CN115312584A - Gallium nitride epitaxial wafer and preparation method thereof - Google Patents
Gallium nitride epitaxial wafer and preparation method thereof Download PDFInfo
- Publication number
- CN115312584A CN115312584A CN202111364861.4A CN202111364861A CN115312584A CN 115312584 A CN115312584 A CN 115312584A CN 202111364861 A CN202111364861 A CN 202111364861A CN 115312584 A CN115312584 A CN 115312584A
- Authority
- CN
- China
- Prior art keywords
- layer
- gallium nitride
- temperature
- source
- nitride epitaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/854—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
Abstract
本申请属于半导体技术领域,为解决现有外延片容易因晶格失配或应力而产生的翘曲问题,公开一种氮化镓外延片及制备方法。该氮化镓外延片包括:衬底,以及衬底上依次设置的低温AlN缓冲层、高温AlN缓冲层、疏松AlGaN层、铝渐变层、氮化镓过渡层和氮化镓外延层。低温AlN缓冲层和高温AlN缓冲层能够缓冲衬底与氮化镓过渡层之间的晶格失配,疏松AlGaN层能够起到应力缓解的作用,铝渐变层能够提高上方的氮化镓层的晶格匹配,而氮化镓外延通过该氮化镓过渡层能够进一步减少衬底与外延层之间的晶格失配产生的应力,能够防止大尺寸外延片因晶格失配或应力而产生的翘曲。该氮化镓外延层可通过CVD设备来制备。
The present application belongs to the technical field of semiconductors, and discloses a gallium nitride epitaxial wafer and a preparation method in order to solve the problem of warpage of the existing epitaxial wafers easily caused by lattice mismatch or stress. The gallium nitride epitaxial wafer includes: a substrate, and a low-temperature AlN buffer layer, a high-temperature AlN buffer layer, a loose AlGaN layer, an aluminum graded layer, a gallium nitride transition layer and a gallium nitride epitaxial layer that are sequentially arranged on the substrate. The low temperature AlN buffer layer and the high temperature AlN buffer layer can buffer the lattice mismatch between the substrate and the gallium nitride transition layer, the loose AlGaN layer can play a role in stress relief, and the aluminum graded layer can improve the stability of the gallium nitride layer above. Lattice matching, and gallium nitride epitaxy can further reduce the stress caused by lattice mismatch between the substrate and the epitaxial layer through the gallium nitride transition layer, and can prevent large-scale epitaxial wafers from being caused by lattice mismatch or stress. warping. The gallium nitride epitaxial layer can be prepared by CVD equipment.
Description
技术领域technical field
本申请属于半导体技术领域,具体的涉及一种氮化镓外延片及其制备方法。The application belongs to the technical field of semiconductors, and in particular relates to a gallium nitride epitaxial wafer and a preparation method thereof.
背景技术Background technique
氮化镓(GaN)作为第三代宽带隙半导体材料,以其具有很好的物理性能和稳定性等特点在微波器件领域具有很高的应用价值,更有望在航空、高温辐射、雷达、通信、汽车电子等方面发挥重要的作用。而氮化镓单晶衬底制备比较困难,通常使用异质外延的方式形成,该方式下在大尺寸时外延片容易因晶格失配或应力而产生的翘曲,且随着衬底尺寸增加,翘曲问题会更加凸显。因此,需要亟待解决现有技术中因晶格失配而产生的应力及翘曲问题。Gallium Nitride (GaN), as the third-generation wide-bandgap semiconductor material, has high application value in the field of microwave devices due to its good physical properties and stability, and is more expected to be used in aviation, high-temperature radiation, radar, communication , automotive electronics and other aspects play an important role. GaN single crystal substrates are difficult to prepare, and are usually formed by heteroepitaxy. In this method, the epitaxial wafers are prone to warping due to lattice mismatch or stress when the size is large. Increase, the warping problem will be more prominent. Therefore, it is urgent to solve the problems of stress and warpage caused by lattice mismatch in the prior art.
发明内容Contents of the invention
为解决现有外延片容易因晶格失配或应力而产生的翘曲问题,提出一种氮化镓外延片及制备方法。In order to solve the warping problem of existing epitaxial wafers easily caused by lattice mismatch or stress, a gallium nitride epitaxial wafer and its preparation method are proposed.
为实现上述目的,本申请采用如下的技术方案:In order to achieve the above object, the application adopts the following technical solutions:
一种氮化镓外延片,包括衬底,所述衬底上依次设置为低温AlN缓冲层、高温AlN缓冲层、疏松AlGaN层、铝渐变层、氮化镓过渡层和氮化镓外延层。A gallium nitride epitaxial wafer comprises a substrate on which a low-temperature AlN buffer layer, a high-temperature AlN buffer layer, a loose AlGaN layer, an aluminum graded layer, a gallium nitride transition layer and a gallium nitride epitaxial layer are sequentially arranged.
优选地所述的疏松AlGaN层由在高温AlN缓冲层上沉积AlInGaN层后将铟全部析出而形成。Preferably, the loose AlGaN layer is formed by depositing an AlInGaN layer on the high-temperature AlN buffer layer and then depositing all indium.
优选地形成疏松AlGaN层之后,使用氮气对疏松AlGaN层进行吹扫,去除从AlInGaN层中全部析出的铟。Preferably, after forming the loose AlGaN layer, nitrogen gas is used to purge the loose AlGaN layer to remove all indium precipitated from the AlInGaN layer.
优选地所述的衬底包括蓝宝石衬底;所述低温AlN缓冲层的厚度为10-15nm,形成温度为500-650摄氏度;所述高温AlN缓冲层的厚度为40-55nm,形成温度为800-1100摄氏度;所述的AlInGaN层的厚度为100-300nm;所述铝渐变层的厚度为80-150nm;所述氮化镓过渡层的厚度为50-100nm。Preferably, the substrate includes a sapphire substrate; the thickness of the low-temperature AlN buffer layer is 10-15 nm, and the formation temperature is 500-650 degrees Celsius; the thickness of the high-temperature AlN buffer layer is 40-55 nm, and the formation temperature is 800 -1100 degrees Celsius; the thickness of the AlInGaN layer is 100-300nm; the thickness of the aluminum gradient layer is 80-150nm; the thickness of the gallium nitride transition layer is 50-100nm.
优选地所述的镓外延层由第一氮化镓外延层和第二氮化镓外延层组成,镓外延层总厚度为1.5-2微米,其中第一氮化镓外延层的厚度为100-180nm。Preferably, the gallium epitaxial layer is composed of a first gallium nitride epitaxial layer and a second gallium nitride epitaxial layer, the total thickness of the gallium epitaxial layer is 1.5-2 microns, wherein the thickness of the first gallium nitride epitaxial layer is 100- 180nm.
基于上述一种氮化镓外延片的制备方法,包括以下步骤:在衬底上依次设置为低温AlN缓冲层、高温AlN缓冲层、AlInGaN层,将AlInGaN层中的铟全部析出从而形成疏松AlGaN层,在疏松AlGaN层上再依次沉积铝渐变层、氮化镓过渡层和氮化镓外延层。Based on the above-mentioned preparation method of a gallium nitride epitaxial wafer, it includes the following steps: setting a low-temperature AlN buffer layer, a high-temperature AlN buffer layer, and an AlInGaN layer on the substrate in sequence, and depositing all the indium in the AlInGaN layer to form a loose AlGaN layer , on the loose AlGaN layer, sequentially deposit an aluminum graded layer, a gallium nitride transition layer and a gallium nitride epitaxial layer.
具体的所述制备方法包括以下步骤:Concrete described preparation method comprises the following steps:
步骤S1:将衬底放入反应腔室中;Step S1: putting the substrate into the reaction chamber;
步骤S2:向所述反应腔室内通入铝源和氮源,并控制所述反应腔室内的温度为第一温度,在所述衬底上形成低温AlN缓冲层;Step S2: introducing an aluminum source and a nitrogen source into the reaction chamber, and controlling the temperature in the reaction chamber to a first temperature, and forming a low-temperature AlN buffer layer on the substrate;
步骤S3:提高反应腔室内的温度至第二温度,并继续通入铝源和氮源,在所述低温AlN缓冲层上形成高温AlN缓冲层;所述第二温度大于所述第一温度;Step S3: increasing the temperature in the reaction chamber to a second temperature, and continuing to feed aluminum and nitrogen sources to form a high-temperature AlN buffer layer on the low-temperature AlN buffer layer; the second temperature is greater than the first temperature;
步骤S4:保持铝源和氮源的通入,并向反应腔室中通入铟源、镓源,在高温AlN缓冲层上形成AlInGaN层;然后同时停止铝源、氮源、铟源和镓源的通入,待AlInGaN层中的铟全部析出后形成疏松AlGaN层,使用氮气对疏松AlGaN 层表面进行吹扫,去除从AlInGaN层中全部析出的铟;Step S4: keep the aluminum source and the nitrogen source connected, and feed the indium source and the gallium source into the reaction chamber to form an AlInGaN layer on the high-temperature AlN buffer layer; then stop the aluminum source, nitrogen source, indium source and gallium at the same time The source is introduced, and the loose AlGaN layer is formed after all the indium in the AlInGaN layer is precipitated, and the surface of the loose AlGaN layer is purged with nitrogen gas to remove all the indium precipitated from the AlInGaN layer;
步骤S5:控制所述反应腔室内的压力和温度不变,减少铝源的通入,在疏松AlGaN层表面形成铝渐变层;Step S5: controlling the pressure and temperature in the reaction chamber to remain constant, reducing the introduction of aluminum sources, and forming an aluminum gradient layer on the surface of the loose AlGaN layer;
步骤S6:停止通入铝源,在所述铝渐变层表面形成氮化镓过渡层;Step S6: stop feeding the aluminum source, and form a gallium nitride transition layer on the surface of the aluminum gradient layer;
步骤S7:在所述氮化镓过渡层上形成氮化镓外延层。Step S7: forming a GaN epitaxial layer on the GaN transition layer.
优选的所述氮化镓外延层包括:第一氮化镓外延层和第二氮化镓外延层;第一氮化镓外延层的生长阶段中反应腔室内的温度和压力均大于所述第二氮化镓外延层的生长阶段反应腔室内的温度和压力,但第一氮化镓外延层的生长阶段中氮化镓生长速度小于所述第二氮化镓外延层的生长阶段中氮化镓生长速度。Preferably, the gallium nitride epitaxial layer includes: a first gallium nitride epitaxial layer and a second gallium nitride epitaxial layer; the temperature and pressure in the reaction chamber during the growth stage of the first gallium nitride epitaxial layer are both higher than that of the first gallium nitride epitaxial layer The temperature and pressure in the reaction chamber during the growth stage of the GaN epitaxial layer, but the growth rate of GaN in the growth stage of the first GaN epitaxial layer is less than that in the growth stage of the second GaN epitaxial layer Nitride Gallium growth rate.
具体的所述步骤S2:氮源为氨气,铝源为三甲基铝,第一温度为500-650 摄氏度,形成低温AlN缓冲层的厚度为10-15nm;Specifically, the step S2: the nitrogen source is ammonia gas, the aluminum source is trimethylaluminum, the first temperature is 500-650 degrees Celsius, and the thickness of the low-temperature AlN buffer layer is 10-15 nm;
步骤S3:第一温度为800-1100摄氏度,形成高温AlN缓冲层的厚度为 40-55nm;步骤S4:镓源为三甲基镓,铟源为三甲基铟,反应腔室内的压力为 150-200mbar,温度为1050-1100摄氏度,同时暂停通入铝源、氮源、铟源和镓源30-60S;控制氮气的通入及吹氮气方向,将液滴状的铟从AlInGaN层的表面吹走,并将吹走的液滴状的铟收集在回收装置内。Step S3: the first temperature is 800-1100 degrees Celsius, and the thickness of the high-temperature AlN buffer layer is 40-55nm; Step S4: the gallium source is trimethylgallium, the indium source is trimethylindium, and the pressure in the reaction chamber is 150 -200mbar, the temperature is 1050-1100 degrees Celsius, while suspending the introduction of aluminum source, nitrogen source, indium source and gallium source for 30-60S; control the introduction of nitrogen gas and the direction of nitrogen blowing, and droplet indium from the surface of the AlInGaN layer Blow away, and collect the droplet indium blown away in the recovery device.
挨着衬底先形成低温AlN缓冲层,细小且密集的晶粒状的氮化铝在形成低温 AlN缓冲层时,岛状晶粒之间会存在有一定的间隙;为了降低表面能晶粒会变形,使间隙闭合,在低温AlN缓冲层上设置高温AlN缓冲层。高温下能够形成致密的高温AlN缓冲层能够提高外延片的形成质量。A low-temperature AlN buffer layer is formed next to the substrate. When the fine and dense grain-shaped aluminum nitride forms a low-temperature AlN buffer layer, there will be a certain gap between the island-shaped grains; in order to reduce the surface energy, the grains will deformation, the gap is closed, and a high-temperature AlN buffer layer is set on the low-temperature AlN buffer layer. The ability to form a dense high-temperature AlN buffer layer at a high temperature can improve the formation quality of the epitaxial wafer.
形成的疏松AlGaN层微观结构呈现不规则的多孔结构,能够起到应力缓解的作用,铝渐变层能够提高上方的氮化镓层的晶格匹配。而在铝渐变层的上方与氮化镓外延层之间先沉积一层氮化镓过渡层能够进一步减少衬底与外延层之间的晶格失配产生的应力,能够防止大尺寸外延片因晶格失配或应力而产生的翘曲。The microstructure of the formed loose AlGaN layer presents an irregular porous structure, which can play a role in stress relief, and the aluminum graded layer can improve the lattice matching of the upper gallium nitride layer. Depositing a GaN transition layer between the Al gradient layer and the GaN epitaxial layer can further reduce the stress caused by the lattice mismatch between the substrate and the epitaxial layer, and prevent large-scale epitaxial wafers from Warpage due to lattice mismatch or stress.
值得说明的是,本申请中所述的“低温AlN缓冲层”、“高温AlN缓冲层”中的“低温”“高温”是为了便于对两种不同温度下生成的AlN缓冲层加以区分而采取的命名,此处的高温和低温并不是指温度范围。所述的“低温AlN缓冲层”、“高温AlN缓冲层”也可以相应替换为“第一AlN缓冲层”“第二AlN 缓冲层”,第一AlN缓冲层形成温度低于第二AlN缓冲层的形成温度。It is worth noting that the "low temperature" and "high temperature" in the "low temperature AlN buffer layer" and "high temperature AlN buffer layer" described in this application are adopted for the convenience of distinguishing the AlN buffer layers formed at two different temperatures. The name of the high temperature and low temperature here does not refer to the temperature range. The "low-temperature AlN buffer layer" and "high-temperature AlN buffer layer" can also be replaced by "the first AlN buffer layer" and "the second AlN buffer layer", and the formation temperature of the first AlN buffer layer is lower than that of the second AlN buffer layer. formation temperature.
附图说明Description of drawings
图1为本申请实施例的氮化镓外延片结构的截面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of a gallium nitride epitaxial wafer structure according to an embodiment of the present application.
图2为本申请实施例的氮化镓外延层制备的生长流程示意图。FIG. 2 is a schematic diagram of a growth process for preparing a gallium nitride epitaxial layer according to an embodiment of the present application.
图示说明:1-衬底,2-低温AlN缓冲层、3-高温AlN缓冲层、4-疏松 AlGaN层、5-铝渐变层、6-氮化镓过渡层、7-氮化镓外延层。Illustration: 1-substrate, 2-low temperature AlN buffer layer, 3-high temperature AlN buffer layer, 4-loose AlGaN layer, 5-aluminum gradient layer, 6-gallium nitride transition layer, 7-gallium nitride epitaxial layer .
具体实施方式Detailed ways
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以如具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。The above solution will be further described below in conjunction with specific embodiments. It should be understood that these examples are used to illustrate the present application and not limit the scope of the present application. The implementation conditions adopted in the examples can be further adjusted as the conditions of specific manufacturers, and the implementation conditions not indicated are usually the conditions in routine experiments.
实施例一、如图1所示的一种氮化镓外延片,包括衬底1,所述衬底上依次设置为低温AlN缓冲层2、高温AlN缓冲层3、疏松AlGaN层4、铝渐变层5、氮化镓过渡层6和氮化镓外延层7。
氮化镓外延通过疏松AlGaN层能够起到应力缓解的作用,铝渐变层能够提高上方的氮化镓层的晶格匹配,该氮化镓过渡层能够减少衬底与外延层之间的晶格失配产生的应力,能够防止大尺寸外延片因晶格失配或应力而产生的翘曲。该氮化镓外延层可通过CVD设备来制备。Gallium nitride epitaxy can play a role in stress relief through the loose AlGaN layer, and the aluminum graded layer can improve the lattice matching of the upper gallium nitride layer, and the gallium nitride transition layer can reduce the lattice between the substrate and the epitaxial layer The stress generated by the mismatch can prevent large-scale epitaxial wafers from warping due to lattice mismatch or stress. The gallium nitride epitaxial layer can be prepared by CVD equipment.
实施例二、一种氮化镓外延片的制备方法,包括以下步骤:在衬底上依次设置为低温AlN缓冲层、高温AlN缓冲层、AlInGaN层,将AlInGaN层中的铟全部析出从而形成疏松AlGaN层,并使用氮气吹扫疏松AlGaN层的表面,然后再在疏松AlGaN层上再依次沉积铝渐变层、氮化镓过渡层和氮化镓外延层。
一较佳的实施方式:氮化镓外延层制备的生长流程示意图如图2所示。A preferred embodiment: the schematic diagram of the growth process for the preparation of gallium nitride epitaxial layer is shown in FIG. 2 .
首先,将衬底放入反应腔室中,其中的衬底可以为蓝宝石衬底,在衬底放入到反应腔室之前,优先进行清洗步骤,清洗可以去除衬底表面的污染颗粒和杂质,清洗包括湿法清洗和干洗,先进行湿法清洗,使用去离子水,对衬底表面清洗,然后使用干法清洗,如氮气吹扫衬底的表面,对衬底进行烘干处理,减少湿气可能带来的影响;First, put the substrate into the reaction chamber, where the substrate can be a sapphire substrate. Before the substrate is put into the reaction chamber, a cleaning step is performed first. Cleaning can remove contamination particles and impurities on the surface of the substrate. Cleaning includes wet cleaning and dry cleaning. Wet cleaning is performed first, using deionized water to clean the surface of the substrate, and then dry cleaning, such as nitrogen blowing the surface of the substrate, drying the substrate to reduce moisture The possible impact of the gas;
其次,控制反应腔室内的温度在500-650摄氏度,通入铝源和氮源,形成低温AlN缓冲层,所述低温AlN缓冲层的厚度为10-15nm;然后提高反应腔室内的温度至800-1100摄氏度之间,并且继续通入铝源和氮源,形成高温AlN缓冲层,所述高温AlN缓冲层的厚度为40-55nm,其中铝源为三甲基铝,氮源为氨气;在本发明中,在衬底的表面先形成低温AlN缓冲层,由于蓝宝石衬底是氧化铝材质,与AlN具有较好的晶格匹配,AlN与衬底的应力较小,而在较低温度下形成的AlN 层,由于温度范围在500-650摄氏度之间,形成多个细小且密集的晶粒状的氮化铝在形成氮化铝层时,岛状晶粒之间会存在有一定的间隙,形成多晶的AlN层。在高温下能够形成致密的高温氮化铝层为单晶AlN层,结构致密,能够提高外延片的形成质量。Secondly, control the temperature in the reaction chamber at 500-650 degrees Celsius, feed aluminum source and nitrogen source to form a low-temperature AlN buffer layer, the thickness of the low-temperature AlN buffer layer is 10-15nm; then increase the temperature in the reaction chamber to 800 Between -1100 degrees Celsius, and continue to feed aluminum source and nitrogen source to form a high-temperature AlN buffer layer, the thickness of the high-temperature AlN buffer layer is 40-55nm, wherein the aluminum source is trimethylaluminum, and the nitrogen source is ammonia gas; In the present invention, a low-temperature AlN buffer layer is first formed on the surface of the substrate. Since the sapphire substrate is made of alumina, it has better lattice matching with AlN, and the stress between AlN and the substrate is smaller, and at a lower temperature The AlN layer formed below, due to the temperature range between 500-650 degrees Celsius, forms a plurality of fine and dense grain-shaped aluminum nitride. When forming the aluminum nitride layer, there will be a certain gap between the island-shaped grains. Gaps, forming a polycrystalline AlN layer. A dense high-temperature aluminum nitride layer can be formed at a high temperature as a single-crystal AlN layer with a dense structure, which can improve the formation quality of epitaxial wafers.
形成高温AlN缓冲层之后,保持铝源和氮源的通入,并向反应腔室中通入铟源、镓源,在高温AlN缓冲层上形成AlInGaN层,镓源为三甲基镓,铟源为三甲基铟,反应腔室内的压力为150-200mbar,温度为1050-1100摄氏度,形成 AlInGaN层的厚度为100-300nm。形成AlInGaN层是为了后续形成疏松AlGaN层,在形成一定厚度的AlInGaN层时,在其厚度大于300nm时,在AlInGaN层中的铟在高温时难以析出,容易形成In-AlGaN合金,低于100nm厚度的AlInGaN层在形成疏松AlGaN层之后,又难以通过疏松结构更好地实现应力缓解。因此,在本发明中形成AlInGaN层时,控制厚度在100-300nm的范围,这样能够便于形成疏松AlGaN层,并能够利用其疏松结构起到应力缓解的作用。After the high-temperature AlN buffer layer is formed, the aluminum source and the nitrogen source are maintained, and the indium source and the gallium source are introduced into the reaction chamber to form an AlInGaN layer on the high-temperature AlN buffer layer. The gallium source is trimethylgallium, indium The source is trimethyl indium, the pressure in the reaction chamber is 150-200mbar, the temperature is 1050-1100 degrees centigrade, and the thickness of the formed AlInGaN layer is 100-300nm. The AlInGaN layer is formed for the subsequent formation of a loose AlGaN layer. When forming an AlInGaN layer with a certain thickness, when the thickness is greater than 300nm, the indium in the AlInGaN layer is difficult to precipitate at high temperature, and it is easy to form an In-AlGaN alloy. The thickness is less than 100nm After the AlInGaN layer is formed with a loose AlGaN layer, it is difficult to better achieve stress relief through the loose structure. Therefore, when forming the AlInGaN layer in the present invention, the thickness is controlled within the range of 100-300nm, which can facilitate the formation of the loose AlGaN layer and utilize its loose structure to relieve stress.
然后同时停止铝源、氮源、铟源和镓源的通入,停止通入的时间为30-60S,在停止通入反应源气体的同时,由于反应腔室内的温度较高,在沉积温度附近 (在1000摄氏度以上),其中的In容易析出,在暂停通入的时间中,铟会从 AlInGaN中析出,在此段时间内能够将AlInGaN层中的铟全部析出;Then stop the feeding of aluminum source, nitrogen source, indium source and gallium source at the same time, the time of stopping feeding is 30-60S, while stopping feeding reaction source gas, because the temperature in the reaction chamber is higher, at the deposition temperature Nearby (above 1000 degrees Celsius), the In in it is easy to precipitate, and the indium will be precipitated from the AlInGaN during the time when the feed is suspended, and all the indium in the AlInGaN layer can be precipitated during this period of time;
控制所述反应腔室内的压力和温度不变,减少铝源的通入,形成铝渐变层;Controlling the pressure and temperature in the reaction chamber to be constant, reducing the introduction of the aluminum source, and forming an aluminum gradient layer;
停止通入铝源,在铝渐变层表面形成氮化镓过渡层;Stop feeding the aluminum source, and form a gallium nitride transition layer on the surface of the aluminum gradient layer;
随后,在所述氮化镓过渡层上形成氮化镓外延层。Subsequently, a GaN epitaxial layer is formed on the GaN transition layer.
在一个较佳的实施方式中将AlInGaN层中的铟全部析出后,使用氮气对 AlInGaN层吹扫,控制氮气的通入及吹氮气方向,将析出后呈液滴状的铟从 AlInGaN层的表面吹走,并将吹走的液滴状的铟收集在回收装置内,防止污染其他层结构。由于铟的析出,会附着在疏松AlGaN层的表面,形成液滴状铟,在后续沉积时容易与后续形成的铟结构形成合金层,比如后续形成GaN层时,如果有铟存在,铟会和GaN层形成In-GaN合金,形成合金层之后,一方面外延片较难与衬底片分离,另一方面由于铟的存在会改变GaN层的导电性能,无论是作为LED材料或者是激光器的衬底材料,都会对发光性能造成影响。In a preferred embodiment, after all the indium in the AlInGaN layer is precipitated, the AlInGaN layer is purged with nitrogen gas, and the introduction of nitrogen gas and the direction of blowing nitrogen gas are controlled, so that the precipitated indium in the form of droplets is removed from the surface of the AlInGaN layer. Blow away, and collect the droplet indium blown away in the recovery device to prevent contamination of other layer structures. Due to the precipitation of indium, it will adhere to the surface of the loose AlGaN layer to form droplet-shaped indium, which is easy to form an alloy layer with the subsequently formed indium structure during subsequent deposition. The GaN layer forms an In-GaN alloy. After the alloy layer is formed, on the one hand, it is difficult to separate the epitaxial wafer from the substrate. On the other hand, the presence of indium will change the conductivity of the GaN layer, whether it is used as an LED material or a laser substrate. Materials will affect the luminous performance.
在高温AlN层上形成AlInGaN层,在形成时,在形成AlN时,是通入的铝源和氮源,形成预定厚度的高温AlN层之后,保持铝源和氮源的通入,并向反应腔室中通入铟源、镓源,其中铝源为三甲基铝、镓源为三甲基镓,铟源为三甲基铟,氮源为NH3,反应腔室内的压力为150-200mbar,温度为1050-1100摄氏度,形成AlInGaN层,然后同时停止铝源、氮源、铟源和镓源的通入,暂停通入时间为30-60S。The AlInGaN layer is formed on the high-temperature AlN layer. When forming AlN, the aluminum source and the nitrogen source are passed in. After forming a high-temperature AlN layer with a predetermined thickness, the aluminum source and the nitrogen source are kept flowing in and fed to the reaction. Indium source and gallium source are passed into the chamber, wherein the aluminum source is trimethylaluminum, the gallium source is trimethylgallium, the indium source is trimethylindium, the nitrogen source is NH 3 , and the pressure in the reaction chamber is 150- 200mbar, the temperature is 1050-1100 degrees Celsius, form the AlInGaN layer, and then stop the feed of the aluminum source, nitrogen source, indium source and gallium source at the same time, and the pause time is 30-60S.
其中AlInGaN层在沉积之后,暂停生长,暂停生长时间为30-60S,由于在高温下(形成AlInGaN层的温度为1050-1100摄氏度,在暂停生长时温度会维持在生长温度的附近)铟容易析出,析出的铟会附着在AlInGaN层的表面, AlInGaN中的铟析出之后,AlInGaN层会形成为疏松AlGaN层结构,通过控制暂停生长的时间,将AlInGaN层中的铟全部析出,这样能够形成疏松AlGaN层,由于具有疏松的结构,疏松AlGaN层能够作为应力缓冲层,实现应力的缓冲。Among them, after the AlInGaN layer is deposited, the growth is suspended, and the suspension growth time is 30-60S. Because at high temperature (the temperature for forming the AlInGaN layer is 1050-1100 degrees Celsius, the temperature will be maintained near the growth temperature during the suspension of growth) Indium is easy to precipitate , the precipitated indium will adhere to the surface of the AlInGaN layer. After the indium in AlInGaN is precipitated, the AlInGaN layer will form a loose AlGaN layer structure. By controlling the growth pause time, all the indium in the AlInGaN layer will be precipitated, so that a loose AlGaN layer can be formed. layer, because of its loose structure, the loose AlGaN layer can be used as a stress buffer layer to achieve stress buffering.
在暂停通入反应源预设时间之后,控制反应腔室内的温度为1150-1200℃ (形成温度较形成AlInGaN层时的温度高),向反应腔室内通入铝源、镓源和氮源,控制铝源、镓源和氮源的通入量,形成AlxGa1-xN铝渐变层,其中,x为 Al的含量,0≤x<1,并在通入过程中持续减少Al源的通入量,直至铝源的完全不通入,完全不通入铝源时形成的即为GaN层,镓源为三甲基镓,其中三甲基镓的流量为150-200sccm,铝源为三甲基铝,其中三甲基铝的流量为 150-200sccm,氮源为氨气,从减少铝源通入到完全不通入铝源时间为10-25min,形成AlxGa1-xN层的厚度为80-150nm。形成的疏松AlGaN层之后,虽然能够缓解应力,但由于AlGaN层内部具有疏松的间隙,在其上方外延形成氮化镓层时,由于下方的疏松结构结晶质量不好,会影响外延层的结晶质量,会对外延片的质量有很大的影响,提高形成AlxGa1-xN铝渐变层的形成温度,能够提高铝渐变层的结晶质量,并且铝含量降低,形成的铝渐变层与上方待形成的氮化镓外延层有很好的晶格匹配,防止晶格失配产生的应力。After suspending the feed of the reaction source for a preset time, control the temperature in the reaction chamber to be 1150-1200°C (the formation temperature is higher than the temperature when forming the AlInGaN layer), and feed the aluminum source, gallium source and nitrogen source into the reaction chamber, Control the input of aluminum source, gallium source and nitrogen source to form an Al x Ga 1-x N aluminum graded layer, where x is the content of Al, 0≤x<1, and continuously reduce the Al source during the input process The input amount until the aluminum source is completely stopped, and the GaN layer is formed when the aluminum source is completely stopped. Methylaluminum, wherein the flow rate of trimethylaluminum is 150-200sccm, the nitrogen source is ammonia gas, the time from reducing the introduction of aluminum source to no introduction of aluminum source is 10-25min, and the thickness of the formed AlxGa1-xN layer is 80- 150nm. After the formation of the loose AlGaN layer, although the stress can be relieved, due to the loose gaps inside the AlGaN layer, when the gallium nitride layer is epitaxially formed above it, the crystal quality of the epitaxial layer will be affected due to the poor crystal quality of the loose structure below. , will have a great impact on the quality of the epitaxial wafer. Increasing the formation temperature of the Al x Ga 1-x N aluminum graded layer can improve the crystallization quality of the aluminum graded layer, and reduce the aluminum content. The formed aluminum graded layer is the same as the above The gallium nitride epitaxial layer to be formed has good lattice matching, preventing stress caused by lattice mismatch.
在逐渐减少铝源通入量直至完全不通入铝源后,在不通入铝源时,持续保持反应腔内的温度和压力,继续通入氮源和镓源,形成氮化镓过渡层,此时无需改变反应条件,只需继续保持反应的条件继续通入反应源即可,在停止通入铝源之后,保持时间在2-10min,形成50-100nm厚度的氮化镓过渡层,这部分氮化镓过渡层主要是提高后续氮化镓外延片的结晶质量,由于在高温高压下形成,并且外延的速度较慢,因此,有一定厚度的氮化镓过渡层能提高上方外延片的结晶质量即可,无需形成更厚的厚度,这样可以提高生产的效果。After gradually reducing the amount of aluminum source introduced until no aluminum source is introduced at all, when the aluminum source is not introduced, the temperature and pressure in the reaction chamber are continuously maintained, and the nitrogen source and gallium source are continuously introduced to form a transition layer of gallium nitride. There is no need to change the reaction conditions, just continue to maintain the reaction conditions and continue to feed the reaction source. After stopping the feed of the aluminum source, keep the time at 2-10min to form a 50-100nm thick gallium nitride transition layer. This part The gallium nitride transition layer is mainly to improve the crystallization quality of the subsequent gallium nitride epitaxial wafer. Since it is formed under high temperature and high pressure, and the epitaxial speed is slow, a certain thickness of the gallium nitride transition layer can improve the crystallization of the upper epitaxial wafer. The quality is enough, and there is no need to form a thicker thickness, which can improve the effect of production.
然后在氮化镓过渡层上形成氮化镓外延层,形成氮化镓外延层的后续可以参照该发明的具体步骤。Then a gallium nitride epitaxial layer is formed on the gallium nitride transition layer, and the subsequent steps of forming the gallium nitride epitaxial layer can refer to the specific steps of the invention.
在氮化镓过渡层上形成总厚度介于1.5-2微米的氮化镓外延层。该步骤中包括:氮化镓外延层形成包括两个阶段,A GaN epitaxial layer with a total thickness of 1.5-2 microns is formed on the GaN transition layer. This step includes: the formation of the GaN epitaxial layer includes two stages,
形成第一氮化镓外延层和第二氮化镓外延层,形成的具体形成工艺为:The first gallium nitride epitaxial layer and the second gallium nitride epitaxial layer are formed, and the specific formation process is as follows:
第一阶段:控制反应腔室温度,反应腔室温度控制在1080-1150摄氏度,通入镓源和氮源,镓源为三甲基镓,三甲基镓的流量为150-200sccm,氮源为 NH3,控制镓源和氮源的流量,并控制反应腔室的压力,压力控制在300-350mbar,控制GaN的生长速度为10-15nm/min,控制生长的时间,在第一阶段生长GaN的厚度为100-180nm。第一阶段通过控制反应腔室内处于生长的高压力和高温的状态,并且慢速度生长GaN,这样可以在过渡GaN层上形成致密且晶格常数匹配质量较好的GaN层,能够进一步减少上面的外延层与下方层结构之间的应力,并提高整体外界GaN的质量。但该阶段生长缓慢,生长厚度不宜过厚,这样可以节省生长的时间。The first stage: control the temperature of the reaction chamber, the temperature of the reaction chamber is controlled at 1080-1150 degrees Celsius, the gallium source and the nitrogen source are introduced, the gallium source is trimethylgallium, the flow rate of trimethylgallium is 150-200sccm, and the nitrogen source For NH 3 , control the flow rate of gallium source and nitrogen source, and control the pressure of the reaction chamber, the pressure is controlled at 300-350mbar, the growth rate of GaN is controlled at 10-15nm/min, and the growth time is controlled. In the first stage of growth The thickness of GaN is 100-180nm. In the first stage, by controlling the reaction chamber to be in a state of high pressure and high temperature for growth, and growing GaN at a slow speed, a dense GaN layer with better lattice constant matching quality can be formed on the transition GaN layer, which can further reduce the above. The stress between the epitaxial layer and the underlying layer structure, and improve the quality of the overall external GaN. However, the growth is slow at this stage, and the growth thickness should not be too thick, which can save the growth time.
该方法中在形成GaN外延片时,采用两阶段形成,在第一阶段,温度、压力比较大,生长速度较慢,这样可以形成质量较高的底层外延片,In this method, when forming GaN epitaxial wafers, two-stage formation is adopted. In the first stage, the temperature and pressure are relatively high, and the growth rate is relatively slow, so that a high-quality bottom epitaxial wafer can be formed.
在第二阶段控制生长的速度,能够快速形成较厚的外延片,并且由于下方的第一层外延片质量较高,上方的外延片的质量也很高,并且应力较小,防止产生翘曲,提高外延片产品的良率。The growth speed is controlled in the second stage, thicker epitaxial wafers can be formed quickly, and because the quality of the first layer of epitaxial wafers below is higher, the quality of the upper epitaxial wafers is also high, and the stress is small, preventing warpage , Improve the yield of epitaxial wafer products.
本发明的有益效果:1、在衬底上先形成低温AlN缓冲层和高温AlN缓冲层,两层缓冲层能够缓解上方的GaN层与衬底之间由于晶格失配而产生的应力,然后再在高温AlN缓冲层上先形成疏松AlGaN层能够进一步缓冲应力,疏松AlGaN层由AlInGaN层析出铟之后形成,在形成疏松AlGaN层之后,由于铟的析出容易对器件结构造成影响,使用氮气将疏松AlGaN层表面的液态铟吹扫,去掉表面的液态铟;Beneficial effects of the present invention: 1. A low-temperature AlN buffer layer and a high-temperature AlN buffer layer are first formed on the substrate, and the two-layer buffer layer can relieve the stress caused by lattice mismatch between the upper GaN layer and the substrate, and then Forming a loose AlGaN layer on the high-temperature AlN buffer layer can further buffer the stress. The loose AlGaN layer is formed after indium is deposited from the AlInGaN layer. The liquid indium on the surface of the loose AlGaN layer is purged to remove the liquid indium on the surface;
2、在疏松AlGaN层上提高温度形成铝渐变层,能够提高上方层结构的结晶质量,防止疏松层带来的更多结晶缺陷;2. Raising the temperature on the loose AlGaN layer to form an aluminum gradient layer can improve the crystallization quality of the upper layer structure and prevent more crystal defects caused by the loose layer;
3、在铝渐变层之后,保持形成条件不变,形成氮化镓过渡层,在高温高压下形成的氮化镓过渡层具有很好的结晶质量,在上方形成氮化镓外延层时能够提高外延层的结晶质量,并且由于两层缓冲层和疏松AlGaN层的应力缓解,能够很好地减少外延片的应力,防止形成外延片发生翘曲。3. After the aluminum graded layer, keeping the formation conditions unchanged, a gallium nitride transition layer is formed. The gallium nitride transition layer formed under high temperature and high pressure has good crystal quality, which can be improved when forming a gallium nitride epitaxial layer above. The crystalline quality of the epitaxial layer, and due to the stress relief of the two buffer layers and the loose AlGaN layer, can well reduce the stress of the epitaxial wafer and prevent the formation of the epitaxial wafer from warping.
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡如本申请精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present application, and the purpose is to enable those familiar with this technology to understand the content of the present application and implement it accordingly, and not to limit the protection scope of the present application. All equivalent changes or modifications made according to the spirit of the present application shall fall within the protection scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111364861.4A CN115312584B (en) | 2021-11-17 | 2021-11-17 | Gallium nitride epitaxial wafer and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111364861.4A CN115312584B (en) | 2021-11-17 | 2021-11-17 | Gallium nitride epitaxial wafer and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115312584A true CN115312584A (en) | 2022-11-08 |
CN115312584B CN115312584B (en) | 2025-07-22 |
Family
ID=83853624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111364861.4A Active CN115312584B (en) | 2021-11-17 | 2021-11-17 | Gallium nitride epitaxial wafer and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115312584B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028974A (en) * | 2024-04-15 | 2024-05-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method of large-size monocrystal hexagonal boron nitride and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060049401A1 (en) * | 2004-09-08 | 2006-03-09 | Tzu-Chi Wen | Nitride epitaxial layer structure and method of manufacturing the same |
CN103489968A (en) * | 2013-09-09 | 2014-01-01 | 中国科学院半导体研究所 | Method for manufacturing GaN epitaxial thin film by using AlInGaN |
CN104037287A (en) * | 2014-06-10 | 2014-09-10 | 广州市众拓光电科技有限公司 | LED epitaxial wafer grown on Si substrate and preparation method thereof |
CN112086543A (en) * | 2020-08-18 | 2020-12-15 | 苏州紫灿科技有限公司 | AlGaN composite film with self-assembled template and preparation method thereof |
-
2021
- 2021-11-17 CN CN202111364861.4A patent/CN115312584B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060049401A1 (en) * | 2004-09-08 | 2006-03-09 | Tzu-Chi Wen | Nitride epitaxial layer structure and method of manufacturing the same |
CN103489968A (en) * | 2013-09-09 | 2014-01-01 | 中国科学院半导体研究所 | Method for manufacturing GaN epitaxial thin film by using AlInGaN |
CN104037287A (en) * | 2014-06-10 | 2014-09-10 | 广州市众拓光电科技有限公司 | LED epitaxial wafer grown on Si substrate and preparation method thereof |
CN112086543A (en) * | 2020-08-18 | 2020-12-15 | 苏州紫灿科技有限公司 | AlGaN composite film with self-assembled template and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028974A (en) * | 2024-04-15 | 2024-05-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method of large-size monocrystal hexagonal boron nitride and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115312584B (en) | 2025-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113235047B (en) | A kind of preparation method of AlN thin film | |
CN104409319B (en) | The preparation method of high-quality GaN cushion is grown on a kind of graphene-based bottom | |
CN113206003B (en) | A method for growing single crystal gallium nitride thin films on arbitrary self-supporting substrates | |
KR100901822B1 (en) | Gallium nitride growth substrate and gallium nitride substrate manufacturing method | |
WO2021244188A1 (en) | Gallium nitride single crystal based on scalmgo4 substrate and preparation method therefor | |
CN110541157A (en) | A method for epitaxially growing GaN thin films on Si substrates | |
CN108010995A (en) | A kind of high light efficiency LED chip based on graphene Sapphire Substrate | |
CN105489714A (en) | Porous aluminum nitride composite substrate and application thereof in epitaxial growth of high-quality gallium nitride thin film | |
CN103117209B (en) | Gradient AlGaN layer preparation method and device prepared by same | |
CN110219050A (en) | A kind of preparation method of aluminum nitride single crystal film | |
CN106252211A (en) | A kind of preparation method of AlN epitaxial layer | |
CN111593408B (en) | Oversized self-supporting gallium nitride single crystal and preparation method thereof | |
CN104037290B (en) | A kind of epitaxial structure and growth method of AlyInxGa1‑x‑yN film | |
CN113921376A (en) | A kind of silicon-based GaN thin film and its epitaxial growth method | |
CN105702826B (en) | A method of preparing flawless GaN film on a si substrate | |
CN115312584B (en) | Gallium nitride epitaxial wafer and preparation method thereof | |
CN112490112A (en) | Gallium oxide thin film and its heteroepitaxial growth method and application | |
CN111477534A (en) | Aluminum nitride template and preparation method thereof | |
CN210805810U (en) | A silicon-based gallium nitride epitaxial structure | |
CN113643962A (en) | Preparation method of gallium nitride epitaxial layer and gallium nitride epitaxial wafer structure | |
CN101240451A (en) | Method of In-Situ Etching to Reduce Dislocation Density of HVPE GaN Thin Films | |
CN108242385A (en) | Method for growing gallium nitride, gallium nitride epitaxial structure and semiconductor device | |
CN1992166A (en) | Process for sapphire-based non-mask transverse epitaxial growth of high quality group-III nitride film | |
CN117096229A (en) | AlN intrinsic layer for deep ultraviolet light-emitting diode and preparation method thereof | |
CN216389379U (en) | Gallium nitride epitaxial wafer and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |