CN115298947A - DC-DC Converter with Freewheeling Circuit - Google Patents
DC-DC Converter with Freewheeling Circuit Download PDFInfo
- Publication number
- CN115298947A CN115298947A CN202080098327.0A CN202080098327A CN115298947A CN 115298947 A CN115298947 A CN 115298947A CN 202080098327 A CN202080098327 A CN 202080098327A CN 115298947 A CN115298947 A CN 115298947A
- Authority
- CN
- China
- Prior art keywords
- switch
- port
- coupled
- converter
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33561—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
- H02M3/3376—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/346—Passive non-dissipative snubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种用于两端口和三端口拓扑等的直流‑直流DC‑DC转换器。所述DC‑DC转换器包括:第一端口,耦合至第一全桥;变压器,耦合至所述第一全桥和第二全桥。所述DC‑DC转换器还包括:第二端口,耦合至所述第二全桥;第一电感,耦合在所述第二全桥和所述第二端口之间;第一续流电路,包括与开关串联耦合的第一二极管。所述第一续流电路还与所述第一电感并联耦合在所述第二全桥和所述第二端口之间。因此,所述DC‑DC转换器具有宽输入宽输出WIWO范围和线性电压增益。
The present invention relates to a DC-DC DC-DC converter for two-port and three-port topologies and the like. The DC-DC converter includes: a first port coupled to a first full bridge; and a transformer coupled to the first and second full bridges. The DC-DC converter further includes: a second port coupled to the second full bridge; a first inductor coupled between the second full bridge and the second port; a first freewheeling circuit, A first diode coupled in series with the switch is included. The first freewheel circuit is also coupled in parallel with the first inductor between the second full bridge and the second port. Therefore, the DC-DC converter has a wide input wide output WIWO range and linear voltage gain.
Description
技术领域technical field
本发明涉及一种带续流电路的直流(direct current,DC)-直流转换器,即DC-DC转换器。The invention relates to a direct current (DC)-to-direct converter with a freewheeling circuit, that is, a DC-DC converter.
背景技术Background technique
电动汽车对功率密度、成本和系统集成具有苛刻的要求。另一方面,汽车原始设备制造商(original equipment manufacturer,OEM)需要双向电力传输。因此,在功率因数校正(power factor correction,PFC)后具有三端口DC-DC输出级的车载充电器(on boardcharger,OBC)是未来OBC设计的趋势。已知有用于DC-DC转换器的不同三端口拓扑。Electric vehicles have demanding requirements for power density, cost and system integration. On the other hand, automotive original equipment manufacturers (OEMs) require bi-directional power transmission. Therefore, an on board charger (OBC) with a three-port DC-DC output stage after power factor correction (power factor correction, PFC) is a trend in OBC design in the future. Different three-port topologies are known for DC-DC converters.
一种这样的传统三端口拓扑是基于双有源桥(dual active bridge,DAB)的双向DC-DC转换器。使用单相移(single phase shift,SPS)调制时,DAB技术在轻负载和中负载下的无功功率很高。为了在轻负载或中负载条件下实现更高的效率,需要TPS调制,这是一种复杂的控制算法,通常难以实现。在三端口拓扑中应用TPS控制更具挑战性。One such traditional three-port topology is a dual active bridge (DAB) based bidirectional DC-DC converter. DAB technology has high reactive power at light and medium loads when using single phase shift (SPS) modulation. In order to achieve higher efficiency at light or medium load conditions, TPS modulation is required, which is a complex control algorithm that is often difficult to implement. Applying TPS control in a three-port topology is more challenging.
一种这样的传统三端口拓扑是通常用于提高系统效率的谐振方案拓扑。虽然这种方案可以实现更高的效率,但是LLC拓扑难以满足宽输入宽输出(wide input and wideoutput,WIWO)要求。当DC-DC转换器的输入/输出电压范围超过其标称输入/输出电压的40%时,视为WIWO。One such traditional three-port topology is the resonant scheme topology that is often used to improve system efficiency. Although this scheme can achieve higher efficiency, it is difficult for the LLC topology to meet the requirements of wide input and wide output (WIWO). When the input/output voltage range of a DC-DC converter exceeds 40% of its nominal input/output voltage, it is considered WIWO.
发明内容Contents of the invention
本发明的实施例的目的是提供一种方案,用来减少或解决传统方案的缺点和问题。An object of embodiments of the present invention is to provide a solution to reduce or solve the disadvantages and problems of conventional solutions.
本发明示例的另一个目的在于提供一种新型拓扑结构,所述拓扑结构特别适用于在任何需要高效率和高功率密度双向电力传输的应用中具有宽输入宽输出电压要求的双向DC-DC转换器。Another object of the examples of the present invention is to provide a novel topology which is particularly suitable for bidirectional DC-DC conversion with wide input wide output voltage requirements in any application requiring high efficiency and high power density bidirectional power transmission device.
上述和其它目的是通过由独立权利要求请求保护的主题来实现。本发明的其它有利示例可以在从属权利要求中找到。The above and other objects are achieved by the subject matter claimed by the independent claims. Further advantageous examples of the invention can be found in the dependent claims.
根据本发明的第一方面,通过DC-DC转换器实现上述和其它目标,所述DC-DC转换器包括:According to a first aspect of the present invention, the above and other objects are achieved by a DC-DC converter comprising:
第一端口,包括:第一侧,用于耦合至DC总线;第二侧,耦合至第一全桥,其中,所述第一全桥包括第一开关、第二开关、第三开关和第四开关;The first port includes: a first side for coupling to a DC bus; a second side for coupling to a first full bridge, wherein the first full bridge includes a first switch, a second switch, a third switch, and a first full bridge. Four switches;
变压器,包括:一次绕组,耦合至所述第一全桥;二次绕组,耦合至第二全桥,其中,所述第二全桥包括第五开关、第六开关、第七开关和第八开关;A transformer comprising: a primary winding coupled to the first full bridge; a secondary winding coupled to the second full bridge, wherein the second full bridge includes a fifth switch, a sixth switch, a seventh switch and an eighth switch;
第二端口,包括:第一侧,耦合至所述第二全桥;第二侧,用于耦合至第一电池;a second port comprising: a first side coupled to the second full bridge; a second side coupled to the first battery;
第一电感,耦合在所述第二全桥和所述第二端口的所述第一侧之间;a first inductor coupled between the second full bridge and the first side of the second port;
第一续流电路,包括与第九开关串联耦合的第一二极管,其中,所述第一续流电路与所述第一电感并联耦合在所述第二全桥和所述第二端口的所述第一侧之间。A first freewheeling circuit, comprising a first diode coupled in series with the ninth switch, wherein the first freewheeling circuit is coupled in parallel with the first inductor between the second full bridge and the second port between the first sides of the .
本文中的端口可视为输入和/或输出端子。因此,所述端口可用于根据所述DC-DC转换器的工作模式充当输入或输出。Ports in this context may be considered input and/or output terminals. Thus, the ports can be used to act as inputs or outputs depending on the operating mode of the DC-DC converter.
本文中的全桥可以理解为两个半桥相互并联耦合或连接。半桥可以由两个开关和两个续流二极管构成。The full bridge in this paper can be understood as two half bridges coupled or connected in parallel with each other. A half bridge can be constructed with two switches and two freewheeling diodes.
所述DC-DC转换器可以在电流方向为从所述第一端口到所述第二端口的正向模式下工作。所述DC-DC转换器还可以在电流方向为从所述第二端口到从所述第一端口的反向模式下工作。The DC-DC converter may operate in a forward mode with a current direction from the first port to the second port. The DC-DC converter may also operate in a reverse mode with the direction of current flow from the second port to the first port.
根据所述第一方面所述的DC-DC转换器的优点在于,其具有适用于电动汽车应用等的宽输入宽输出范围。此外,所述DC-DC转换器的电压增益是线性的。An advantage of the DC-DC converter according to the first aspect is that it has a wide input wide output range suitable for electric vehicle applications and the like. Furthermore, the voltage gain of the DC-DC converter is linear.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器用于在电流方向为从所述第二端口到所述第一端口的第一反向模式下工作时:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter is used in the first reverse mode from the second port to the first port in the current direction When working under:
i)在所述第九开关的饱和区操作所述第九开关;i) operating said ninth switch in a saturation region of said ninth switch;
ii)在第一时间段内导通所述第五开关和所述第八开关,ii) turning on the fifth switch and the eighth switch within a first time period,
iii)在所述第一时间段之后的第二时间段内关断所述第五开关、所述第六开关、所述第七开关和所述第八开关,iii) turning off the fifth switch, the sixth switch, the seventh switch and the eighth switch during a second time period after the first time period,
iv)在所述第二时间段之后的第三时间段内导通所述第六开关和所述第七开关,iv) turning on the sixth switch and the seventh switch during a third time period subsequent to the second time period,
v)在所述第三时间段之后的第四时间段内关断所述第五开关、所述第六开关、所述第七开关和所述第八开关;v) turning off the fifth switch, the sixth switch, the seventh switch and the eighth switch during a fourth time period after the third time period;
重复ii)至v),直到所述DC总线处的电压等于或高于第一阈值电压。Repeat ii) to v) until the voltage at the DC bus is equal to or higher than the first threshold voltage.
在本发明中,开关导通可以理解为所述开关具有低阻抗并且能够传导电流。In the present invention, the conduction of a switch can be understood as that the switch has low impedance and can conduct current.
在本发明中,开关关断可以理解为所述开关具有高阻抗并且不能传导电流。In the present invention, a switch OFF may be understood as the switch has a high impedance and cannot conduct current.
根据该实现方式所述的DC-DC转换器的优点在于,提供了所述第一反向模式操作的软启动功能。An advantage of the DC-DC converter according to this implementation is that a soft start function of said first reverse mode operation is provided.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
第一保护电路,耦合在所述第二全桥和所述第二端口的所述第一侧之间,并与所述第二全桥并联。A first protection circuit coupled between the second full bridge and the first side of the second port and connected in parallel with the second full bridge.
根据该实现方式所述的DC-DC转换器的优点在于,可以保护所述第二端口处的所述开关免受因用于控制所述DC-DC转换器的所述开关的控制器发生故障等引起的过电压/过电流的影响。The advantage of the DC-DC converter according to this implementation is that the switch at the second port can be protected from failure of the controller used to control the switch of the DC-DC converter The impact of overvoltage/overcurrent caused by etc.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述第一保护电路包括:According to the first aspect, in an implementation manner of the DC-DC converter, the first protection circuit includes:
第一稳压二极管和第二稳压二极管,所述第一稳压二极管和所述第二稳压二极管彼此串联且以相反方向耦合;或a first zener diode and a second zener diode, the first zener diode and the second zener diode being coupled in series with each other and in opposite directions; or
第一压敏电阻。first varistor.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
第三端口,包括:第一侧,耦合至Y电路;第二侧,用于耦合至第二电池,其中,所述Y电路耦合至所述变压器的中心抽头绕组,并且包括第十一开关、第十二开关和第十三开关。A third port comprising: a first side coupled to a Y circuit; a second side coupled to a second battery, wherein the Y circuit is coupled to a center tap winding of the transformer and includes an eleventh switch, A twelfth switch and a thirteenth switch.
根据该实现方式所述的DC-DC转换器的优点在于,所述DC-DC转换器能够将能量/电能传输至第三端口。此外,所述第二端口和所述第三端口之间不存在能量解耦。An advantage of the DC-DC converter according to this implementation is that the DC-DC converter is able to transfer energy/power to the third port. Furthermore, there is no energy decoupling between the second port and the third port.
根据所述第一方面,在DC-DC转换器的一种实现方式中,每个开关的源极引脚或发射极引脚耦合至所述Y电路的公共节点。According to the first aspect, in one implementation of the DC-DC converter, the source pin or the emitter pin of each switch is coupled to a common node of the Y circuit.
根据该实现方式所述的DC-DC转换器的优点在于,当所述第三端口配置为输出端口时,可以调制所述第三端口处的电压。An advantage of the DC-DC converter according to this implementation is that the voltage at the third port can be modulated when the third port is configured as an output port.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述第一电池为高压电池,所述第二电池为低压电池。According to the first aspect, in an implementation manner of the DC-DC converter, the first battery is a high-voltage battery, and the second battery is a low-voltage battery.
根据该实现方式所述的DC-DC转换器的优点在于,它可以在所述高压电池和所述低压电池之间传输能量/电能,反之亦然。An advantage of the DC-DC converter according to this implementation is that it can transfer energy/power between the high voltage battery and the low voltage battery and vice versa.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
第二电感,耦合在所述Y电路和所述第三端口的所述第一侧之间;a second inductor coupled between the Y circuit and the first side of the third port;
第二续流电路,包括与第十开关串联耦合的第二二极管,其中,所述第二续流电路与所述第二电感并联耦合在所述Y电路和所述第三端口的所述第一侧之间。The second freewheeling circuit includes a second diode coupled in series with the tenth switch, wherein the second freewheeling circuit is coupled in parallel with the second inductance to all of the Y circuit and the third port between the first side described above.
根据该实现方式所述的DC-DC转换器的优点在于,所述第三端口可以用于发送或接收电能/能量。An advantage of the DC-DC converter according to this implementation is that the third port can be used for sending or receiving power/energy.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器用于在电流方向为从所述第三端口到所述第一端口的第二反向模式下工作时:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter is used in the second reverse mode from the third port to the first port in the current direction When working under:
i)控制所述第十开关在其饱和区工作,i) controlling the tenth switch to work in its saturation region,
ii)导通所述第十二开关;ii) turning on the twelfth switch;
iii)在第一时间段内导通所述第十一开关,iii) turning on the eleventh switch within a first time period,
iv)在所述第一时间段之后的第二时间段内关断所述第十一开关和所述第十三开关,iv) turning off said eleventh switch and said thirteenth switch during a second time period after said first time period,
v)在所述第二时间段之后的第三时间段内导通所述第十三开关,v) turning on the thirteenth switch during a third time period subsequent to the second time period,
vi)在所述第三时间段之后的第四时间段内关断所述第十一开关和所述第十三开关;vi) turning off the eleventh switch and the thirteenth switch within a fourth time period after the third time period;
重复iii)至vi),直到所述DC总线处的电压等于或高于第二阈值电压。Repeat iii) to vi) until the voltage at the DC bus is equal to or higher than the second threshold voltage.
根据该实现方式所述的DC-DC转换器的优点在于,该实现方式提供了所述第二反向模式操作的软启动功能。An advantage of the DC-DC converter according to this implementation is that this implementation provides a soft start function for said second reverse mode operation.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
第二保护电路,耦合在所述Y电路和所述第三端口的所述第一侧之间。a second protection circuit coupled between the Y circuit and the first side of the third port.
根据该实现方式所述的DC-DC转换器的优点在于,可以保护所述第三端口处的所述开关免受因用于控制所述DC-DC转换器的所述开关的控制器发生故障等引起的过电压/过电流的影响。The advantage of the DC-DC converter according to this implementation is that the switch at the third port can be protected from failure of the controller used to control the switch of the DC-DC converter The impact of overvoltage/overcurrent caused by etc.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述第二保护电路包括:According to the first aspect, in an implementation manner of the DC-DC converter, the second protection circuit includes:
第三稳压二极管和第四稳压二极管,所述第三稳压二极管和所述第四稳压二极管彼此串联且以相反方向耦合;或a third zener diode and a fourth zener diode, the third zener diode and the fourth zener diode being coupled in series with each other and in opposite directions; or
第二压敏电阻。second varistor.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
续流二极管,与所述第二保护电路并联耦合,并在所述第三端口作为输出端口工作时形成续流路径。A freewheeling diode is coupled in parallel with the second protection circuit and forms a freewheeling path when the third port works as an output port.
根据该实现方式所述的DC-DC转换器的优点在于,可以控制所述第三端口处的输出电压。An advantage of the DC-DC converter according to this implementation is that the output voltage at the third port can be controlled.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括以下组件中的至少一个:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes at least one of the following components:
第一电流传感器,耦合在所述第二全桥和所述第二端口的所述第一侧之间,并且用于提供第一组测量电流值;a first current sensor coupled between the second full bridge and the first side of the second port and configured to provide a first set of measured current values;
第二电流传感器,耦合在所述Y电路和所述第三端口的所述第一侧之间,并且用于提供第二组测量电流值;a second current sensor coupled between the Y circuit and the first side of the third port and configured to provide a second set of measured current values;
控制器,用于根据所述第一组测量电流值和所述第二组测量电流值中的至少一个来控制所述DC-DC转换器的所述开关。A controller for controlling the switch of the DC-DC converter according to at least one of the first set of measured current values and the second set of measured current values.
根据该实现方式所述的DC-DC转换器的优点在于,可以根据所述第一组测量电流值和所述第二组测量电流值控制所述DC-DC转换器的所述开关,以改善开关。The advantage of the DC-DC converter according to this implementation is that the switches of the DC-DC converter can be controlled according to the first set of measured current values and the second set of measured current values to improve switch.
根据所述第一方面,在DC-DC转换器的一种实现方式中,所述DC-DC转换器还包括:According to the first aspect, in an implementation manner of the DC-DC converter, the DC-DC converter further includes:
箝位电路,包括第一箝位二极管、第二箝位二极管和箝位电感,其中,所述箝位电感耦合在所述第一全桥和所述变压器的所述一次绕组之间。A clamping circuit includes a first clamping diode, a second clamping diode and a clamping inductance, wherein the clamping inductance is coupled between the first full bridge and the primary winding of the transformer.
通过以下详细描述,本发明示例的其它应用和优点将变得显而易见。Other applications and advantages of examples of the invention will become apparent from the following detailed description.
附图说明Description of drawings
附图意在阐明和阐释本发明的不同示例,其中:The accompanying drawings are intended to illustrate and illustrate different examples of the invention, in which:
-图1示出了本发明的一个示例提供的具有两端口拓扑的DC-DC转换器;- Figure 1 shows a DC-DC converter with a two-port topology provided by an example of the present invention;
-图2示出了本发明的一个示例提供的具有两端口拓扑的DC-DC转换器;- Figure 2 shows a DC-DC converter with a two-port topology provided by an example of the invention;
-图3示出了本发明的一个示例提供的具有三端口拓扑的DC-DC转换器;- Figure 3 shows a DC-DC converter with a three-port topology provided by an example of the present invention;
-图4示出了DC-DC转换器如何耦合至外部设备的示例;- Figure 4 shows an example of how a DC-DC converter is coupled to an external device;
-图5示出了本发明的一个示例提供的时序图;- Figure 5 shows a timing diagram provided by an example of the present invention;
-图6示出了本发明的一个示例提供的时序图;- Figure 6 shows a timing diagram provided by an example of the present invention;
-图7示出了本发明的一个示例提供的时序图;- Figure 7 shows a timing diagram provided by an example of the present invention;
-图8示出了本发明的一个示例提供的DC-DC转换器的系统概览图;- Figure 8 shows a system overview diagram of a DC-DC converter provided by an example of the present invention;
-图9示出了本发明的另一个示例提供的具有三端口拓扑的DC-DC转换器;- Figure 9 shows a DC-DC converter with a three-port topology provided by another example of the present invention;
-图10示出了本发明的另一个示例提供的具有三端口拓扑的DC-DC转换器;- Figure 10 shows a DC-DC converter with a three-port topology provided by another example of the present invention;
-图11示出了本发明的另一个示例提供的具有三端口拓扑的DC-DC转换器。- Figure 11 shows a DC-DC converter with a three-port topology provided by another example of the present invention.
具体实施方式Detailed ways
用于DC-DC转换器的所谓的相移全桥(phase shift full bridge,PSFB)拓扑因具有WIWO能力并且能够使用简单控制算法来控制此类PSFB转换器而被广泛应用于工业中。PSFB的反向操作是升压转换器,由变压器提供电流隔离。然而,这种PSFB转换器存在两个问题。The so-called phase shift full bridge (PSFB) topology for DC-DC converters is widely used in industry due to its WIWO capability and the ability to control such PSFB converters using simple control algorithms. The reverse operation of the PSFB is a boost converter with galvanic isolation provided by the transformer. However, there are two problems with this PSFB converter.
第一个问题是,在反向模式下工作时,升压转换器在稳态运行之前通常需要软启动阶段。对于输入和输出之间没有隔离的升压转换器,可以通过继电器和功率电阻轻松实现软启动功能。然而,由于存在隔离,即变压器,该方案不适用于隔离式升压转换器。The first problem is that when operating in reverse mode, a boost converter typically requires a soft-start phase before steady-state operation. For boost converters without isolation between input and output, a soft-start function can be easily implemented with relays and power resistors. However, this solution is not suitable for isolated boost converters due to the presence of isolation, i.e. transformer.
第二个问题是,当PSFB转换器在反向模式下工作时,它充当电流源转换器,例如由微控制器的误差或转换器的其它控制机制诱发。存储的能量可能会导致转换器的开关两端出现过电压,从而损坏转换器的开关元件。The second problem is that when the PSFB converter operates in reverse mode, it acts as a current source converter, e.g. induced by errors of the microcontroller or other control mechanisms of the converter. The stored energy can cause an overvoltage across the converter's switches, which can damage the converter's switching elements.
因此,本文公开了可解决上述问题的两端口和三端口DC-DC转换器拓扑。本发明提供的两端口DC-DC转换器和三端口DC-DC转换器分别适用于电力调节系统的WIWO电压的两端口双向DC-DC转换和三端口双向DC-DC转换等。所公开的DC-DC转换器可用于许多应用,例如电动汽车(electrical vehicle,EV)、车载充电器(on board charger,OBC)或者需要两端口或三端口双向DC-DC电力转换的任何其它应用。Accordingly, two-port and three-port DC-DC converter topologies are disclosed herein that can address the above issues. The two-port DC-DC converter and the three-port DC-DC converter provided by the present invention are respectively suitable for the two-port bidirectional DC-DC conversion and the three-port bidirectional DC-DC conversion of the WIWO voltage of the power regulation system. The disclosed DC-DC converter can be used in many applications such as electric vehicle (EV), on board charger (OBC), or any other application requiring two-port or three-port bidirectional DC-DC power conversion .
图1示出了本发明的一个示例提供的具有两端口拓扑的DC-DC转换器100。DC-DC转换器100包括:第一端口P1,用于耦合至DC总线202;第二端口P2,用于耦合至第一电池204。因此,DC-DC转换器100用于耦合在DC总线202和第一电池204之间,并且可以在DC总线202和第一电池204之间执行双向电力转换。DC-DC转换器100可以作为降压/升压转换器工作。FIG. 1 shows a DC-
参考图1,第一端口P1包括:第一侧S1P1,用于耦合至DC总线202;第二侧S2P1,耦合至第一全桥150。第一全桥150包括第一开关M1、第二开关M2、第三开关M3和第四开关M4。Referring to FIG. 1 , the first port P1 includes: a first side S1 P1 for coupling to the
DC-DC转换器100还包括变压器Tr,变压器Tr包括:一次绕组PW,耦合至第一全桥150;二次绕组,耦合至第二全桥160。第二全桥160包括第五开关M5、第六开关M6、第七开关M7和第八开关M8。The DC-
第二端口P2包括:第一侧S1P2,耦合至第二全桥160;第二侧S2P2,用于耦合至第一电池204。在图1中,第二端口P2的上侧为第二端口P2的第一耦合点C1P2,下侧为第二端口P2的第二耦合点C2P2。The second port P2 includes: a first side S1 P2 coupled to the second
第一全桥150具有四个连接/耦合点/节点,即152、154、156和158,并且可以通过以下方式耦合在第一端口P1的第二侧S2P1和变压器Tr的一次绕组PW之间:The first
·第一全桥150的第一连接点152耦合至第一端口P1的第一耦合点C1P1,而第一全桥150的第二连接点154耦合至第一端口P1的第二耦合点C2P1。• The
·第一全桥150的第三连接点156连接至变压器Tr的一次绕组PW的第一连接点180,而第一全桥150的第四连接点158耦合至变压器Tr的一次绕组PW的第二连接点182。The
·在第一全桥150中,第一开关M1耦合在第一连接点152和第三连接点156之间,第二开关M2耦合在第二连接点154和第三连接点156之间,第三开关M3耦合在第一连接点152和第四连接点158之间,第四开关M4耦合在第二连接点154和第四连接点158之间。· In the first
第二全桥160也具有四个连接/耦合点,即162、164、166和168,并且通过以下方式耦合在变压器Tr的二次绕组SW和第二端口P2的第一侧S1P2之间:The second
·第二全桥160的第一连接点162耦合/连接至变压器Tr的二次绕组SW的第一连接点184,而第二全桥160的第二连接点164耦合至变压器Tr的二次绕组SW的第二连接点186。The
·第二全桥160的第三连接点166耦合至第二端口P2的第一侧S1P2的高压侧,而第二全桥160的第四连接点168耦合至第二端口P2的第一侧S1P2的低压侧。The
·在第二全桥160中,第五开关M5耦合在第一连接点162和第三连接点166之间,第六开关M6耦合在第一连接点162和第四连接点168之间,第七开关M7耦合在第二连接点164和第三连接点166之间,第八开关M8耦合在第二连接点164和第四连接点168之间。In the second
DC-DC转换器100还包括:第一电感L1,耦合在第二全桥160和第二端口P2的第一侧S1P2之间。第一电感L1用作第二端口P2的可控输出滤波器。在图1中,第一电感L1耦合在第二全桥160的第三连接点166和第二端口P2的第一侧S1P2的上侧之间。因此,在该示例中,第一电感L1耦合至第二端口P2的上侧,在图1中,该上侧是高压(high voltage,HV)侧。然而,在各示例中,第一电感L1可以替代地耦合至第二端口P2的下侧,如稍后结合图8至图10所描述的。The DC-
DC-DC转换器100还包括:第一续流电路110,形成通过第一电感L1的电流路径的替代电流路径。第一续流电路110的功能是在斜坡上升期间(即在达到稳态之前)执行环路操作。第一续流电路110包括与第九开关M9串联耦合的第一二极管D1。第一续流电路110与第一电感L1并联耦合在第二全桥160和第二端口P2的第一侧S1P2之间。在图1所示的示例中,这意味着第一续流电路110耦合在第一续流电路110的第一连接点112和第二连接点114之间,而第一连接点112耦合至第二全桥160的第三连接点166,第二连接点114耦合至第二端口P2的第一侧S1P2的上侧。The DC-
在本发明的示例中,DC-DC转换器100还包括:第一保护电路120,用于保护第二全桥160的开关(M5、M6、M7、M8)免受因存储在第一电感L1中的能量等引起的过电压或过电流的影响,并在发生电源故障时释放。第一保护电路120可以耦合在第二全桥160和第二端口P2的第一侧S1P2之间,并与第二全桥160并联。参考图1,第一保护电路120可以具有第一连接点122和第二连接点124,其中,第一连接点122耦合至第二全桥160的第三连接点166,第二连接点124耦合至第二全桥160的第四连接点168。In the example of the present invention, the DC-
在本发明的示例中,第一保护电路120可以包括第一稳压二极管Z1和第二稳压二极管Z2,第一稳压二极管Z1和第二稳压二极管Z2彼此串联且以相反方向耦合,如图1所示。或者,第一保护电路120可以包括第一压敏电阻,但是图中未示出所述第一压敏电阻。所述第一稳压二极管和所述第二稳压二极管以及所述第一压敏电阻的额定电压应小于开关(M5、M6、M7、M8)的额定电压。In an example of the present invention, the
图2示出了本发明的一个示例提供的具有两端口拓扑的DC-DC转换器100,其中,DC-DC转换器100包括箝位电路140。除结合图1所示的DC-DC转换器100描述的部件之外,图2所示的DC-DC转换器100还包括箝位电路140。箝位电路140包括第一箝位二极管DClamp1、第二箝位二极管DClamp2和箝位电感LClamp,其中,第一箝位二极管DClamp1、第二箝位二极管DClamp2和箝位电感LClamp耦合在第一全桥150和变压器Tr的一次绕组PW之间。FIG. 2 shows a DC-
参考图2,第一箝位二极管DClamp1可以耦合在第一全桥150的第一连接点152和变压器Tr的一次绕组PW的上侧之间,第二箝位二极管DClamp2可以耦合在第一全桥150的第二连接点154和变压器Tr的一次绕组PW的下侧之间,箝位电感LClamp可以耦合在第一全桥150的第四连接点158和变压器Tr的一次绕组PW的下侧之间。2, the first clamping diode D Clamp1 can be coupled between the
箝位电路140的功能是降低开关M5和M8上的过冲电压。The function of the
图3示出了本发明的一个示例提供的具有三端口拓扑的DC-DC转换器100。因此,DC-DC转换器100还包括第三端口P3,第三端口P3包括:第一侧S1P3,通过其第一连接点C1P3和第二连接点C2P3耦合至Y电路170;第二侧S2P3,用于耦合至第二电池206(如图4所示)。Y电路170耦合至变压器Tr的中心抽头绕组CTW,并且包括第十一开关M11、第十二开关M12和第十三开关M13。FIG. 3 shows a DC-
在本发明的示例中,每个开关的源极引脚或发射极引脚耦合至Y电路170的公共节点N,并且公共节点N耦合至中心抽头绕组CTW的第一连接点190。此外,Y电路170的第一连接点172耦合至中心抽头绕组CTW的第二连接点192,Y电路170的第二连接点174耦合至变压器Tr的中心抽头绕组CTW的第三连接点194,而Y电路170的第三连接点176耦合至第三端口P3的第二连接点C2P3,如图3所示。In an example of the invention, the source or emitter pin of each switch is coupled to a common node N of the
Y电路170与第三二极管D3和第二电感L2共同的功能是形成本地降压转换器,并且当第三端口P3配置为输出端口时,能够控制第三端口P3的输出电压。The common function of the
DC-DC转换器100还包括:第二电感L2,耦合在Y电路170和第三端口P3的第一连接点C1P3之间;第二续流电路110′,包括与第十开关M10串联耦合的第二二极管D2。第二续流电路110′与第二电感L2并联耦合在Y电路170和第三端口P3的第一侧S1P3之间。The DC-
在图3所示的示例中,这意味着第二续流电路110′耦合在第二续流电路110′的第一连接点112′和第二连接点114′之间,而第一连接点112′耦合至变压器Tr的中心抽头绕组CTW的中心,第二连接点114′耦合至第三端口P3的第一侧S1P3的上侧。第二电感L2和第二续流电路110′也可以位于其它位置,如下面结合图8至图10进一步描述的。In the example shown in FIG. 3, this means that the second freewheeling circuit 110' is coupled between the first connection point 112' and the second connection point 114' of the second freewheeling circuit 110', while the first connection point 112' is coupled to the center of the center tapped winding CTW of the transformer Tr and the second connection point 114' is coupled to the upper side of the first side S1 P3 of the third port P3. The second inductor L2 and the second freewheeling circuit 110' can also be located in other positions, as will be further described below in conjunction with FIGS. 8 to 10 .
以与第一续流电路110类似的方式,第二续流电路110′形成替代电流路径。在这种情况下,是通过第二电感L2的电流路径的替代电流路径。In a similar manner to the first
在本发明的示例中,图3所示的三端口拓扑还包括:第二保护电路120′,耦合在Y电路170和第三端口P3的第一侧S1P3之间。当第三端口P3作为输入端口工作时,第二保护电路120′可以充当续流电路。因此,保护Y电路170免受因存储在第二电感L2中的能量引起的过电压或过电流等的影响,并在发生电源故障时释放。第二保护电路120′中的组件的额定电压应小于开关M11和M12的额定电压。In an example of the present invention, the three-port topology shown in FIG. 3 further includes: a second protection circuit 120' coupled between the
参考图3,第二保护电路120′可以具有第一连接点122′和第二连接点124′,其中,第一连接点122′耦合至变压器Tr的中心抽头绕组CTW的中心,第二连接点124′耦合至Y电路170的第三连接点176。第二保护电路120′可以包括第三稳压二极管Z3和第四稳压二极管Z4,第三稳压二极管Z3和第四稳压二极管Z4彼此串联且以相反方向耦合,如图3所示。或者,第二保护电路120′可以包括第二压敏电阻(图中未示出)。Referring to FIG. 3, the second protection circuit 120' may have a first connection point 122' and a second connection point 124', wherein the first connection point 122' is coupled to the center of the center tapped winding CTW of the transformer Tr, and the
具有三端口拓扑的DC-DC转换器100还可以包括:续流二极管D3,与第二保护电路120′并联耦合,并在第三端口P3作为输出端口工作时形成续流路径。因此,当电流从第一端口P1流向第三端口P3或从第二端口P2流向第三端口P3时,续流二极管D3可以充当续流二极管,因为当开关M12关断时,第二电感L2的电流将流经续流二极管D3而不是流经开关M12。续流二极管D3与第二保护电路120′并联耦合,因此可以耦合在第二保护电路120′的第一连接点122′和第二连接点124′之间,如图3所示。The DC-
应注意的是,图3所示的三端口拓扑还包括可选箝位电路140,例如图2中公开和前面解释的箝位电路140,但不限于此。此外,DC-DC转换器100的上述示例中的任一个可以包括一个或多个箝位电路140,以及一个或多个第一保护电路120和/或第二保护电路120′。It should be noted that the three-port topology shown in FIG. 3 also includes an
图4示出了DC-DC转换器100如何耦合至不同外部设备的非限制性示例。在一般情况下,DC-DC转换器100包括:第一端口P1,用于耦合至DC总线202;第二端口P2,用于耦合至第一电池204。例如,第一电池204可以为高压电池。DC-DC转换器100可以在电流从第一端口P1流向第二端口P2的正向模式下工作。DC-DC转换器100还可以在电流沿相反方向流动(即从第二端口P2流向第一端口P1)的反向模式下工作。Fig. 4 shows a non-limiting example of how the DC-
在示例中,DC-DC转换器100还包括如前所述的第三端口P3。第三端口P3用于耦合至第二电池206。因此,DC-DC转换器100还可以在电流沿从第三端口P3到第一端口P1的方向流动的第二反向模式下工作。然而,电流也可以从第二端口P2流向第三端口P3或从第三端口P3流向第二端口P2。In an example, the DC-
当DC-DC转换器100包括耦合至第二电池206的第三端口P3时,第一电池204可以为高压电池,第二电池206可以为低压电池。例如,高压在本文中可以指高于100V的电压,低压可以指低于100V的电压。另外,可以采用其它值来定义高压和低压,并且这些值包含在本发明的范围内。When the DC-
现在将结合图5和图6描述与两端口和三端口DC-DC转换器100在正向模式和反向模式下的工作相关的进一步细节。Further details relating to the operation of the two-port and three-port DC-
具有两端口拓扑的DC-DC转换器100可以在第一反向模式BM1下工作,在该模式下能量从第二端口P2传输到第一端口P1,即电流方向为从第二端口P2到第一端口P1。当DC-DC转换器100在电流方向为从第二端口P2到第一端口P1的第一反向模式BM1下工作时,DC-DC转换器100可以用于:The DC-
i)在第九开关M9的饱和区操作第九开关M9;i) operating the ninth switch M9 in the saturation region of the ninth switch M9;
ii)在第一时间段内导通第五开关M5和第八开关M8,ii) turning on the fifth switch M5 and the eighth switch M8 within the first time period,
iii)在所述第一时间段之后的第二时间段内关断第五开关M5、第六开关M6、第七开关iii) turning off the fifth switch M5, the sixth switch M6, the seventh switch within the second time period after the first time period
M7和第八开关M8,M7 and the eighth switch M8,
iv)在所述第二时间段之后的第三时间段内导通第六开关M6和第七开关M7,iv) turning on the sixth switch M6 and the seventh switch M7 within a third time period after the second time period,
v)在所述第三时间段之后的第四时间段内关断第五开关M5、第六开关M6、第七开关M7和第八开关M8;v) turning off the fifth switch M5, the sixth switch M6, the seventh switch M7 and the eighth switch M8 within a fourth time period after the third time period;
重复ii)至v),直到DC总线202处的电压等于或高于第一阈值电压。Repeat ii) to v) until the voltage at the
本发明中的开关或开关元件可以是硅金属氧化物半导体场效应晶体管(metaloxid semiconductor field effect transistor,MOSFET)、碳化硅MOSFET、绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)和氮化镓功率晶体管等。因此,开关在其饱和区工作是本领域技术人员所熟知的。The switch or switching element in the present invention may be silicon metal oxide semiconductor field effect transistor (metaloxid semiconductor field effect transistor, MOSFET), silicon carbide MOSFET, insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT) and gallium nitride power Transistors, etc. Therefore, it is well known to those skilled in the art that a switch operates in its saturation region.
在第一反向模式BM1下,DC-DC转换器100以软启动程序工作。通过DC-DC转换器100的软启动程序,在稳态运行之前,第一端口P1处的电压可以充电至与第二端口P2处的第一阈值电压相同或大致相同的电压,即第一端口P1的电容从零电压充电至与第二端口P2处的第一阈值电压相同或大致相同的电压。因此,可以避免涌入第一端口P1的浪涌电流,浪涌电流会损坏或破坏第一端口P1。第一阈值电压的值可以通过以下等式得出:In the first reverse mode BM1, the DC-
第一阈值电压=V2/N2*N1 The first threshold voltage = V 2 /N 2 *N 1
其中,V2是第二端口P2处的电池电压,N1是一次绕组的绕组数,N2是二次绕组的绕组数。Where, V2 is the battery voltage at the second port P2, N1 is the winding number of the primary winding, and N2 is the winding number of the secondary winding.
在软启动程序期间,第九开关M9在步骤i)中处于半导通状态,即在其饱和区工作。因此,为第一电感L1电流提供了续流路径,第一电感L1被去磁。第一全桥150的开关(M1、M2、M3、M4)在软启动期间关断,并且仅通过它们各自的体二极管传导电流。During the soft-start procedure, the ninth switch M9 is in a semi-conductive state in step i), ie operates in its saturation region. Therefore, a freewheeling path is provided for the current of the first inductor L1, and the first inductor L1 is demagnetized. The switches ( M1 , M2 , M3 , M4 ) of the first
图5示出了在第一反向模式BM1下工作的DC-DC转换器100的时序图,其中,DC-DC转换器100具有图2所示的包括箝位电路140的两端口拓扑。在图5中,示出了第二全桥160的开关(M5、M6、M7、M8)和第九开关M9的栅极控制信号,以及第一电感L1、第一二极管D1和变压器Tr的二次绕组SW(在图5中表示为变压器P2侧绕组)的电流。FIG. 5 shows a timing diagram of the DC-
如图5所示,在第一时间实例T1和第二时间实例T2之间的第一时间间隔内,第五开关M5和第八开关M8均导通,该步骤对应于上述步骤ii)。电流流经第一电感L1、第五开关M5、第八开关M8和变压器Tr的二次绕组SW,能量通过第一开关M1的体二极管、第二箝位二极管DClamp2和变压器Tr的一次绕组PW传输到第一端口P1。As shown in FIG. 5 , during the first time interval between the first time instance T1 and the second time instance T2 , both the fifth switch M5 and the eighth switch M8 are turned on, and this step corresponds to the above step ii). The current flows through the first inductor L1, the fifth switch M5, the eighth switch M8 and the secondary winding SW of the transformer Tr, and the energy passes through the body diode of the first switch M1, the second clamping diode D Clamp2 and the primary winding PW of the transformer Tr transmitted to the first port P1.
在第二时间实例T2和第三时间实例T3之间的第二时间间隔内,第五开关M5至第八开关M8均关断,对应于步骤iii)。电流流经第一续流电路110的续流电流路径,即流经第一二极管D1和第九开关M9。该步骤(即步骤iii))旨在使第一电感L1去磁,即减小第一电感L1的电流。During the second time interval between the second time instance T2 and the third time instance T3, the fifth switch M5 to the eighth switch M8 are all turned off, corresponding to step iii). The current flows through the freewheeling current path of the first
在第三时间实例T3和第四时间实例T4之间的第三时间间隔内,第六开关M6至第七开关M7均导通,对应于步骤iv)。电流流经第一电感L1、变压器Tr的二次绕组SW、第六开关M6和第七开关M7。能量通过开关M2的体二极管、第一箝位二极管DClamp1和变压器Tr的一次绕组PW传输到第一端口P1。During the third time interval between the third time instance T3 and the fourth time instance T4, the sixth switch M6 to the seventh switch M7 are all turned on, corresponding to step iv). The current flows through the first inductor L1, the secondary winding SW of the transformer Tr, the sixth switch M6 and the seventh switch M7. Energy is transmitted to the first port P1 through the body diode of the switch M2, the first clamping diode D Clamp1 and the primary winding PW of the transformer Tr.
在第四时间实例T4之后,第五开关M5至第八开关M8在第四时间间隔之前再次关断,然后再次导通第五开关M5和第八开关M8。在第四时间间隔内,电流流经第一续流电路110的续流电流路径,即流经第一二极管D1和第九开关M9。重复该程序,直到第一端口P1的电压在第一阈值电压内。After the fourth time instance T4, the fifth switch M5 to the eighth switch M8 are turned off again before the fourth time interval, and then the fifth switch M5 and the eighth switch M8 are turned on again. During the fourth time interval, the current flows through the freewheeling current path of the first
具有三端口拓扑的DC-DC转换器100可以在电流方向为从第一端口P1到第二端口P2和第三端口P3的正向模式下工作。The DC-
此外,第一全桥150的开关(M1、M2、M3、M4)可以通过第一开关M1、第二开关M2、第三开关M3和第四开关M4的控制信号等进行相移控制,其中,第一开关M1和第二开关M2的控制信号彼此反相,第三开关M3和第四开关M4的控制信号也彼此反相。第二端口P2的输出电压可以通过改变第一开关M1和第三开关M3的栅极控制信号之间的相移角来调制。在正向模式下,第二全桥160的开关(M5、M6、M7、M8)在同步整流模式下工作。In addition, the switches (M1, M2, M3, M4) of the first
第三端口P3的输出电压可以通过改变第十二开关M12的占空比来调制,并且第一开关M1和第十二开关M12的控制信号同步,使得这两个开关同时导通。第十一开关M11和第十三开关M13在同步整流模式下工作。The output voltage of the third port P3 can be modulated by changing the duty ratio of the twelfth switch M12, and the control signals of the first switch M1 and the twelfth switch M12 are synchronized so that the two switches are turned on simultaneously. The eleventh switch M11 and the thirteenth switch M13 work in synchronous rectification mode.
不同端口(P1、P2、P3)的电压关系可表示为:The voltage relationship of different ports (P1, P2, P3) can be expressed as:
V1是根据以下等式得出的第一端口P1的电压:V1 is the voltage at the first port P1 according to the following equation:
V2是根据以下等式得出的第二端口P2的电压:V2 is the voltage at the second port P2 according to the following equation:
V1是根据以下等式得出的第一端口P1的电压:V1 is the voltage at the first port P1 according to the following equation:
V3是根据以下等式得出的第三端口P3的电压: V3 is the voltage at the third port P3 according to the following equation:
其中,V1是第一端口P1的电压,V2是第二端口P2的电压,V3是第三端口P3的电压,N1是一次绕组PW的绕组数,N2是二次绕组SW的绕组数,N3是中心抽头绕组CTW的绕组数,Peff是有效相移角,DM12是开关M12的占空比,D是开关M5至M8或开关M11和M13的占空比。Among them, V 1 is the voltage of the first port P1, V 2 is the voltage of the second port P2, V 3 is the voltage of the third port P3, N 1 is the winding number of the primary winding PW, N 2 is the voltage of the secondary winding SW Number of windings, N3 is the number of windings of the center-tapped winding CTW, P eff is the effective phase shift angle, D M12 is the duty cycle of switch M12, and D is the duty cycle of switches M5 to M8 or switches M11 and M13.
具有三端口拓扑的DC-DC转换器100可以在电流方向为从第三端口P3到第一端口P1的第二反向模式BM2下工作。当DC-DC转换器100在电流方向为从第三端口P3到第一端口P1的第二反向模式BM2下工作时,DC-DC转换器100可以用于:The DC-
i)控制第十开关M10在其饱和区工作,i) controlling the tenth switch M10 to work in its saturation region,
ii)导通第十二开关M12;ii) Turn on the twelfth switch M12;
iii)在第一时间段内导通第十一开关M11,iii) turning on the eleventh switch M11 within the first time period,
iv)在所述第一时间段之后的第二时间段内关断第十一开关M11和第十三开关M13,iv) turning off the eleventh switch M11 and the thirteenth switch M13 within a second time period after said first time period,
v)在所述第二时间段之后的第三时间段内导通第十三开关M13,v) turning on the thirteenth switch M13 within a third time period after the second time period,
vi)在所述第三时间段之后的第四时间段内关断第十一开关M11和第十三开关M13;vi) turning off the eleventh switch M11 and the thirteenth switch M13 within a fourth time period after the third time period;
重复步骤iii)至vi),直到DC总线202处的电压等于或高于第二阈值电压。Steps iii) to vi) are repeated until the voltage at the
图6示出了开关(M11、M12、M13)以及第二电感L2、第二二极管和中心抽头绕组的电流的时序图。在第二反向模式BW2模式期间,控制开关M10以在其饱和区工作,并且开关M12一直导通。在第一时间实例T1和第二时间实例T2之间的时间间隔内,开关M11导通,在此时间间隔内第三端口P3处的电流通过第二电感L2以及开关M11和M12传导,并且在第一端口P1处,电流通过开关M3和M2的体二极管馈入P1的输入电容器。开关M11在第二时间实例T2时关断,并且在第二时间实例T2和第三时间实例T3之间的时间间隔内,第三端口P3处的电流流经第二电感L2、第二二极管D2和开关M10。在第三时间实例T3和第四时间实例T4之间的时间间隔内,开关M13导通,第三端口P3处的电流路径通过第二电感L2以及开关M13和M12导通,并且第一端口P1处的电流通过开关M1和M4的体二极管流入第一端口P1的电容器。开关M13在第四时间实例T4时关断,并且在第四时间实例T4之后,端口侧的电流通过第二电感L2、第二二极管D2和第十开关M10传导。重复这些程序,直到DC总线202处的电压等于或高于第二阈值电压。第二阈值电压的值可以通过以下等式得出:Fig. 6 shows a timing diagram of the switches (M11, M12, M13) and the currents of the second inductance L2, the second diode and the center tap winding. During the second reverse mode BW2 mode, the switch M10 is controlled to work in its saturation region, and the switch M12 is always turned on. During the time interval between the first time instance T1 and the second time instance T2, the switch M11 is turned on, during which time the current at the third port P3 is conducted through the second inductance L2 and the switches M11 and M12, and at At the first port P1, current is fed into the input capacitor of P1 through the body diodes of switches M3 and M2. The switch M11 is turned off at the second time instance T2, and during the time interval between the second time instance T2 and the third time instance T3, the current at the third port P3 flows through the second inductor L2, the second diode tube D2 and switch M10. During the time interval between the third time instance T3 and the fourth time instance T4, the switch M13 is turned on, the current path at the third port P3 is turned on through the second inductance L2 and the switches M13 and M12, and the first port P1 The current at is flowing into the capacitor of the first port P1 through the body diodes of the switches M1 and M4. The switch M13 is turned off at the fourth time instance T4, and after the fourth time instance T4, the port-side current is conducted through the second inductance L2, the second diode D2 and the tenth switch M10. These procedures are repeated until the voltage at the
第二阈值电压=V3/N3*N1 Second threshold voltage = V 3 /N 3 *N 1
其中,V3是第三端口P3处的电池电压,N1是一次绕组的绕组数,N3是中心抽头绕组CTW的绕组数。Wherein, V3 is the battery voltage at the third port P3, N1 is the winding number of the primary winding, and N3 is the winding number of the center-tapped winding CTW.
具有三端口拓扑的DC-DC转换器100还可以在电流方向为从第二端口到第一端口P1和第三端口P3的第三反向模式BM3下工作。图7示出了在第三反向模式BM3下工作的DC-DC转换器100的时序图。在图7中,示出了开关M1至M8和M12的栅极控制信号,以及第一电感L1和第二电感L2的电流。The DC-
在第三反向模式BM3下,第九开关M9和第十开关M10关断,这在图7中未示出。In the third reverse mode BM3, the ninth switch M9 and the tenth switch M10 are turned off, which is not shown in FIG. 7 .
在第一时间实例T1和第二时间实例T2之间的第一时间间隔内,第二全桥160的开关(M5、M6、M7、M8)导通,变压器Tr的二次绕组SW短路。第一电感L1的电流在所述第一时间间隔内增加,如图7所示。During the first time interval between the first time instance T1 and the second time instance T2, the switches (M5, M6, M7, M8) of the second
在第二时间实例时,第五开关M5和第八开关M8关断。电流开始流经变压器Tr的二次绕组SW,能量通过变压器Tr的一次绕组PW以及第一开关M1和第四开关M4传输到第一端口P1。第一开关M1和第四开关M4在第三时间实例T3和第六时间实例T6之间导通,以具有同步整流并降低损耗。在第六时间实例T6时,第一电感L1电流被控制在零以下。At the second time instance, the fifth switch M5 and the eighth switch M8 are turned off. Current starts to flow through the secondary winding SW of the transformer Tr, and energy is transmitted to the first port P1 through the primary winding PW of the transformer Tr and the first switch M1 and the fourth switch M4. The first switch M1 and the fourth switch M4 are turned on between the third time instance T3 and the sixth time instance T6 to have synchronous rectification and reduce losses. At the sixth time instance T6, the current of the first inductor L1 is controlled below zero.
在第五开关M5和第八开关M8在第七时间实例T7时导通之前,第一开关M1和第四开关M4在第六时间实例T6时再次关断。当第一开关M1和第四开关M4关断时,在第六时间实例T6时,电流被迫停止通过变压器Tr的一次绕组PW和二次绕组SW传导。因此,在第六时间实例T6和第七时间实例T7之间,电流开始流经第五开关M5和第八开关M8的体二极管。在第七时间实例T7时,第五开关M5和第八开关M8因此都在零电压下导通并且没有导通损耗。Before the fifth switch M5 and the eighth switch M8 are turned on at the seventh time instance T7, the first switch M1 and the fourth switch M4 are turned off again at the sixth time instance T6. When the first switch M1 and the fourth switch M4 are turned off, at the sixth time instance T6, the current is forced to stop conducting through the primary winding PW and the secondary winding SW of the transformer Tr. Thus, between the sixth time instance T6 and the seventh time instance T7, current begins to flow through the body diodes of the fifth switch M5 and the eighth switch M8. At the seventh time instance T7, both the fifth switch M5 and the eighth switch M8 are thus conducting at zero voltage and without conduction losses.
由于电感电流呈三角形,因此第二电感L2电流的下边界低于零,以便能够在第五开关M5和第八开关M8导通时实现零电压,这一点非常重要。这种保持电流下边界低于零的调制称为三角电流调制(triangular current modulation,TCM),在示例中可以包括:Since the inductor current is triangular, it is very important that the lower boundary of the current of the second inductor L2 is lower than zero, so as to realize zero voltage when the fifth switch M5 and the eighth switch M8 are turned on. This modulation, which keeps the lower bound of the current below zero, is called triangular current modulation (TCM), and examples can include:
·开关M5和M8的栅极信号相同,开关M6和M7的栅极信号相同,但是相对于开关M5和M8的栅极信号相移180度。开关(M5、M6、M7、M8)的占空比大于0.5。• The gate signals of switches M5 and M8 are the same, and the gate signals of switches M6 and M7 are the same, but phase shifted by 180 degrees relative to the gate signals of switches M5 and M8. The duty cycle of the switches (M5, M6, M7, M8) is greater than 0.5.
·第三端口P3的电压和电流调制通过控制第十二开关M12的占空比来完成。• The voltage and current modulation of the third port P3 is done by controlling the duty cycle of the twelfth switch M12.
·电流的下边界被控制在零以下,例如-3A。• The lower boundary of the current is controlled below zero, eg -3A.
·在导通第五开关M5和第八开关M8之前,先关断第一开关M1和第四开关M4,以实现第五开关M5和第八开关M8的零电压导通。· Before turning on the fifth switch M5 and the eighth switch M8, first turn off the first switch M1 and the fourth switch M4, so as to realize zero-voltage conduction of the fifth switch M5 and the eighth switch M8.
为了能够控制第二电感L2电流的下边界,可以将基于低电流边界控制器的附加控制回路添加到控制回路中。所述低电流边界控制器的输入可以是测量的低电流边界值,所述低电流边界控制器的输出可以是本转换器的所述开关的开关频率。所述测量的低电流边界值可以通过一个或多个电流传感器获得。In order to be able to control the lower boundary of the second inductor L2 current, an additional control loop based on a low current boundary controller can be added to the control loop. The input of the low current boundary controller may be a measured low current boundary value, and the output of the low current boundary controller may be the switching frequency of the switch of the present converter. The measured low current limit value can be obtained by one or more current sensors.
因此,在本发明的示例中,DC-DC转换器100还可以包括:一个或多个电流传感器,所述电流传感器可以用于控制回路中,以控制第一电感L1和/或第二电感L2的低电流边界值。因此,DC-DC转换器100还可以包括以下组件中的至少一个:第一电流传感器180,耦合在第二全桥160和第二端口P2的第一侧S1P2之间,并且用于提供第一组测量电流值;第二电流传感器180′,耦合在Y电路170和第三端口P3的第一侧S1P3之间,并且用于提供第二组测量电流值;控制器130,用于根据所述第一组测量电流值和所述第二组测量电流值中的至少一个来控制DC-DC转换器100的所述开关。Therefore, in the example of the present invention, the DC-
图8示出了本发明的一个示例提供的具有第一电流传感器180和第二电流传感器180′的三端口DC-DC转换器100。第一电流传感器180耦合在第二全桥160和第二端口P2的第一侧S1P2之间,例如,耦合在第二全桥160的第四连接点168和第二端口P2的第一侧S1P2的下侧之间。第二电流传感器180′耦合在Y电路170和第三端口P3的第一侧S1P3之间,例如,耦合在Y电路170的第三连接点176和第三端口P3的第一侧S1P3的下侧之间。FIG. 8 shows a three-port DC-
第一电流传感器180和第二电流传感器180′分别向低电流边界控制器132提供第一组测量电流值和第二组测量电流值。控制器132用于根据从电流传感器180和180′接收的所述第一组测量电流值和所述第二组测量电流值确定DC-DC转换器100的所述开关的开关频率。所述开关频率提供给控制器130,控制器130通过向所述开关的晶体管栅极提供栅极控制信号来控制DC-DC转换器100的所述开关。通过这种方式,控制器130可以根据所述第一组测量电流值和所述第二组测量电流值控制DC-DC转换器100的所述开关。The first
应该认识到,前面讨论的DC-DC转换器100的两端口和三端口拓扑可以在本发明的范围内变化。因此,在以下公开中,给出了示例性三端口拓扑的非限制性示例。It should be appreciated that the previously discussed two-port and three-port topologies of the DC-
在图9中,与之前所示的拓扑相比,第一电感L1和第一续流电路110(第一二极管D1和第九开关M9)的位置发生了改变。在图9所示的示例中,第一电感L1和第一续流电路110连接到第二端口P2的低压侧。然而,就其功能而言,这种修改被视为图3所示的电路的等效电路。In FIG. 9 , the positions of the first inductor L1 and the first freewheeling circuit 110 (the first diode D1 and the ninth switch M9 ) are changed compared to the topology shown before. In the example shown in FIG. 9 , the first inductor L1 and the first
在图10中,与之前所示的拓扑相比,第二电感L2和第二续流电路110′(第二二极管D2和第十开关M10)的位置发生了改变。在图10所示的示例中,第二电感L2和第二续流电路110′连接到第三端口P3的低压侧。然而,就其功能而言,这种修改也被视为图3所示的电路的等效电路。In Fig. 10, the positions of the second inductance L2 and the second freewheeling circuit 110' (the second diode D2 and the tenth switch M10) are changed compared to the topology shown before. In the example shown in Fig. 10, the second inductor L2 and the second freewheeling circuit 110' are connected to the low voltage side of the third port P3. However, this modification is also considered to be an equivalent circuit of the circuit shown in FIG. 3 in terms of its function.
在图11中,与之前所示的拓扑相比,第一电感L1、第二电感L2、第一续流电路110和第二续流电路110′的位置发生了改变。在图11所示的示例中,所述组件和电路分别耦合至第二端口P2和第三端口P3的低压侧。然而,就其功能而言,这种修改也被视为图3所示的电路的等效电路。In FIG. 11 , the positions of the first inductance L1 , the second inductance L2 , the first
最后需要说明的是,图8至图10所示的三端口拓扑可以包括上述第一保护电路120、第二保护电路120′、箝位电路140和续流二极管D3中的一个或多个。Finally, it should be noted that the three-port topologies shown in FIGS. 8 to 10 may include one or more of the above-mentioned
例如,控制器130和低电流边界控制器132的处理器可以包括中央处理器(CentralProcessing Unit,CPU)、处理单元、处理电路、处理器、专用集成电路(ApplicationSpecific Integrated Circuit,ASIC)、微处理器或可以解释和执行指令的其它处理逻辑的一个或多个实例。因此,术语“处理器”可以表示包括多个处理电路的处理电路,例如以上列举项中的任何、一些或所有项。所述处理电路还可以执行用于输入、输出以及处理数据的数据处理功能,所述数据处理功能包括数据缓冲和设备控制功能,例如呼叫处理控制、用户界面控制等。For example, the processors of the
最后,应当理解的是,本发明并不局限于上述示例,而是同时涉及且并入所附独立权利要求书的范围内的所有示例。Finally, it should be understood that the invention is not limited to the examples described above, but also relates to and incorporates all examples within the scope of the appended independent claims.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2020/060851 WO2021209152A1 (en) | 2020-04-17 | 2020-04-17 | Dc-to-dc converter with freewheeling circuits |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115298947A true CN115298947A (en) | 2022-11-04 |
Family
ID=70295151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080098327.0A Pending CN115298947A (en) | 2020-04-17 | 2020-04-17 | DC-DC Converter with Freewheeling Circuit |
Country Status (4)
Country | Link |
---|---|
US (1) | US12301120B2 (en) |
EP (1) | EP4128509B1 (en) |
CN (1) | CN115298947A (en) |
WO (1) | WO2021209152A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12088108B2 (en) * | 2021-06-08 | 2024-09-10 | Hamilton Sundstrand Corporation | Smart power router and protection for medium voltage DC distribution |
WO2023070308A1 (en) * | 2021-10-26 | 2023-05-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Power supply and a method performed by a power supply |
WO2025062198A1 (en) * | 2023-09-20 | 2025-03-27 | Eaton Intelligent Power Limited | Method to operate a bidirectional two-stacked phase shifted dc-to-dc converter in pre-charge mode |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5615094A (en) * | 1995-05-26 | 1997-03-25 | Power Conversion Products, Inc. | Non-dissipative snubber circuit for a switched mode power supply |
US5949658A (en) * | 1997-12-01 | 1999-09-07 | Lucent Technologies, Inc. | Efficiency multiple output DC/DC converter |
US7388761B1 (en) * | 2006-03-28 | 2008-06-17 | University Of Central Florida Research Foundation, Inc. | High efficiency parallel post regulator for wide range input DC/DC converter |
US20090010035A1 (en) * | 2007-07-06 | 2009-01-08 | Advanced Analogic Technologies, Inc. | Boost and up-down switching regulator with synchronous freewheeling MOSFET |
CN102412604A (en) * | 2010-09-22 | 2012-04-11 | 株式会社丰田自动织机 | Power source device |
CN202617004U (en) * | 2012-05-25 | 2012-12-19 | 许继电源有限公司 | Isolation type bidirectional DC/DC converter |
CN203027134U (en) * | 2013-01-10 | 2013-06-26 | 中国矿业大学 | Tri-state boosting power-factor correction circuit |
CN103597725A (en) * | 2012-06-01 | 2014-02-19 | 松下电器产业株式会社 | Power conversion device and battery charging device using same |
US20140268890A1 (en) * | 2013-03-13 | 2014-09-18 | Analog Devices Technology | Wide output voltage range switching power converter |
US20140313784A1 (en) * | 2013-04-23 | 2014-10-23 | Analog Devices Technology | Bi-directional power converters |
CN104143919A (en) * | 2013-05-07 | 2014-11-12 | 台达电子工业股份有限公司 | Bidirectional DC Converter |
CN104471850A (en) * | 2012-07-20 | 2015-03-25 | 智能电子系统公司 | Includes three-port multi-directional converter and a single transformer for electric vehicles |
CN104917412A (en) * | 2015-07-17 | 2015-09-16 | 东南大学 | Single stage power factor correction phase-shift full bridge topology circuit |
US20160190921A1 (en) * | 2014-12-24 | 2016-06-30 | Intel Corporation | Selectable-mode voltage regulator topology |
CN106685039A (en) * | 2015-11-11 | 2017-05-17 | 上海汽车集团股份有限公司 | Charge-discharge apparatus and control method therefor |
KR20180004673A (en) * | 2016-07-04 | 2018-01-12 | 숭실대학교산학협력단 | Bidirectional full-bridge converter and control method thereof |
CN107623365A (en) * | 2017-09-30 | 2018-01-23 | 深圳威迈斯电源有限公司 | A kind of three port chargers with inversion function |
US20190190394A1 (en) * | 2016-06-20 | 2019-06-20 | Ionel Jitaru | Very High Efficiency Soft Switching Converter AKA the Adjud Converter |
CN110061626A (en) * | 2019-04-04 | 2019-07-26 | 全球能源互联网研究院有限公司 | A kind of charging station with high voltage dc bus |
WO2019199964A1 (en) * | 2018-04-10 | 2019-10-17 | University Of Maryland College Park | Vehicle on-board charger for bi-directional charging of low/high voltage batteries |
US20210159795A1 (en) * | 2019-11-26 | 2021-05-27 | National Taiwan University Of Science And Technology | Multi-level buck converter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259235B1 (en) * | 1999-08-26 | 2001-07-10 | Tyco Electronics Logistics Ag | Active clamp for power converter and method of operation thereof |
US6191960B1 (en) * | 2000-05-09 | 2001-02-20 | Lucent Technologies Inc. | Active clamp for isolated power converter and method of operating thereof |
JP4017490B2 (en) * | 2002-10-02 | 2007-12-05 | 株式会社デンソー | DC / DC converter |
CN202178708U (en) * | 2011-07-29 | 2012-03-28 | 深圳麦格米特电气股份有限公司 | Phase-shifted full-bridge primary side clamping circuit |
DE102015207605B4 (en) * | 2015-04-24 | 2024-06-27 | Bucher Hydraulics Ag | DC-DC converter |
CN110139432B (en) * | 2019-05-09 | 2020-04-24 | 矽诚科技股份有限公司 | Low-power-consumption carrier control light-emitting diode lamp and lamp string thereof |
-
2020
- 2020-04-17 CN CN202080098327.0A patent/CN115298947A/en active Pending
- 2020-04-17 WO PCT/EP2020/060851 patent/WO2021209152A1/en unknown
- 2020-04-17 EP EP20720031.2A patent/EP4128509B1/en active Active
-
2022
- 2022-10-14 US US17/966,084 patent/US12301120B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5615094A (en) * | 1995-05-26 | 1997-03-25 | Power Conversion Products, Inc. | Non-dissipative snubber circuit for a switched mode power supply |
US5949658A (en) * | 1997-12-01 | 1999-09-07 | Lucent Technologies, Inc. | Efficiency multiple output DC/DC converter |
US7388761B1 (en) * | 2006-03-28 | 2008-06-17 | University Of Central Florida Research Foundation, Inc. | High efficiency parallel post regulator for wide range input DC/DC converter |
US20090010035A1 (en) * | 2007-07-06 | 2009-01-08 | Advanced Analogic Technologies, Inc. | Boost and up-down switching regulator with synchronous freewheeling MOSFET |
CN102412604A (en) * | 2010-09-22 | 2012-04-11 | 株式会社丰田自动织机 | Power source device |
CN202617004U (en) * | 2012-05-25 | 2012-12-19 | 许继电源有限公司 | Isolation type bidirectional DC/DC converter |
CN103597725A (en) * | 2012-06-01 | 2014-02-19 | 松下电器产业株式会社 | Power conversion device and battery charging device using same |
CN104471850A (en) * | 2012-07-20 | 2015-03-25 | 智能电子系统公司 | Includes three-port multi-directional converter and a single transformer for electric vehicles |
CN203027134U (en) * | 2013-01-10 | 2013-06-26 | 中国矿业大学 | Tri-state boosting power-factor correction circuit |
US20140268890A1 (en) * | 2013-03-13 | 2014-09-18 | Analog Devices Technology | Wide output voltage range switching power converter |
US20140313784A1 (en) * | 2013-04-23 | 2014-10-23 | Analog Devices Technology | Bi-directional power converters |
CN104143919A (en) * | 2013-05-07 | 2014-11-12 | 台达电子工业股份有限公司 | Bidirectional DC Converter |
US20160190921A1 (en) * | 2014-12-24 | 2016-06-30 | Intel Corporation | Selectable-mode voltage regulator topology |
CN104917412A (en) * | 2015-07-17 | 2015-09-16 | 东南大学 | Single stage power factor correction phase-shift full bridge topology circuit |
CN106685039A (en) * | 2015-11-11 | 2017-05-17 | 上海汽车集团股份有限公司 | Charge-discharge apparatus and control method therefor |
US20190190394A1 (en) * | 2016-06-20 | 2019-06-20 | Ionel Jitaru | Very High Efficiency Soft Switching Converter AKA the Adjud Converter |
KR20180004673A (en) * | 2016-07-04 | 2018-01-12 | 숭실대학교산학협력단 | Bidirectional full-bridge converter and control method thereof |
CN107623365A (en) * | 2017-09-30 | 2018-01-23 | 深圳威迈斯电源有限公司 | A kind of three port chargers with inversion function |
WO2019199964A1 (en) * | 2018-04-10 | 2019-10-17 | University Of Maryland College Park | Vehicle on-board charger for bi-directional charging of low/high voltage batteries |
CN110061626A (en) * | 2019-04-04 | 2019-07-26 | 全球能源互联网研究院有限公司 | A kind of charging station with high voltage dc bus |
US20210159795A1 (en) * | 2019-11-26 | 2021-05-27 | National Taiwan University Of Science And Technology | Multi-level buck converter |
Also Published As
Publication number | Publication date |
---|---|
EP4128509A1 (en) | 2023-02-08 |
US20230036842A1 (en) | 2023-02-02 |
WO2021209152A1 (en) | 2021-10-21 |
EP4128509B1 (en) | 2024-09-18 |
US12301120B2 (en) | 2025-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8780585B2 (en) | Double phase-shifting full-bridge DC-to-DC converter | |
JP6783917B2 (en) | DC / DC converter | |
CN102570782B (en) | For the system and method for bootstrapped switch driver | |
CN104052296B (en) | System and method for switched mode power converter | |
US12301120B2 (en) | DC-to-DC converter with freewheeling circuits | |
US6272027B1 (en) | AC active clamp for isolated power factor corrector and method of operating the same | |
US10177671B2 (en) | Modified dual active half bridge DC/DC converter with transformer DC bias | |
CN113261191A (en) | Bidirectional multiport power conversion system and method | |
WO2011084741A2 (en) | Bidirectional signal conversion | |
US10193464B2 (en) | DC-DC converter | |
CN102480216B (en) | System and method for driving acascode switch | |
US11784560B2 (en) | Power conversion circuit | |
CN110855137B (en) | Converter with pre-biased output voltage | |
CN110120748A (en) | Two-way flyback converter circuit | |
US20140119079A1 (en) | Power factor correction circuit and power supply device including the same | |
CN107181409A (en) | Bidirectional isolation type multistage direct current-direct current electric energy conversion device and method thereof | |
JP2005065497A (en) | Pulse width modulation soft switching control | |
US8711588B1 (en) | Power supply device | |
Chen et al. | Fully soft-switched bidirectional resonant dc-dc converter with a new CLLC tank | |
JP7637428B2 (en) | Direct Power Converter | |
WO2025112211A1 (en) | Single-stage multi-path alternating current/direct current conversion circuit | |
CN114070074A (en) | Double-tube flyback conversion circuit, power supply module, electric automobile and control method | |
WO2024027360A1 (en) | Non-isolated full-bridge cascade converter circuit and control method therefor | |
JP6461439B1 (en) | DC / DC converter | |
CN115428322A (en) | AC/DC power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |