multiple ohmic contact regions account for 3-50% of the area near the side of the semiconductor light-emitting sequence.
更优选的,所述的多个指状电极的每个指状的主要延伸部分相互平行排列。More preferably, the main extension parts of each finger of the plurality of finger electrodes are arranged parallel to each other.
更优选的,所述的多个指状电极包括同一个第一电极区域,多个指状电极从该第一电极区域延伸出去。More preferably, the plurality of finger electrodes include the same first electrode region, and the plurality of finger electrodes extend from the first electrode region.
更优选的,所述的多个指状电极的宽度是1~20μm。More preferably, the width of the plurality of finger electrodes is 1-20 μm.
更优选的,绝缘层形成在所述半导体序列厚度方向的另一侧,所述的绝缘层具有多个暴露区域暴露部分半导体发光序列厚度方向的另一侧,所述的多个暴露区域为多个欧姆接触区域。More preferably, the insulating layer is formed on the other side in the thickness direction of the semiconductor sequence, the insulating layer has a plurality of exposed regions exposing part of the semiconductor light emitting sequence on the other side in the thickness direction, and the plurality of exposed regions are multiple an ohmic contact area.
更优选的,所述的绝缘层为氟化镁或氟化钙或氧化硅或氮化硅。More preferably, the insulating layer is magnesium fluoride or calcium fluoride or silicon oxide or silicon nitride.
更优选的,所述的绝缘层的多个暴露区域为多个贯穿孔形成,多个贯穿孔在所述半导体发光序列厚度方向的另一侧的开口尺寸小于远离半导体发光序列的一侧的开口尺寸。More preferably, the plurality of exposed regions of the insulating layer are formed by a plurality of through holes, and the opening size of the plurality of through holes on the other side in the thickness direction of the semiconductor light emitting sequence is smaller than the opening on the side away from the semiconductor light emitting sequence size.
更优选的,所述的绝缘层远离半导体发光序列的一侧具有导电层,所述的导电层可包括镜面反射层。More preferably, the side of the insulating layer away from the semiconductor light-emitting sequence has a conductive layer, and the conductive layer may include a specular reflection layer.
通过延伸方向最靠近指状电极所在列的任意一个接触区域与同一列相邻的接触区域之间的距离大于所述一个接触区域与相邻一列的相邻一个接触区域之间的距离的设置,可以有效改善指状电极沿着两侧的横向电流扩展。By setting that the distance between any contact region in the column where the finger electrode is the closest to the column where the finger electrode is located and the adjacent contact region in the same column is greater than the distance between the one contact region and the adjacent contact region in the adjacent column, The lateral current spread of the finger electrodes along both sides can be effectively improved.
附图说明Description of drawings
图1为实施例1的工艺方法中半导体发光序列上制备第一欧姆接触层后获得的结构;Fig. 1 is the structure obtained after preparing the first ohmic contact layer on the semiconductor light-emitting sequence in the process method of Example 1;
图2为实施例1的工艺方法中转移至临时衬底后制备第二欧姆接触层后获得的结构;Fig. 2 is the structure obtained after transferring to the temporary substrate and preparing the second ohmic contact layer in the process method of embodiment 1;
图3为实施例1的工艺方法中在第二欧姆接触层上制作绝缘层、透明导电层、反射层以及键合支撑基板获得的结构;Fig. 3 is the structure obtained by making an insulating layer, a transparent conductive layer, a reflective layer and a bonding support substrate on the second ohmic contact layer in the process method of embodiment 1;
图4为实施例1获得的半导体发光元件结构示意图;FIG. 4 is a schematic structural view of the semiconductor light-emitting element obtained in Example 1;
图5为实施例1获得的半导体发光元件的第一欧姆接触层一侧的俯视结构示意图;5 is a schematic top view of the first ohmic contact layer side of the semiconductor light emitting element obtained in Example 1;
图6为图5中虚线圆圈内的局部放大结构示意图;Fig. 6 is a schematic diagram of a partially enlarged structure within the dotted circle in Fig. 5;
图7为实施例2的工艺方法中半导体发光序列上制备第一欧姆接触层后获得的结构;Fig. 7 is the structure obtained after preparing the first ohmic contact layer on the semiconductor light-emitting sequence in the process method of Example 2;
图8为实施例2的工艺方法中转移至临时衬底后制备第二欧姆接触层后获得的结构;Fig. 8 is the structure obtained after preparing the second ohmic contact layer after transferring to the temporary substrate in the process method of embodiment 2;
图9为实施例2的半导体发光元件结构示意图;9 is a schematic structural view of the semiconductor light emitting element of Embodiment 2;
图10为实施例2的半导体发光元件第二欧姆接触层一侧的俯视结构示意图;10 is a schematic top view of the second ohmic contact layer side of the semiconductor light emitting element in Example 2;
图11为图10中虚线圆圈内的局部放大结构示意图;Fig. 11 is a schematic diagram of a partially enlarged structure within the dotted circle in Fig. 10;
图12为实施例3的半导体发光元件结构示意图;Fig. 12 is a schematic structural view of the semiconductor light emitting element of Embodiment 3;
图13为对比例的获得的半导体发光元件的第一欧姆接触层一侧的俯视结构示意图;Fig. 13 is a schematic top view of the first ohmic contact layer side of the semiconductor light emitting element obtained in the comparative example;
图14为图13中虚线圆圈内的局部放大结构示意图。FIG. 14 is a schematic diagram of a partially enlarged structure within the dotted circle in FIG. 13 .
具体实施方式Detailed ways
实施例1Example 1
如图1-6示出了根据本发明的实施例1公开相应步骤的制造方法制造的结构。用于制造光电子器件的方法根据本发明包括以下步骤:Figures 1-6 show the structure manufactured by the manufacturing method according to the corresponding steps disclosed in Embodiment 1 of the present invention. A method for producing an optoelectronic device comprises the following steps according to the invention:
第一,提供半导体发光序列:First, provide the semiconductor light emitting sequence:
提供生长衬底101,如生长衬底用于MOCVD生长半导体发光序列,所述衬底包括但不限于锗(Ge)、砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)、蓝宝石、碳化硅(SiC) 、硅(Si)、氧化锌(ZnO)、氮化镓(GaN)、氮化铝(AlN)、玻璃、复合、金刚石、CVD金刚石、类金刚石碳(DLC)等。A
第一窗口层101在衬底上形成含有由一种材料组成的组中的至少一种元素,选自Al、Ga、In、As、P、N,诸如GaN、AlGaInP或任何其它适合的材料。第一窗口层111与半导体发光序列同一侧的材料相同的导电类型层,如N-型或p-型AlXGa(1−X)InP,其中0≦X≦1h;或者如AlGaAs。第一窗口层111具有两个相对的第一表面,其中第一表面的窗口层更靠近基板。The
过渡层可以选择性地形成在所述生长衬底与第一窗口层之间,所述过渡层两个材料系统可作为缓冲系统(图中未示出)。用于发光二极管的结构,用于减少晶格失配的过渡层两个材料系统。在另一方面,也可以是单层的过渡层,多层,或结合两种材料的结构或分开的两个过渡结构,其中所述材料层可以是有机,无机的,金属,半导体,等,所述结构可以是反射层,导热层,导电层,欧姆接触层,防变形层;应力释放层,一种应力调整层,粘结层,波长转换层,机械固定结构,蚀刻截止层等。A transition layer can be selectively formed between the growth substrate and the first window layer, and the two material systems of the transition layer can serve as a buffer system (not shown in the figure). Two material systems for the transition layer used in the structure of light-emitting diodes to reduce lattice mismatch. On the other hand, there may also be a transition layer of a single layer, a multi-layer, or a structure combining two materials or separating two transition structures, wherein the material layers may be organic, inorganic, metal, semiconductor, etc., Said structure may be reflective layer, heat conduction layer, conductive layer, ohmic contact layer, anti-deformation layer; stress relief layer, a kind of stress adjustment layer, adhesive layer, wavelength conversion layer, mechanical fixing structure, etch stop layer, etc.
接下来,半导体发光序列形成在窗口层101上,包括至少第一层半导体层103具有第一导电类型,发光层104和第二层半导体层1105具有第二导电型。第一层半导体层和第二层半导体层105为两个单层结构,或两个多层结构,“多层”指两个或两个以上具有不同电导层),第一导电类型和第二导电类型分别提供电子或空穴,并掺杂不同的掺杂剂。如果第一层半导体层103和第二层半导体层105为半导体材料,例如AlXGa(1−X)InP,其中0≦X≦1,或者如AlGaAs;第一或第二导电类型可以是P型或N型。作为一个实施例,第一窗口层103与第一层半导体层具有相同的导电类型,如N型。另外,第一窗口层101可以具有比第一层半导体层103更高的杂质浓度,因此具有较好的导电性能。其它非半导体材料,例如金属、氧化物层、绝缘层等也可以选择性地形成在半导体发光序列表面。Next, a semiconductor light-emitting sequence is formed on the
所述的发光层104为常用材料的一系列如铝镓铟磷(AlGaInP)、氮化铝铟镓(AlInGaN)或铝镓砷(AlGaAs)堆叠形成,其具体为单异质结、双异质结结构或多量子阱结构,包括MQW结构包括多个势垒层和阱层交替地层叠;每个势垒层包括AlyGa(1−y)InP,其中0≦y≦1,和每个所述阱层中包括AlzGa(1−z)InP,其中0≦z≦1。此外,也可以通过对量子的数量改变井或阻挡层的组合物的成分调整发射光的波长,例如,600~630nm之间发射的光的主波长的红光y大约0.7或580和600纳米之间的琥珀色,y大约为0.55。所述的发光层104提供的发光辐射可以是200~550nm的紫外到绿光部分,也可以是550~950nm之间的红、黄、橙、琥珀或红外的光。The light-emitting
形成第二窗口层106在半导体发光序列之上,其可以作为第二半导体层105侧的电流扩展层,其材料含有至少一种选自Al组成的组,Ga,In,As,P,N,诸如GaN,AlGaInP或任何其它适合的材料,第二窗口层106包括至少一种材料不同于所述半导体发光序列的材料,第二窗口层优选与第二层半导体层相同的导电类型如p型GaP层。所述的第二窗口层作为一个实施例可以采用与半导体序列同样的制备工艺,或者作为半导体发光序列的整体的一部分。Form the
第二,制作第一欧姆接触层在第二窗口上:Second, make the first ohmic contact layer on the second window:
然后,如图1所示,形成第一欧姆接触层107如导电材料如金属或透明的无机氧化物导电材料,金属如合金,具体如AuBe或AuGe,也可以是单层或多层金属或合金,第一欧姆接触层主要用于电极与半导体发光序列侧的欧姆接触与电流扩展;无机氧化物导电材料可以是ITO或IZO或GZO等材料,在第二窗口层106上。所述的第一欧姆接触层107优选但不限于采用蒸镀或化学镀方式形成在第二半导体层侧,然后在300~500℃合金化处理,用于形成欧姆接触的第一欧姆接触层107与第二窗口层之间的合金化接触层。所述的合金化过程的细节是本领域的技术人员公知的,不必在本文中公开。Then, as shown in Figure 1, form the first
第三,去除生长衬底:Third, remove the growth substrate:
如图2所示,将临时衬底108如玻璃与第一欧姆接触层107以及第二窗口层106之间键合,移除生长衬底101,所述的键合可以是胶或树脂等易通过加热或溶剂溶解或分解进行去除的材料,所述的键合工艺为常规的工艺。移除生长衬底的方式可以有很多种,根据实际的生长衬底可以进行常规的选择,如湿法蚀刻或干法蚀刻或研磨的方式去除;去除生长衬底以露出第一窗口层102。As shown in FIG. 2, the
第四,形成第二欧姆接触层、反射层和支撑基板在第一窗口层侧:Fourth, form the second ohmic contact layer, reflective layer and supporting substrate on the side of the first window layer:
形成第二欧姆接触层109在第一窗口层102上,所述的第二欧姆接触层109为了形成于第一窗口层之间的良好的电接触,优选为金属材质,更优选为金属合金,如AuGe或AuBe。所述的第二欧姆接触层109以多个欧姆接触区域的形式形成在第一窗口层102上,并且在厚度方向上并不与第一欧姆接触层107重叠,以提高第一欧姆接触层107与第二欧姆接触层109之间的电流扩展。Forming a second
如图3所示,然后形成透明绝缘层110在第二欧姆接触层109表面,透明的绝缘层110的形成工艺优选但不限于电子束或溅射蒸镀,所述绝缘层110的材料为氧化物或氮化物或氟化物,如二氧化硅、氮化硅或氟化钙或氟化镁等,所述的绝缘层110的折射率介于1.3~1.6,至少所述的绝缘层的折射率比第一窗口层102的折射率低1.5。所述绝缘层110的厚度为50~500nm,进一步优选为50~100nm;所述的绝缘层110通过BOE或RIE方法蚀刻以露出第二欧姆接触层109或可以进一步露出第一窗口层102部分。接着在第二欧姆接触层109和绝缘层110表面制作透明导电层111,所述的透明导电层为透明导电的金属氧化物,如ITO、IZO、GZO或CTO,该透明导电层111的厚度可以优选为5~15nm。然后形成金属反射层112在该透明导电层111上,透明导电层111在金属反射层112之间能够起着粘附作用。绝缘层109的作用是阻挡电流,当电流流经第二欧姆接触层109时,多处的第二欧姆接触层109具有电流扩展作用,同时绝缘层110与金属反射层112可以形成ODR结构,提高反射效率,反射率可以达到95%以上。As shown in Figure 3, then form a transparent insulating
将反射层112键合至支撑衬底113,键合工艺可以通过金属-金属高温高压键合,金属-金属键合的成分可以是In, Au, Sn, Pb, InAu, SnAu至少之一。The
接着将临时衬底108移除,露出第一欧姆接触层以及第一窗口层。Then the
第五,移除临时衬底,制作第一电极和第二电极:Fifth, remove the temporary substrate and make the first and second electrodes:
如图4所示,在第一欧姆接触层107上形成第一电极1071,第一电极1071的材料优选可用于外部焊线的金属材料,更优选为金、铝至少之一者,第一电极1071将多个第一欧姆接触层1071的指状电极的一端进行相连,指状电极的另一端延伸出去,在支撑衬底113背面侧形成第二电极114,第二电极优选为金属或金属合金,如Pt、Au。As shown in Figure 4, a
进行切割分离形成相应尺寸的芯片,为了更佳保护半导体发光序列和第二欧姆接触层,在半导体发光序列露出的侧面、表面和第二欧姆接触层表面制作绝缘保护层,完成单一芯片的制作。该单一芯片可以用于转移至后续的封装和应用品的制作。Carry out cutting and separation to form chips of corresponding size. In order to better protect the semiconductor light-emitting sequence and the second ohmic contact layer, an insulating protective layer is formed on the exposed side and surface of the semiconductor light-emitting sequence and the surface of the second ohmic contact layer to complete the production of a single chip. This single chip can be used for transfer to subsequent packaging and fabrication of applications.
对于第一欧姆接触层和第二欧姆接触层之间的位置关系,做具体的以下说明。如图5所示,第一欧姆接触层107包括多个指状电极在第二窗口层106一侧水平延伸,多个指状电极与第一电极1071连接,电流通过第一电极1071注入并通过多个指状电极将电流扩展并注入到半导体发光序列中,然后再沿着半导体发光序列的厚度方向纵向以及横向传递至第二欧姆接触层的多个接触区域,并向下传递至第二电极,或者自第二电极传输电流至第二欧姆接触层的多个接触区域,进一步传递至半导体发光序列,然后通过第一欧姆接触层的多个指状电极传递至第一电极,从而提高电流传递的均匀性。The positional relationship between the first ohmic contact layer and the second ohmic contact layer will be specifically described below. As shown in FIG. 5 , the first
每一指状电极与第一电极连接的小部分可以是弯曲或弯折的或直线性的;为了保证所述的指状电极在半导体序列一侧的电流传输均匀性,优选每一指状电极的主要部分是平行的延伸,尽量的意思是平行可以最多10°左右的偏离平行,即多个指状电极可以主要部分相互平行的方式延伸出去;所述的多个指状电极的数量为至少两个,每一个指状电极的宽度和相邻指状之间的间距可以根据实际芯片的尺寸进行常规的设计;所述的多个指状电极的宽度可以沿着指状电极延伸的方向是不变或根据电流扩散均匀性为变化的,如宽度沿着延伸方向可以逐渐减小,指状电极在第一电极周围的部分的尺寸大于远离第一电极的部分的尺寸;所述的多个指状电极的宽度是1~50μm。The small part of each finger electrode connected to the first electrode can be curved or bent or linear; in order to ensure the uniformity of current transmission of the finger electrode on one side of the semiconductor sequence, preferably each finger electrode The main part of the main part is a parallel extension, as far as possible means that the parallel can deviate from parallel by about 10° at most, that is, a plurality of finger electrodes can extend out in a manner that the main parts are parallel to each other; the number of the plurality of finger electrodes is at least Two, the width of each finger electrode and the spacing between adjacent fingers can be conventionally designed according to the size of the actual chip; the width of the multiple finger electrodes can be along the direction in which the finger electrodes extend: Constant or variable according to the uniformity of current diffusion, such as the width can gradually decrease along the extension direction, the size of the part of the finger electrode around the first electrode is greater than the size of the part away from the first electrode; the plurality of The width of the finger electrodes is 1 to 50 μm.
从半导体发光序列的指状电极侧观察,每两条相邻指状电极之间的第二欧姆接触层107以多个点状的形式排列以形成多个第二欧姆接触区域,多个第二欧姆接触区域沿着指状电极平行的方向排列成多列,更优选的,其中多个指状电极在厚度方向上不与多个第二欧姆接触区域重叠以利于电流会在横向和纵向方向上同时传播;更优选的,所述的多个第二欧姆接触区域以阵列的方式排列在半导体发光序列的一侧,所述的阵列由固定的几个第二欧姆接触区域排列为某一固定的单元并进行重复排列形成,具体的如图5所示,多个第二欧姆接触区域以最紧密六方排列,即一个第二欧姆接触区域(最靠近条状电极的一列的多个第二欧姆接触区域除外)周围具有六个等距的第二欧姆接触区域,优选的,每一第二欧姆接触区域的尺寸为1~50μm,所述的多个第二接触区域的每一个是圆形或多边形或椭圆形,所述的多个欧姆接触区域的总面积与所在半导体序列一侧的面积之间的比例为3~50%。Viewed from the finger electrode side of the semiconductor light emitting sequence, the second
由于电流传递的路径优选以最短路径选择(电阻最小)进行传递,最靠近一指状电极的第一列的多个第二欧姆接触区域与指状电极之间的垂直距离最接近,第二列的多个欧姆接触区域相离指状电极垂直距离较远,电流优选从指状电极延伸方向的垂直方向传递至两侧的最临近第一列的多个第二欧姆区域,电流较容易拥堵至第一列的欧姆接触区域,导致第一列的多个第二欧姆接触区域的电流过度集中,电流传递不均匀;因此为了保证电流在指状电极与第二欧姆接触区域之间的电流传输均匀性,防止电流集中在指状电极两侧的附近,本发明特别设计,将第二欧姆接触电极尽量靠近指状电极,从指状电极侧到第二列的多个第二欧姆接触区域的距离更接近。Since the path of current transmission is preferably selected as the shortest path (minimum resistance), the vertical distance between the plurality of second ohmic contact areas in the first column closest to a finger electrode is the closest to the finger electrode, and the second column The multiple ohmic contact areas are far away from the finger electrodes vertically, and the current is preferably transmitted from the vertical direction of the finger electrode extension direction to the multiple second ohmic areas on both sides closest to the first column, and the current is easier to congest to The ohmic contact area of the first column leads to excessive concentration of current in multiple second ohmic contact areas of the first column, and uneven current transfer; therefore, in order to ensure uniform current transfer between the finger electrode and the second ohmic contact area To prevent the current from concentrating near both sides of the finger electrodes, the present invention is specially designed to place the second ohmic contact electrodes as close as possible to the finger electrodes, and the distance from the finger electrode side to the second row of multiple second ohmic contact areas Closer.
具体如图6所示,最靠近指状电极的第一列任意一个第二欧姆接触区域A与同一列相邻的第二欧姆接触区域B之间的距离大于所述一个第二欧姆接触区域A与相邻一列的相邻一个第二欧姆接触区域C之间的距离;具体的,定义与指状电极延伸方向平行的最靠近指状电极的第一列的任意一个第二欧姆接触区域A与同一列的相邻一个第二欧姆接触区域B之间的距离为D1,D1的范围为1~50μm,最靠近指状电极的第一列的所述任意一个第二欧姆接触区域B与相邻一列的相邻一个第二欧姆接触区域C的距离D2,D1大于D2,由此可以保证相邻一列的相邻一个第二欧姆接触区域C尽量靠近指状电极;更优选的,如图6所示,多个第二欧姆接触区域以最紧密六方排列时,D1与D2之间的比例为:1;更优选的,在垂直于指状电极的方向上看,第二列的任意一个第二欧姆接触区域C位于第一列的临近两个第二欧姆接触区域A和B之间,即在垂直于指状电极的方向上看,第二欧姆接触区域C与第一列的两个第二欧姆接触区域A和B错开排列或相间隔排列,即第二接触区域C不与第二接触区域A和B的连线不垂直于指状电极,由此可以保证指状电极的部分电流会较容易地流向第二接触区域C,降低电流集中在第一列的多个第二欧姆接触区域内的比例;更优选的,相邻两列之间的距离为D2值的一半。Specifically as shown in FIG. 6 , the distance between any second ohmic contact region A in the first column closest to the finger electrode and the second ohmic contact region B adjacent to the same column is greater than the one second ohmic contact region A The distance between an adjacent second ohmic contact area C in an adjacent column; specifically, define any second ohmic contact area A in the first column closest to the finger electrode parallel to the extension direction of the finger electrode and The distance between adjacent second ohmic contact regions B in the same column is D1, and the range of D1 is 1-50 μm, and any one of the second ohmic contact regions B in the first column closest to the finger electrodes is adjacent to The distance D2 between an adjacent second ohmic contact area C of a column, D1 is greater than D2, thus ensuring that an adjacent second ohmic contact area C of an adjacent column is as close as possible to the finger electrode; more preferably, as shown in Figure 6 shows that when multiple second ohmic contact regions are arranged in the closest hexagonal arrangement, the ratio between D1 and D2 is : 1; more preferably, when viewed in a direction perpendicular to the finger electrodes, any second ohmic contact region C of the second column is located between two adjacent second ohmic contact regions A and B of the first column, that is Viewed in the direction perpendicular to the finger electrodes, the second ohmic contact region C is staggered or spaced apart from the two second ohmic contact regions A and B in the first column, that is, the second contact region C is not in contact with the second The connecting line between regions A and B is not perpendicular to the finger electrodes, thereby ensuring that part of the current of the finger electrodes will flow to the second contact region C more easily, reducing the concentration of current on multiple second ohmic contact regions in the first column ratio within; more preferably, the distance between two adjacent columns is half of the value of D2.
更优选的,任意一列的相邻两个第二欧姆接触区域之间的距离长度定义为一个单位D3,任意一个第二欧姆接触区域与相邻一列的相邻一个第二欧姆接触区域之间的距离小于该一个单位D4,其中D3=D1,D4=D2。More preferably, the distance between two adjacent second ohmic contact regions in any column is defined as a unit D3, and the distance between any second ohmic contact region and an adjacent second ohmic contact region in an adjacent column The distance is less than the one unit D4, where D3=D1, D4=D2.
为了保证良好的指状电极与第二欧姆接触区域之间的电流扩展,其中与指状电极延伸方向平行的最靠近指状电极的第一列的任意一个第二欧姆接触区域与指状电极之间的距离为两临近指状电极之间的水平距离的5%~50%;相反的,若第一列的多个第二欧姆接触区域与指状电极太接近的距离会导致电流过度集中与第一列多个第二欧姆接触区域,不利于电流的横向传递。In order to ensure a good current spread between the finger electrodes and the second ohmic contact area, the distance between any second ohmic contact area in the first column closest to the finger electrodes parallel to the extension direction of the finger electrodes and the finger electrodes The distance between them is 5%~50% of the horizontal distance between two adjacent finger electrodes; on the contrary, if the multiple second ohmic contact areas of the first column are too close to the finger electrodes, it will cause excessive current concentration and Multiple second ohmic contact areas in the first column are not conducive to the lateral transfer of current.
实施例2Example 2
与实施例1不同的制作工艺的是,在第一步制作的发光半导体序列上,形成第二欧姆接触层201如金属合金,如AuBe或AuGe合金在第二窗口层106上,从而形成如图7所示的结构。其中第二欧姆接触层201包括独立的多个欧姆接触区域,沿着第二窗口层106一侧水平分布。然后在300~500℃合金化处理,用于形成欧姆接触的第二欧姆接触层201与第二窗口层106之间的合金化接触层。所述的合金化过程的细节是本领域的技术人员公知的,不必在本文中公开。The manufacturing process that is different from Embodiment 1 is that on the light-emitting semiconductor sequence produced in the first step, a second
如图8所示,形成透明绝缘层202在第二欧姆接触层201表面,透明绝缘层202的形成工艺为电子束或溅射蒸镀,所述的绝缘层202的材料为氧化物或氮化物或氟化物,如二氧化硅、氮化硅或氟化钙或氟化镁等,所述的绝缘层202的折射率介于1.3~1.6,至少所述的绝缘层的折射率比第一窗口层的折射率低1.5。所述绝缘层202的厚度为50~500nm,进一步优选为50~100nm;所述的绝缘层202通过BOE或RIE方法蚀刻以露出第二欧姆接触层201或可以进一步露出第二窗口层201部分。As shown in Figure 8, a transparent insulating
接着在第二欧姆接触层201和绝缘层202表面制作透明导电层203,所述的透明导电层203为透明导电的金属氧化物,如ITO、IZO、GZO或CTO,该透明导电层的厚度为5~500nm。然后形成金属反射层204在该透明导电层203上,透明导电层203在金属反射层之间起着粘附作用。绝缘层202的作用是阻挡电流,当电流流经第二欧姆接触层时,多处的第一欧姆接触层具有电流扩展作用,同时绝缘层203与反射层204可以形成ODR结构,提高反射效率,反射率可以达到95%以上;所述的反射层可以是银、金等反射率高的金属材料制作形成。Then make transparent
然后将反射层204键合至支撑衬底205,键合工艺可以通过金属-金属高温高压键合,金属-金属键合的成分可以是In, Au, Sn, Pb, InAu, SnAu至少之一。Then, the
接着将生长衬底101移除,露出第一窗口层102。Then the
接着,在第一窗口层102上形成第一欧姆接触层207,如导电材料如AuBe或AuGe合金。所述的第一欧姆接触层107优选但不限于采用蒸镀或化学镀或方式形成在第二半导体层侧,然后在300~500℃合金化处理,用于形成欧姆接触的第一欧姆接触层107与第一窗口层102之间的合金化接触层。所述的合金化过程的细节是本领域的技术人员公知的,不必在本文中公开。Next, a first
然后形成第一电极2071在第一欧姆接触层207上,第一电极2071用于外部电连接,在支撑衬底205背面侧形成第二电极206。Then a
具体的,第一欧姆接触层207包括多个指状电极在第二窗口层一侧水平延伸,多个指状电极与第一电极2071连接,电流通过第一电极2071注入并通过多个指状电极将电流扩展,然后再沿着半导体发光序列的厚度方向纵向以及横向传递至第二欧姆接触层的多个接触区域,并向下传递至第二电极206,或者自第二电极206传输电流至第二欧姆接触层的多个接触区域,进一步传递至半导体发光序列,然后通过第一欧姆接触层的多个指状电极传递至第一电极。Specifically, the first
每一指状电极与第一电极连接的附近小部分可以是弯曲或弯折的或直线性的;为了保证所述的指状电极在半导体序列一侧的电流传输均匀性,优选每一指状电极的主要部分尽量是平行的,即多个指状电极可以以主要部分相互平行的方式延伸出去;每一个指状电极的宽度和相邻指状之间的间距可以根据实际芯片的尺寸进行常规的设计;所述的多个指状电极的宽度可以沿着指状电极延伸的方向是不变或根据电流扩散均匀性为变化的,如宽度沿着延伸方向可以逐渐减小,指状电极在第一电极周围的的部分的尺寸大于远离第一电极的部分的尺寸;所述的多个指状电极的宽度是1~20μm。The small part near the connection between each finger electrode and the first electrode can be curved or bent or linear; in order to ensure the uniformity of current transmission of the finger electrode on one side of the semiconductor sequence, it is preferable that each finger electrode The main part of the electrodes should be as parallel as possible, that is, multiple finger electrodes can extend out in a way that the main parts are parallel to each other; the width of each finger electrode and the distance between adjacent fingers can be adjusted according to the size of the actual chip. design; the width of the plurality of finger electrodes can be constant along the direction in which the finger electrodes extend or change according to the uniformity of current diffusion, such as the width can gradually decrease along the extension direction, and the finger electrodes can be The size of the part around the first electrode is larger than the size of the part away from the first electrode; the width of the plurality of finger electrodes is 1-20 μm.
从半导体发光序列厚度方向上观察,每两条相邻指状电极之间的第二欧姆接触层201以多个点状的形式排列以形成多个第二欧姆接触区域,多个第二欧姆接触区域沿着指状电极平行的方向排列成多列;其中多个指状电极在厚度方向上不与多个第二欧姆接触区域重叠;多个第二欧姆接触区域以阵列的方式排列在半导体发光序列的一侧,所述的阵列是几个第二欧姆接触区域的排列方式为重复单元进行排列形成的阵列,具体的如本实施例中或者如图10-11所示,其中最靠近指状电极的第一列的任意一个欧姆接触区域A’与同一列相邻的欧姆接触区域B’之间的距离大于所述任意一个欧姆接触区域A’与靠近指状电极的第二列的相邻一个欧姆接触区域C’之间的距离,相邻两列的多个欧姆接触区域在垂直于指状电极的方向错开排列;更优选的,最靠近指状电极的第一列的任意一个欧姆接触区域(A,A’)与同一列相邻的欧姆接触区域(B,B’)之间的距离同所述任意一个欧姆接触区域(A,A’)与靠近指状电极的第二列的相邻一个欧姆接触区域(C,C’)之间的距离之间的比例为大于,相邻两列的多个欧姆接触区域在垂直于指状电极的方向错开排列。所述的多个第二欧姆接触区域以方形的结构作为阵列的图形,即其中非最靠近指状电极的其它列中的任意一个欧姆接触区域C’周围存在等距的四个欧姆接触区域(包括A’、B’),该四个欧姆接触区域处于方形的四个角位置,所示的方形为正方形或长方形;每一第二欧姆接触区域的尺寸为1~50μm;所述的多个第二接触区域的每一个是圆形或多边形或椭圆形;所述的多个欧姆接触区域的总面积与所在半导体序列一侧的面积之间的比例为3~50%;更优选的任意一个欧姆接触区域(A)与相邻一列的相邻一个欧姆接触区域(C)之间的距离大于相邻两列之间的距离的两倍。Viewed from the thickness direction of the semiconductor light-emitting sequence, the second
实施例3Example 3
如图12所示的结构,与实施例2不同的是,先形成绝缘层301在第二窗口层106上,透明绝缘层301的形成工艺为电子束或溅射蒸镀,所述的绝缘层301的材料为氧化物或氮化物或氟化物,如二氧化硅、氮化硅或氟化钙或氟化镁等,所述的绝缘层的折射率介于1.3~1.6,至少所述的绝缘层301的折射率比第一窗口层106的折射率低1.5。所述绝缘层301的厚度为50~500nm,进一步优选为50~100nm;所述的绝缘层301通过BOE或RIE方法蚀刻以露出第一窗口层部分,形成在绝缘层301为多个微小的贯通孔;每一个贯通孔的尺寸是1~50μm,多个贯通孔所占第二窗口层106或半导体发光序列一侧的百分比例是10~50%。The structure shown in Figure 12 is different from Embodiment 2 in that an insulating
在第二窗口层106侧露出的多个贯通孔中以及绝缘层301表面进一步制作透明导电层302如ITO、IZO、GZO或CTO,该透明导电层302的厚度为5~5000nm,所述的透明导电层也可以是单层或多层不同的材料制作形成。透明导电层302与第二窗口层106之间接触的区域即多个欧姆接触区域,然后形成金属反射层303在该透明导电层302上。然后键合支撑衬底304以及后续制作工艺和实施例二相同。A transparent
接着,在第一窗口层102上形成第一欧姆接触层307,如导电材料如AuBe或AuGe合金。所述的第一欧姆接触层307优选但不限于采用蒸镀或化学镀或方式形成在第二半导体层侧,然后在300~500℃合金化处理,用于形成欧姆接触的第一欧姆接触层307与第一窗口层102之间的合金化接触层。所述的合金化过程的细节是本领域的技术人员公知的,不必在本文中公开。Next, a first
然后形成第一电极3071在第一欧姆接触层307上,第一电极3071用于外部电连接,在支撑衬底205背面侧形成第二电极305。Then a
对于第一欧姆接触层307的指状电极和透明导电层302的多个欧姆接触区域之间的位置关系与实施例一的设置方式相同。The positional relationship between the finger electrodes of the first
对比例1Comparative example 1
发光元件的各层材料与实施例1相同的设置,并且如图13所示,本对比例中所述多个第二欧姆接触区域以最密六方排列方式,即多个第二欧姆接触区域的任意一第二欧姆接触区域周围具有六个等距的欧姆接触区域。与实施例1不同的是,如图14所示,多个接触区域A’’与B’’之间的距离等于欧姆接触区域B’’与C’’之间的距离,根据该排列方式,不同于图5和图6中的欧姆接触区域A、B之间的距离大于欧姆接触区域B、C之间的距离;根据该排列方式,由于靠近指状电极的第二列的多个相邻的欧姆接触区域与指状电极相离较远,因此电流会优选集中在靠近第一列的相邻两个第二欧姆接触区域之间,导致电流更容易拥挤在第一列的多个第二欧姆接触区域,指状电极之间区域的横向电流扩散更难,扩散不均匀。The materials of each layer of the light-emitting element are set in the same way as in Example 1, and as shown in Figure 13, the plurality of second ohmic contact regions in this comparative example are arranged in the closest hexagonal manner, that is, the number of second ohmic contact regions There are six equidistant ohmic contact regions around any second ohmic contact region. The difference from Embodiment 1 is that, as shown in FIG. 14 , the distance between the multiple contact regions A'' and B'' is equal to the distance between the ohmic contact regions B'' and C''. According to this arrangement, Different from the distance between the ohmic contact regions A and B in Fig. 5 and Fig. 6 is greater than the distance between the ohmic contact regions B and C; according to this arrangement, due to the multiple adjacent The ohmic contact area of the ohmic contact area is far away from the finger electrode, so the current will preferably concentrate between two adjacent second ohmic contact areas close to the first column, resulting in the current being more likely to be crowded in multiple second ohmic contact areas of the first column. In the ohmic contact area, the lateral current diffusion in the area between the finger electrodes is more difficult and the diffusion is not uniform.
以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the Within the scope of protection of the present invention.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210788450.6A CN115312646A (en) | 2019-01-17 | 2019-01-17 | Semiconductor light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910045030.7A CN109830498B (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
CN202210788450.6A CN115312646A (en) | 2019-01-17 | 2019-01-17 | Semiconductor light-emitting element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910045030.7A Division CN109830498B (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115312646A true CN115312646A (en) | 2022-11-08 |
Family
ID=66861677
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210788450.6A Pending CN115312646A (en) | 2019-01-17 | 2019-01-17 | Semiconductor light-emitting element |
CN202210788042.0A Pending CN115312645A (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
CN201910045030.7A Active CN109830498B (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210788042.0A Pending CN115312645A (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
CN201910045030.7A Active CN109830498B (en) | 2019-01-17 | 2019-01-17 | A semiconductor light-emitting element |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN115312646A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115312646A (en) * | 2019-01-17 | 2022-11-08 | 泉州三安半导体科技有限公司 | Semiconductor light-emitting element |
CN110707196A (en) * | 2019-10-21 | 2020-01-17 | 扬州乾照光电有限公司 | LED chip with complementary pattern dielectric layer and manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050205886A1 (en) * | 2002-11-29 | 2005-09-22 | Sanken Electric Co., Ltd. | Gallium-containing light-emitting semiconductor device and method of fabrication |
TW200701499A (en) * | 2005-06-20 | 2007-01-01 | Global Fiberoptics Inc | Light emitting apparatus and fabricated method thereof |
CN105322068A (en) * | 2015-11-17 | 2016-02-10 | 天津三安光电有限公司 | Light emitting diode chip and manufacturing method therefor |
US20180033918A1 (en) * | 2010-02-09 | 2018-02-01 | Epistar Corporation | Optoelectronic device and the manufacturing method thereof |
US20190296204A1 (en) * | 2016-12-21 | 2019-09-26 | Seoul Viosys Co., Ltd. | Highly reliable light emitting diode |
CN115312645A (en) * | 2019-01-17 | 2022-11-08 | 泉州三安半导体科技有限公司 | A semiconductor light-emitting element |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0458353B1 (en) * | 1990-05-24 | 1996-09-18 | Sumitomo Electric Industries, Ltd. | Ohmic contact electrodes for n-type semiconductor cubic boron nitride |
JP2005045162A (en) * | 2003-07-25 | 2005-02-17 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
JP2008288248A (en) * | 2007-05-15 | 2008-11-27 | Hitachi Cable Ltd | Semiconductor light emitting device |
TWI762930B (en) * | 2010-02-09 | 2022-05-01 | 晶元光電股份有限公司 | Optoelectronic device |
JP6595801B2 (en) * | 2014-05-30 | 2019-10-23 | エルジー イノテック カンパニー リミテッド | Light emitting element |
WO2016148424A1 (en) * | 2015-03-16 | 2016-09-22 | 서울바이오시스 주식회사 | Light emitting element including metal bulk |
WO2017183944A1 (en) * | 2016-04-22 | 2017-10-26 | 엘지이노텍 주식회사 | Light emitting device and display comprising same |
-
2019
- 2019-01-17 CN CN202210788450.6A patent/CN115312646A/en active Pending
- 2019-01-17 CN CN202210788042.0A patent/CN115312645A/en active Pending
- 2019-01-17 CN CN201910045030.7A patent/CN109830498B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050205886A1 (en) * | 2002-11-29 | 2005-09-22 | Sanken Electric Co., Ltd. | Gallium-containing light-emitting semiconductor device and method of fabrication |
TW200701499A (en) * | 2005-06-20 | 2007-01-01 | Global Fiberoptics Inc | Light emitting apparatus and fabricated method thereof |
US20180033918A1 (en) * | 2010-02-09 | 2018-02-01 | Epistar Corporation | Optoelectronic device and the manufacturing method thereof |
CN105322068A (en) * | 2015-11-17 | 2016-02-10 | 天津三安光电有限公司 | Light emitting diode chip and manufacturing method therefor |
US20190296204A1 (en) * | 2016-12-21 | 2019-09-26 | Seoul Viosys Co., Ltd. | Highly reliable light emitting diode |
CN115312645A (en) * | 2019-01-17 | 2022-11-08 | 泉州三安半导体科技有限公司 | A semiconductor light-emitting element |
Also Published As
Publication number | Publication date |
---|---|
CN109830498B (en) | 2022-07-19 |
CN109830498A (en) | 2019-05-31 |
CN115312645A (en) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7274040B2 (en) | Contact and omnidirectional reflective mirror for flip chipped light emitting devices | |
US8679869B2 (en) | Contact for a semiconductor light emitting device | |
US8791483B2 (en) | High efficiency light emitting diode and method for fabricating the same | |
KR101280400B1 (en) | Optoelectronic device and the manufacturing method thereof | |
CN104409588B (en) | Semiconductor light-emitting elements | |
CN103283045B (en) | Efficient LED | |
JP2012212929A (en) | InGaAlN LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME | |
JP5056799B2 (en) | Group III nitride semiconductor light emitting device and method of manufacturing the same | |
JP2023053088A (en) | infrared light emitting diode | |
JP2010123742A (en) | Light emitting diode and method of manufacturing the same, and lamp | |
US10084115B2 (en) | Optoelectronic device and the manufacturing method thereof | |
US20110233516A1 (en) | Optical semiconductor device including protrusion structure of parallelogram cells and its manufacturing method | |
JP2007220709A (en) | Light emitting diode | |
TWI426626B (en) | Light-emitting diode, light-emitting diode lamp and lighting device | |
JP2004503096A (en) | InGaN based light emitting diode chip and method of manufacturing the same | |
CN109830498B (en) | A semiconductor light-emitting element | |
KR101154511B1 (en) | High efficiency light emitting diode and method of fabricating the same | |
KR101032987B1 (en) | Semiconductor light emitting device | |
CN1295350A (en) | Light emitting semiconductor device and manufacturing method thereof | |
CN102044605B (en) | Semiconductor light-emitting device and method for manufacturing the same | |
KR20090109598A (en) | Group III-nitride semiconductor light emitting diode device of vertical structure and manufacturing method | |
KR20130009719A (en) | High efficiency light emitting diode and method of fabricating the same | |
KR101239849B1 (en) | High efficiency light emitting diode | |
KR100985720B1 (en) | Method of forming light emitting device package | |
KR101138978B1 (en) | High efficiency light emitting diode and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |