CN115296125A - A mid-infrared tunable pure soliton fiber laser based on cascaded amplification - Google Patents
A mid-infrared tunable pure soliton fiber laser based on cascaded amplification Download PDFInfo
- Publication number
- CN115296125A CN115296125A CN202210803192.4A CN202210803192A CN115296125A CN 115296125 A CN115296125 A CN 115296125A CN 202210803192 A CN202210803192 A CN 202210803192A CN 115296125 A CN115296125 A CN 115296125A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- laser
- fiber
- pump
- wave plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 112
- 230000003321 amplification Effects 0.000 title claims abstract description 26
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 26
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 45
- 239000013307 optical fiber Substances 0.000 claims description 146
- 238000005086 pumping Methods 0.000 claims description 38
- 230000010287 polarization Effects 0.000 claims description 35
- 238000005253 cladding Methods 0.000 claims description 24
- 230000001419 dependent effect Effects 0.000 claims description 22
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 238000007526 fusion splicing Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- -1 erbium ion Chemical class 0.000 claims description 6
- 229910052691 Erbium Inorganic materials 0.000 claims description 5
- 239000005371 ZBLAN Substances 0.000 claims description 5
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 5
- 239000010410 layer Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- OMQSJNWFFJOIMO-UHFFFAOYSA-J zirconium tetrafluoride Chemical compound F[Zr](F)(F)F OMQSJNWFFJOIMO-UHFFFAOYSA-J 0.000 claims description 3
- 238000004064 recycling Methods 0.000 abstract description 4
- 230000003595 spectral effect Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000010905 molecular spectroscopy Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- XHGGEBRKUWZHEK-UHFFFAOYSA-L tellurate Chemical compound [O-][Te]([O-])(=O)=O XHGGEBRKUWZHEK-UHFFFAOYSA-L 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910021620 Indium(III) fluoride Inorganic materials 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002430 laser surgery Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- JNLSTWIBJFIVHZ-UHFFFAOYSA-K trifluoroindigane Chemical compound F[In](F)F JNLSTWIBJFIVHZ-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06725—Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
- H01S3/06758—Tandem amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
- H01S3/2316—Cascaded amplifiers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种基于级联放大的中红外可调谐纯孤子光纤激光器,其包括:飞秒脉冲激光器、第一级光纤放大器和第二级光纤放大器;飞秒脉冲激光器用于产生飞秒脉冲信号,并将飞秒脉冲信号传递至第一级光纤放大器;第一级光纤放大器用于将飞秒脉冲信号进行功率放大以及产生拉曼孤子;第二级光纤放大器用于将背景信号光回收循环再利用来放大拉曼孤子;本发明能够通过将背景信号光回收循环再利用以放大拉曼孤子的方式,获得更高输出功率和脉冲能量、更宽可调谐范围以及纯拉曼孤子的脉冲。
The invention discloses a mid-infrared tunable pure soliton fiber laser based on cascade amplification, which comprises: a femtosecond pulse laser, a first-stage fiber amplifier and a second-stage fiber amplifier; signal, and transmit the femtosecond pulse signal to the first-stage fiber amplifier; the first-stage fiber amplifier is used to amplify the power of the femtosecond pulse signal and generate Raman soliton; the second-stage fiber amplifier is used to recycle the background signal light Reuse to amplify Raman solitons; the invention can obtain higher output power and pulse energy, wider tunable range and pure Raman soliton pulses by recycling and reusing background signal light to amplify Raman solitons.
Description
技术领域technical field
本发明涉及光纤激光技术领域,尤其涉及一种基于级联放大的中红外可调谐纯孤子光纤激光器。The invention relates to the field of fiber laser technology, in particular to a mid-infrared tunable pure soliton fiber laser based on cascade amplification.
背景技术Background technique
高功率中红外飞秒激光器因其在分子光谱学、遥感、激光手术以及材料加工等多个领域的广泛应用而具有极其重要的意义。相较于固体激光器,基于氟化物ZBLAN光纤的中红外飞秒激光器在系统紧凑性、环境可靠性以及高光束质量等方面具有明显优势。目前基于非线性偏振旋转锁模技术是实现中红外光纤激光器飞秒脉冲输出的有效手段,但锁模脉冲仅限于2.8μm、2.9μm、3.1μm以及3.5μm等几个波长,其波长可调谐性受到氟化物稀土离子增益带宽的限制。而在许多分子光谱学和传感探测的实际应用中,需要在大范围内能够波长连续可调谐的中红外飞秒激光器。High-power mid-infrared femtosecond lasers are of great significance because of their wide applications in molecular spectroscopy, remote sensing, laser surgery, and material processing. Compared with solid-state lasers, mid-infrared femtosecond lasers based on fluoride ZBLAN fibers have obvious advantages in terms of system compactness, environmental reliability, and high beam quality. At present, the mode-locking technology based on nonlinear polarization rotation is an effective means to realize femtosecond pulse output of mid-infrared fiber lasers, but the mode-locked pulses are limited to several wavelengths such as 2.8 μm, 2.9 μm, 3.1 μm and 3.5 μm, and its wavelength is tunable. Limited by the gain bandwidth of fluoride rare earth ions. In many practical applications of molecular spectroscopy and sensing detection, mid-infrared femtosecond lasers with continuously tunable wavelength over a wide range are required.
光纤中的孤子自频移(SSFS)效应可以用来突破类似的波长可调谐限制,提供具有宽带可调谐性的飞秒脉冲。SSFS效应能够使得原孤子脉冲脱离锁模脉冲的凯利边带向长波方向频移,从而获得非常干净完整的拉曼孤子。到目前为止,基于SSFS效应的可调谐飞秒激光器已在石英光纤、碲酸盐光纤、氟化物光纤以及硫系光纤中得到了深入研究。其中由于在中红外区域的高损耗,石英光纤中的拉曼孤子被限制在波长2.3μm处,而软玻璃光纤得益于较低的声子能量,可以支持拉曼孤子在中红外区域实现进一步频移。在软玻璃光纤中,相较于碲酸盐光纤和硫系光纤,氟化物光纤具有较低的非线性折射率和较大的反常色散,这使得通过氟化物光纤产生具有高脉冲能量和高峰值功率的拉曼孤子成为可能。The soliton self-frequency shifting (SSFS) effect in optical fibers can be exploited to break through similar wavelength tunability limitations to provide femtosecond pulses with broadband tunability. The SSFS effect can make the original soliton pulse frequency shift away from the Kelly sideband of the mode-locked pulse to the long-wave direction, thereby obtaining a very clean and complete Raman soliton. So far, tunable femtosecond lasers based on the SSFS effect have been intensively studied in silica fibers, tellurate fibers, fluoride fibers, and chalcogenide fibers. Among them, due to the high loss in the mid-infrared region, the Raman soliton in the silica fiber is limited to a wavelength of 2.3 μm, while the soft glass fiber benefits from the lower phonon energy, which can support the further realization of Raman soliton in the mid-infrared region. frequency shift. Among soft glass fibers, fluoride fibers have lower nonlinear refractive index and larger anomalous dispersion compared to tellurate fibers and chalcogenide fibers, which enable high pulse energy and high peak values to be generated through fluoride fibers Raman soliton power becomes possible.
目前基于氟化物光纤中的SSFS效应实现中红外宽带可调谐脉冲输出的现有技术主要集中在以下方面:第一、利用近红外超快激光放大器作为泵浦源来产生高能超短脉冲,采用氟化物光纤作为频移光纤,实现中红外可调谐超快脉冲输出。例如,通过掺铒激光放大器以及具有高度非线性的InF3光纤的组合,实现了一个脉冲能量5nJ、波长可调谐范围2~4.3μm的中红外超快系统。虽然SSFS可以利用更为方便的近红外光纤激光器作为泵浦源,但是以中红外光纤激光器作为泵浦源具有初始泵浦波长更远,从而方便实现远波长处拉曼孤子脉冲的脉冲能量更大的优势。第二、利用基于氟化物光纤的超短脉冲振荡器及其放大器作为中红外泵浦源,同样采用氟化物光纤作为频移光纤的中红外可调谐超快系统,实现高能拉曼孤子脉冲输出。例如通过将Er:ZBLAN光纤振荡器及其放大器作为泵浦源,实现从2.8μm到3.6μm波长连续可调谐的瓦级拉曼孤子脉冲的超快系统。然而以上SSFS系统总是伴随着背景信号光或二阶拉曼孤子,从而限制了能量转换效率、拉曼频移范围以及光谱纯度。如何将一阶拉曼孤子从背景信号光或二阶拉曼孤子中选择出来从而获得纯拉曼孤子需要进一步的工作,而这无疑会增加系统结构复杂度以及操作难度。At present, based on the SSFS effect in the fluoride optical fiber, the existing technologies for mid-infrared broadband tunable pulse output mainly focus on the following aspects: First, the use of near-infrared ultrafast laser amplifiers as pump sources to generate high-energy ultrashort pulses, using fluorine The chemical fiber is used as a frequency-shifting fiber to realize mid-infrared tunable ultrafast pulse output. For example, a mid-infrared ultrafast system with a pulse energy of 5nJ and a wavelength tunable range of 2-4.3μm has been realized through the combination of an erbium-doped laser amplifier and a highly nonlinear InF3 fiber. Although SSFS can use a more convenient near-infrared fiber laser as a pump source, using a mid-infrared fiber laser as a pump source has a longer initial pump wavelength, which facilitates the realization of Raman soliton pulses at far wavelengths. The advantages. Second, use the ultrashort pulse oscillator and its amplifier based on fluoride fiber as the mid-infrared pump source, and also use the fluoride fiber as the frequency-shifting fiber mid-infrared tunable ultrafast system to achieve high-energy Raman soliton pulse output. For example, by using the Er:ZBLAN fiber oscillator and its amplifier as the pump source, an ultrafast system of watt-level Raman soliton pulses with continuously tunable wavelengths from 2.8 μm to 3.6 μm can be realized. However, the above SSFS systems are always accompanied by background signal light or second-order Raman solitons, which limit the energy conversion efficiency, Raman frequency shift range and spectral purity. How to select the first-order Raman solitons from the background signal light or the second-order Raman solitons to obtain pure Raman solitons requires further work, which will undoubtedly increase the complexity of the system structure and the difficulty of operation.
发明内容Contents of the invention
本发明的主要目的在于提供一种基于级联放大的中红外可调谐纯孤子光纤激光器,可以获得高功率中红外宽带可调谐纯拉曼孤子激光器,显著提高了中红外拉曼孤子光纤激光器的光谱纯度。The main purpose of the present invention is to provide a mid-infrared tunable pure soliton fiber laser based on cascade amplification, which can obtain a high-power mid-infrared broadband tunable pure Raman soliton laser, and significantly improves the spectrum of the mid-infrared Raman soliton fiber laser purity.
为实现上述目的,本发明提供一种基于级联放大的中红外可调谐纯孤子光纤激光器,包括:飞秒脉冲激光器、第一级光纤放大器和第二级光纤放大器;To achieve the above object, the present invention provides a mid-infrared tunable pure soliton fiber laser based on cascade amplification, including: a femtosecond pulse laser, a first-stage fiber amplifier and a second-stage fiber amplifier;
所述飞秒脉冲激光器用于产生飞秒脉冲信号,并将所述飞秒脉冲信号传递至所述第一级光纤放大器;所述第一级光纤放大器用于将所述飞秒脉冲信号进行功率放大以及产生拉曼孤子;所述第二级光纤放大器用于将背景信号光回收循环再利用来放大所述拉曼孤子;所述第一级光纤放大器包括:第一偏振相关隔离器、第一二分之一波片、第一四分之一波片、第一泵浦激光器、第一泵浦光准直透镜、第一泵浦光激光二色镜、第一泵浦光激光聚焦透镜、第一光纤;所述第一偏振相关隔离器与所述第一二分之一波片相连,所述第一二分之一波片与所述第一四分之一波片相连,所述第一四分之一波片与所述第一泵浦光激光二色镜相连,所述泵浦光准至透镜的相对两侧分别与所述第一泵浦激光器和所述第一泵浦光激光二色镜相连,所述第一泵浦光激光二色镜与所述第一泵浦光激光聚焦透镜相连,所述第一泵浦光激光二色镜用于将经过所述四分之一波片的激光和经过所述第一泵浦光准直透镜的泵浦光组合,并传输至所述第一泵浦光激光聚焦透镜,所述第一泵浦光激光聚焦透镜与所述第一光纤相连;所述第二级光纤放大器包括:包层功率剥离器、第二光纤、第一光纤输出端帽、第一激光准直透镜;所述包层功率剥离器与所述第二光纤连接,所述第二光纤与所述第一光纤输出端帽连接,所述第一光纤输出端帽与所述第一激光准直透镜连接。The femtosecond pulse laser is used to generate a femtosecond pulse signal, and transmits the femtosecond pulse signal to the first-stage fiber amplifier; the first-stage fiber amplifier is used to power the femtosecond pulse signal Amplifying and generating Raman solitons; the second-stage fiber amplifier is used to recycle background signal light to amplify the Raman solitons; the first-stage fiber amplifier includes: a first polarization-dependent isolator, a first A half-wave plate, a first quarter-wave plate, a first pump laser, a first pump light collimator lens, a first pump light laser dichroic mirror, a first pump light laser focusing lens, The first optical fiber; the first polarization-dependent isolator is connected to the first half-wave plate, the first half-wave plate is connected to the first quarter-wave plate, and the first half-wave plate is connected to the first quarter-wave plate. The first quarter-wave plate is connected with the first pumping light laser dichroic mirror, and the opposite sides of the pumping light collimating to the lens are connected with the first pumping laser and the first pumping laser respectively. The light laser dichroic mirror is connected, the first pump light laser dichroic mirror is connected with the first pump light laser focusing lens, and the first pump light laser dichroic mirror is used to pass through the quadrant The laser light from one of the wave plates is combined with the pumping light passing through the first pumping light collimating lens, and transmitted to the first pumping light laser focusing lens, and the first pumping light laser focusing lens is combined with the first pumping light laser focusing lens The first optical fiber is connected; the second-stage optical fiber amplifier includes: a cladding power stripper, a second optical fiber, a first optical fiber output end cap, and a first laser collimating lens; the cladding power stripper is connected to the first optical fiber Two optical fibers are connected, the second optical fiber is connected to the first optical fiber output end cap, and the first optical fiber output end cap is connected to the first laser collimating lens.
进一步地,所述飞秒脉冲激光器包括:第二泵浦激光器、第二泵浦光准直透镜、第二泵浦光激光二色镜、第二泵浦光激光聚焦透镜、第三光纤、第二光纤输出端帽、第二激光准直透镜、第三泵浦光激光二色镜、第二二分之一波片、偏振分光棱镜、第二偏振相关隔离器、金镜、第二四分之一波片;所述第二泵浦激光器与所述第二泵浦光准直透镜连接;所述第二泵浦光准直透镜与所述第二泵浦光激光二色镜连接;所述第二泵浦光激光二色镜与所述第二泵浦光激光聚焦透镜、第二四分之一波片连接,用于将来自所述第二泵浦光准直透镜和所述第二四分之一波片的泵浦光、激光进行组合,并传输至所述第二泵浦光激光聚焦透镜;所述第二泵浦光激光聚焦透镜与所述第三光纤连接,所述第二光纤输出端帽与所述第三光纤的另一端连接,所述第二光纤输出端帽还与所述第二激光准直透镜连接,所述第二激光准直透镜与所述第三泵浦光激光二色镜连接,所述第三泵浦光激光二色镜与所述第二二分之一波片连接,所述第二二分之一波片与所述偏振分光棱镜连接,所述偏振分光棱镜与所述第二偏振相关隔离器连接,用于向所述第一级光纤放大器输出飞秒脉冲信号,并向所述第二偏振相关隔离器输出激光,所述第二偏振相关隔离器和所述金镜连接,所述金镜和所述第二四分之一波片连接。Further, the femtosecond pulsed laser includes: a second pump laser, a second pump light collimator lens, a second pump light laser dichroic mirror, a second pump light laser focusing lens, a third optical fiber, a first Two fiber output end caps, the second laser collimator lens, the third pump light laser dichroic mirror, the second half-wave plate, the polarization beam splitter prism, the second polarization-dependent isolator, the gold mirror, the second quarter splitter A wave plate; the second pump laser is connected to the second pump light collimator lens; the second pump light collimator lens is connected to the second pump light laser dichroic mirror; the The second pumping light laser dichroic mirror is connected with the second pumping light laser focusing lens and the second quarter-wave plate, and is used to collimate the pumping light from the second pumping light collimating lens and the first The pumping light and laser light of the two quarter-wave plates are combined, and transmitted to the second pumping light laser focusing lens; the second pumping light laser focusing lens is connected to the third optical fiber, and the The second optical fiber output end cap is connected to the other end of the third optical fiber, and the second optical fiber output end cap is also connected to the second laser collimating lens, and the second laser collimating lens is connected to the third optical fiber. The pump light laser dichroic mirror is connected, the third pump light laser dichroic mirror is connected to the second half-wave plate, and the second half-wave plate is connected to the polarization beam splitter prism , the polarization beam splitter is connected to the second polarization-dependent isolator for outputting femtosecond pulse signals to the first-stage fiber amplifier, and outputting laser light to the second polarization-dependent isolator, the second The polarization-dependent isolator is connected to the gold mirror, and the gold mirror is connected to the second quarter-wave plate.
进一步地,所述第一光纤为掺铒的氟化物光纤,所述第一光纤为双层包光纤;所述第二光纤为掺镝的氟化物光纤,所述第二光纤为单层包光纤。Further, the first optical fiber is an erbium-doped fluoride optical fiber, and the first optical fiber is a double-layer clad optical fiber; the second optical fiber is a dysprosium-doped fluoride optical fiber, and the second optical fiber is a single-layer clad optical fiber .
进一步地,所述第一光纤的铒离子掺杂浓度为7mol.%,长度为3.9m,纤芯直径为15μm,数值孔径为0.12,包层直径为260μm,被间隔为240μm的两个平面所截,包层数值孔径为0.46;所述第二光纤的镝离子掺杂浓度为0.2mol.%,长度为11m,纤芯直径为12.5μm,包层直径为125μm,数值孔径为0.16。Further, the erbium ion doping concentration of the first optical fiber is 7mol.%, the length is 3.9m, the core diameter is 15μm, the numerical aperture is 0.12, the cladding diameter is 260μm, and it is separated by two planes with an interval of 240μm. The cladding numerical aperture is 0.46; the dysprosium ion doping concentration of the second optical fiber is 0.2mol.%, the length is 11m, the core diameter is 12.5μm, the cladding diameter is 125μm, and the numerical aperture is 0.16.
进一步地,所述第一泵浦激光器为976nm半导体泵浦激光器;所述第二级光纤放大器输出的拉曼孤子的中心波长为3.03μm-3.63μm,脉冲能量为0.4-31.8nJ。Further, the first pump laser is a 976nm semiconductor pump laser; the center wavelength of the Raman soliton output by the second-stage fiber amplifier is 3.03 μm-3.63 μm, and the pulse energy is 0.4-31.8 nJ.
进一步地,所述第三光纤为掺Er3+氟化物ZBLAN光纤,Er3+离子浓度为7mol.%,长度为2.4m,所述第一光纤是双包层光纤,纤芯直径为15μm,数值孔径为0.12,包层直径为260μm,被间隔为240μm的两个平面所截,包层数值孔径为0.46。Further, the third optical fiber is an Er 3+ fluoride-doped ZBLAN optical fiber, the concentration of Er 3+ ions is 7 mol.%, and the length is 2.4 m, and the first optical fiber is a double-clad optical fiber with a core diameter of 15 μm. The numerical aperture is 0.12, the diameter of the cladding is 260 μm, and is cut by two planes with an interval of 240 μm, and the numerical aperture of the cladding is 0.46.
进一步地,所述第二泵浦激光器为976nm半导体泵浦激光器;所述第一光纤的光纤输入端、所述第一光纤输出端帽、所述第三光纤的光纤输入端、所述第二光纤输出端帽均具有8°角切割。Further, the second pump laser is a 976nm semiconductor pump laser; the fiber input end of the first fiber, the first fiber output cap, the fiber input end of the third fiber, the second Fiber output end caps are cut at an 8° angle.
进一步地,所述第一光纤输出端帽、所述第二光纤输出端帽的材质为氟化锆,纤芯直径为200μm,所述第一光纤输出端帽和所述第二光纤通过熔接的方式连接,所述第二光纤输出端帽和所述第三光纤通过熔接的方式连接。Further, the material of the first optical fiber output end cap and the second optical fiber output end cap is zirconium fluoride, and the core diameter is 200 μm, and the first optical fiber output end cap and the second optical fiber are welded together The second optical fiber output end cap and the third optical fiber are connected by fusion splicing.
进一步地,所述第一级光纤放大器产生的拉曼孤子为3μm,背景光为2.8μm。Further, the Raman soliton generated by the first-stage fiber amplifier is 3 μm, and the background light is 2.8 μm.
进一步地,所述第一光纤和第二光纤通过熔接的方式连接,所述功率剥除器用于剥除所述第一光纤和所述第二光纤熔接导致的损失的功率以及所述第一泵浦激光器剩余的976nm泵浦光;所述飞秒脉冲激光器和所述第一级光纤放大器通过空间耦合的方式连接。Further, the first optical fiber and the second optical fiber are connected by fusion splicing, and the power stripper is used to strip the lost power caused by the fusion splicing of the first optical fiber and the second optical fiber and the power of the first pump The remaining 976nm pumping light of the pump laser; the femtosecond pulse laser and the first-stage fiber amplifier are connected through spatial coupling.
本发明提供一种基于级联放大的中红外可调谐纯孤子光纤激光器,有益效果在于:能够将背景信号光回收循环再利用以放大拉曼孤子的方式,获得更高输出功率和脉冲能量、更宽可调谐范围以及纯拉曼孤子的脉冲。The present invention provides a mid-infrared tunable pure soliton fiber laser based on cascaded amplification, which has the beneficial effect of being able to recycle and reuse background signal light to amplify Raman solitons, thereby obtaining higher output power and pulse energy, and more Wide tunable range and pulses of pure Raman solitons.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.
图1为本发明实施例基于级联放大的中红外可调谐纯孤子光纤激光器的结构示意框图;1 is a schematic block diagram of a mid-infrared tunable pure soliton fiber laser based on cascaded amplification according to an embodiment of the present invention;
图2为本发明实施例基于级联放大的中红外可调谐纯孤子光纤激光器的第一级光纤放大器和第二级光纤放大器的结构示意图;2 is a schematic structural diagram of a first-stage fiber amplifier and a second-stage fiber amplifier of a mid-infrared tunable pure soliton fiber laser based on cascaded amplification according to an embodiment of the present invention;
图3为本发明实施例基于级联放大的中红外可调谐纯孤子光纤激光器的飞秒脉冲激光器的结构示意图;3 is a schematic structural diagram of a femtosecond pulsed laser based on a mid-infrared tunable pure soliton fiber laser based on cascaded amplification according to an embodiment of the present invention;
图4为本发明实施例基于级联放大的中红外可调谐纯孤子光纤激光器的第一级光纤放大器输出脉冲的光谱图;Fig. 4 is the spectrogram of the output pulse of the first-stage fiber amplifier of the mid-infrared tunable pure soliton fiber laser based on cascade amplification according to the embodiment of the present invention;
图5为本发明实施例基于级联放大的中红外可调谐纯孤子光纤激光器的第二级光纤放大器输出脉冲的光谱图。Fig. 5 is a spectrum diagram of output pulses of the second-stage fiber amplifier of the mid-infrared tunable pure soliton fiber laser based on cascaded amplification according to an embodiment of the present invention.
在附图中,各附图标记表示:In the accompanying drawings, each reference sign indicates:
01、飞秒脉冲激光器;02、第一级光纤放大器;03、第二级光纤放大器;1、第二泵浦激光器;2、第二泵浦光准直透镜;3、第二泵浦光激光二色镜;4、第二泵浦光激光聚焦透镜;5、第三光纤;6、第二光纤输出端帽;7、第二激光准直透镜;8、第三泵浦光激光二色镜;9、第二二分之一波片;10、偏振分光棱镜;11、第二偏振相关隔离器;12、金镜;13、第二四分之一波片;21、第一偏振相关隔离器;22、第一二分之一波片;23、第一四分之一波片;24、第一泵浦激光器;25、第一泵浦光准直透镜;26、第一泵浦光激光二色镜;27、第一泵浦光激光聚焦透镜;28、第一光纤;29、包层功率剥离器;30、第二光纤;31、第一光纤输出端帽;32、第一激光准直透镜。01. Femtosecond pulse laser; 02. First-stage fiber amplifier; 03. Second-stage fiber amplifier; 1. Second pump laser; 2. Second pump collimator lens; 3. Second pump laser Dichroic mirror; 4. The second pump light laser focusing lens; 5. The third optical fiber; 6. The second optical fiber output end cap; 7. The second laser collimator lens; 8. The third pump light laser dichroic mirror ; 9, the second half-wave plate; 10, the polarization beam splitter prism; 11, the second polarization-dependent isolator; 12, the gold mirror; 13, the second quarter-wave plate; 21, the first polarization-
具体实施方式Detailed ways
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.
请参阅图1,为一种基于级联放大的中红外可调谐纯孤子光纤激光器,包括:飞秒脉冲激光器01、第一级光纤放大器02和第二级光纤放大器03;其中,飞秒脉冲激光器01用于产生飞秒脉冲信号,并将飞秒脉冲信号传递至第一级光纤放大器02;第一级光纤放大器02用于将飞秒脉冲信号进行功率放大以及产生拉曼孤子;第二级光纤放大器03用于将背景信号光回收循环再利用来放大拉曼孤子。Please refer to Figure 1, which is a mid-infrared tunable pure soliton fiber laser based on cascade amplification, including:
本实施例提供的基于级联放大的中红外可调谐纯孤子光纤激光器,通过将背景信号光回收循环再利用以放大拉曼孤子的方式,获得更高输出功率和脉冲能量、更宽可调谐范围以及纯拉曼孤子的脉冲。该方案将解决SSFS无法直接提供足够高光谱纯度的中红外宽带可调谐飞秒脉冲的问题。The mid-infrared tunable pure soliton fiber laser based on cascade amplification provided in this embodiment obtains higher output power and pulse energy and a wider tunable range by recycling and reusing background signal light to amplify Raman solitons and pulses of pure Raman solitons. This scheme will solve the problem that SSFS cannot directly provide mid-infrared broadband tunable femtosecond pulses with sufficient spectral purity.
请参阅图2,第一级光纤放大器02包括:第一偏振相关隔离器21、第一二分之一波片22、第一四分之一波片23、第一泵浦激光器24、第一泵浦光准直透镜25、第一泵浦光激光二色镜26、第一泵浦光激光聚焦透镜27、第一光纤28;第一偏振相关隔离器21与第一二分之一波片22相连,第一二分之一波片22与第一四分之一波片23相连,第一四分之一波片23与第一泵浦光激光二色镜26相连,第一泵浦光准直透镜25的相对两侧分别与第一泵浦激光器24和第一泵浦光激光二色镜26相连,第一泵浦光激光二色镜26与第一泵浦光激光聚焦透镜27相连,第一泵浦光激光二色镜26用于将经过第一四分之一波片23的激光和经过第一泵浦光准直透镜25的泵浦光组合,并传输至第一泵浦光激光聚焦透镜27,第一泵浦光激光聚焦透镜27与第一光纤28相连。Referring to Fig. 2, the first-
请继续参阅图2,第二级光纤放大器03包括:包层功率剥离器29、第二光纤30、第一光纤输出端帽31、第一激光准直透镜32;包层功率剥离器29与第二光纤30连接,第二光纤30与第一光纤输出端帽31连接,第一光纤输出端帽31与第一激光准直透镜32连接。Please continue to refer to Fig. 2, the second-stage
在本实施例中,第一光纤28为掺铒的氟化物光纤,第一光纤28为双层包光纤;第二光纤30为掺镝的氟化物光纤,第二光纤30为单层包光纤。In this embodiment, the first optical fiber 28 is an erbium-doped fluoride optical fiber, and the first optical fiber 28 is a double-layer clad optical fiber; the second
第一光纤28的铒离子掺杂浓度为7mol.%,长度为3.9m,纤芯直径为15μm,数值孔径为0.12,包层直径为260μm,被间隔为240μm的两个平面所截,包层数值孔径为0.46;第二光纤30的镝离子掺杂浓度为0.2mol.%,长度为11m,纤芯直径为12.5μm,包层直径为125μm,数值孔径为0.16。其中,铒离子为三价铒离子Er3+,镝离子为三价镝离子Dy3+。The erbium ion doping concentration of the first optical fiber 28 is 7mol.%, the length is 3.9m, the core diameter is 15 μm, the numerical aperture is 0.12, and the cladding diameter is 260 μm, which is cut by two planes with an interval of 240 μm. The numerical aperture is 0.46; the dysprosium ion doping concentration of the second
在本实施例中,飞秒脉冲激光器01的脉冲输出经过第一偏振相关隔离器21,防止来自级联放大器的反射光影响飞秒脉冲激光器01。第一二分之一波片22和第一四分之一波片23用来调整输入到级联放大器的种子脉冲偏振态。第一泵浦光准直透镜25用来准直第一泵浦激光器24输出的泵浦光,其中,第一泵浦激光器24为976nm半导体泵浦激光器,泵浦光和种子脉冲激光经过第一泵浦光激光二色镜26的组合后,由第一泵浦光激光聚焦透镜27耦合进第一光纤28中,形成正向泵浦结构。In this embodiment, the pulse output of the femtosecond pulsed
其中第一级光纤放大器02产生的拉曼孤子为3μm,背景光为2.8μm。Among them, the Raman soliton generated by the first-
本实施例将第一级光纤放大器02用作提高2.8μm飞秒脉冲信号光功率的放大器以及产生3μm拉曼孤子的频移器。而后将3μm拉曼孤子和2.8μm背景信号光注入到第二级光纤放大器03中,同时利用包层功率剥离器29剥除剩余的976nm泵浦光。In this embodiment, the first-
在一个实施例中,第一光纤28和第二光纤30通过熔接的方式连接,功率剥除器用于剥除第一光纤28和第二光纤30熔接导致的损失的功率;飞秒脉冲激光器01和第一级光纤放大器02通过空间耦合的方式连接。In one embodiment, the first optical fiber 28 and the second
本实施例通过使用熔接技术将第一光纤28和第二光纤30连接,由于该两种光纤轻微的模场不匹配,测得该熔接点实际信号光传输透过率为82%,而由于熔接导致损失的功率同样被包层功率剥离器29剥除。In this embodiment, the first optical fiber 28 and the second
请参阅图3,在一个实施例中,飞秒脉冲激光器01包括:第二泵浦激光器1、第二泵浦光准直透镜2、第二泵浦光激光二色镜3、第二泵浦光激光聚焦透镜4、第三光纤5、第二光纤输出端帽6、第二激光准直透镜7、第三泵浦光激光二色镜8、第二二分之一波片9、偏振分光棱镜10、第二偏振相关隔离器11、金镜12、第二四分之一波片13。Please refer to Fig. 3, in one embodiment, the femtosecond pulsed
其中,第二泵浦激光器1与第二泵浦光准直透镜2连接;第二泵浦光准直透镜2与第二泵浦光激光二色镜3连接;第二泵浦光激光二色镜3与第二泵浦光激光聚焦透镜4、第二四分之一波片13连接,用于将来自第二泵浦光准直透镜2和第二四分之一波片13的泵浦光、激光进行组合,并传输至第二泵浦光激光聚焦透镜4;第二泵浦光激光聚焦透镜4与第三光纤5连接,第二光纤输出端帽6与第三光纤5的另一端连接,第二光纤输出端帽6还与第二激光准直透镜7连接,第二激光准直透镜7与第三泵浦光激光二色镜连接,第三泵浦光激光二色镜与第二二分之一波片9连接,第二二分之一波片9与偏振分光棱镜10连接,偏振分光棱镜10与第二偏振相关隔离器11连接,用于向第一级光纤放大器02输出飞秒脉冲信号,并向第二偏振相关隔离器11输出激光,第二偏振相关隔离器11和金镜12连接,金镜12和第二四分之一波片13连接。Wherein, the second pumping laser 1 is connected with the second pumping light collimating lens 2; the second pumping light collimating lens 2 is connected with the second pumping light laser dichroic mirror 3; the second pumping light laser dichroic mirror The mirror 3 is connected with the second pumping light laser focusing lens 4 and the second quarter-wave plate 13 for pumping from the second pumping light collimating lens 2 and the second quarter-wave plate 13 The light and the laser light are combined and transmitted to the second pumping light laser focusing lens 4; the second pumping light laser focusing lens 4 is connected to the third optical fiber 5, and the second optical fiber output end cap 6 is connected to the other end of the third optical fiber 5 Connect, the second fiber output end cap 6 is also connected with the second laser collimator lens 7, the second laser collimator lens 7 is connected with the third pump light laser dichroic mirror, the third pump light laser dichroic mirror is connected with the first laser dichroic mirror The second half-wave plate 9 is connected, the second half-wave plate 9 is connected with the polarization splitter prism 10, and the polarization splitter prism 10 is connected with the second polarization-dependent isolator 11 for outputting to the first-stage optical fiber amplifier 02 femtosecond pulse signal, and output laser light to the second polarization-dependent isolator 11, the second polarization-dependent isolator 11 is connected to the gold mirror 12, and the gold mirror 12 is connected to the second quarter-wave plate 13.
其中,第三光纤5为掺Er3+氟化物ZBLAN光纤,Er3+离子浓度为7mol.%,长度为2.4m,第一光纤28是双包层光纤,纤芯直径为15μm,数值孔径为0.12,包层直径为260μm,被间隔为240μm的两个平面所截,包层数值孔径为0.46。Wherein, the third
第二泵浦激光器1为976nm半导体泵浦激光器,发射波长为976nm的连续泵浦光,通过第二泵浦光准直透镜2和第二泵浦光激光聚焦透镜4聚焦到第三光纤5的内包层中。第二泵浦光激光二色镜3和第三泵浦光激光二色镜分别用来组合和分离2.8μm激光和976nm泵浦光。第二偏振相关隔离器11用来保证激光在环形腔内的单向循环,同时与第二二分之一波片9、第二四分之一波片13组成被动锁模器件,用来启动和维持锁模运行。偏振分光棱镜10用来作为脉冲输出端口,金镜12使得光路构成环形激光谐振腔。飞秒脉冲激光器01获得工作在孤子区域的锁模脉冲,脉宽为257fs。The second pump laser 1 is a 976nm semiconductor pump laser, emitting continuous pump light with a wavelength of 976nm, which is focused to the third
在本实施例中,第一泵浦激光器24和第二泵浦激光器1均为976nm半导体泵浦激光器,其是光纤耦合输出的多模半导体激光器。In this embodiment, both the
在一个实施例中,第一光纤输出端帽31、第二光纤输出端帽6的材质为氟化锆,纤芯直径为200μm,第一光纤输出端帽31和第一光纤28通过熔接的方式连接,第二光纤输出端帽6和第二光纤30通过熔接的方式连接。In one embodiment, the material of the first optical fiber output end cap 31 and the second optical fiber output end cap 6 is zirconium fluoride, the core diameter is 200 μm, and the first optical fiber output end cap 31 and the first optical fiber 28 are welded together Connection, the second optical fiber output end cap 6 and the second
第一光纤28的光纤输入端、第一光纤输出端帽31、第三光纤5的光纤输入端、第二光纤输出端帽6均具有8°角切割。The fiber input end of the first optical fiber 28 , the first fiber output end cap 31 , the fiber input end of the third
8°角切割的第二光纤输出端帽6熔接到第三光纤5的输出端,防止激光器长时间运行导致光纤端面损坏,其长度约350μm。The output end cap 6 of the second optical fiber cut at an angle of 8° is fused to the output end of the third
8°角切割的第一光纤输出端帽31被拼接在第二光纤30输出端,以防止光纤输出端在高功率脉冲输出下损坏。掺Dy3+氟化物光纤放大器的输出光束由第一激光准直透镜32进行准直用来进行数据测量。The output end cap 31 of the first optical fiber cut at an 8° angle is spliced at the output end of the second
请参阅图4,图4展示了第一级光纤放大器02输出脉冲的光谱演变,随着泵浦功率的增加,2.8μm飞秒脉冲的功率得到放大且在3μm处形成拉曼孤子,并逐渐向更长的波长区域移动。第一级光纤放大器02输出拉曼孤子的中心波长始终位于第二光纤30的辐射截面内,这有利于第二级光纤放大器03通过回收循环再利用2.8μm背景信号光来放大拉曼孤子。Please refer to Figure 4. Figure 4 shows the spectral evolution of the output pulse of the first-
请参阅图5,图5展示了第二级光纤放大器03输出脉冲的光谱演变,随着泵浦功率的增加,拉曼孤子的中心波长可以实现从3.03μm到3.63μm的连续可调谐。在输出光谱中未观察到2.8μm背景信号光或者二阶拉曼孤子,始终保持着具有优质光谱纯度的纯拉曼孤子状态。最终在20W的泵浦功率下,中心波长位于3.63μm的纯拉曼孤子实现31.8nJ的脉冲能量以及210fs的脉冲持续时间,对应于151kW的峰值功率。Please refer to Figure 5. Figure 5 shows the spectral evolution of the output pulse of the second-
本实施例提供的基于级联放大的中红外可调谐纯孤子光纤激光器,表明本发明基于级联放大创新性地通过将背景信号光回收循环再利用来放大拉曼孤子的方式,为开发高功率高脉冲能量、宽带波长可调谐以及纯拉曼孤子的脉冲光纤激光器提供了一条有效途径。The mid-infrared tunable pure soliton fiber laser based on cascaded amplification provided in this embodiment shows that the present invention creatively amplifies Raman solitons by recycling and reusing background signal light based on cascaded amplification. Pulsed fiber lasers with high pulse energy, broadband wavelength tunability, and pure Raman solitons provide an effective approach.
应当说明的是,以上实施例是出于对本发明的技术方案进行详细说明的案例而非局限。本发明同样可应用在其他基于SSFS的纯拉曼孤子光纤激光器系统,例如掺Er3+和掺Tm3+光纤级联放大的光纤激光器,掺Tm3+和掺Ho3+光纤级联放大的光纤激光器等等。对于本领域人员所进行的改动和变化不脱离本发明技术方案精神范畴的,均应涵盖在本发明所附权利要求的保护范围内。It should be noted that the above embodiments are examples for describing the technical solution of the present invention in detail rather than limitation. The present invention can also be applied to other SSFS-based pure Raman soliton fiber laser systems, such as Er3 +-doped and Tm3 +-doped fiber cascade-amplified fiber lasers, Tm3 + -doped and Ho3 + -doped fiber cascade-amplified fiber lasers fiber lasers and more. All modifications and changes made by those skilled in the art that do not depart from the spirit of the technical solution of the present invention shall be covered by the protection scope of the appended claims of the present invention.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the descriptions of each embodiment have their own emphases, and for parts not described in detail in a certain embodiment, reference may be made to relevant descriptions of other embodiments.
以上为对本发明所提供的一种基于级联放大的中红外可调谐纯孤子光纤激光器的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The above is a description of a mid-infrared tunable pure soliton fiber laser based on cascaded amplification provided by the present invention. For those skilled in the art, based on the ideas of the embodiments of the present invention, they will understand both the specific implementation and the scope of application. There are changes, and in summary, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210803192.4A CN115296125A (en) | 2022-07-07 | 2022-07-07 | A mid-infrared tunable pure soliton fiber laser based on cascaded amplification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210803192.4A CN115296125A (en) | 2022-07-07 | 2022-07-07 | A mid-infrared tunable pure soliton fiber laser based on cascaded amplification |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115296125A true CN115296125A (en) | 2022-11-04 |
Family
ID=83821431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210803192.4A Pending CN115296125A (en) | 2022-07-07 | 2022-07-07 | A mid-infrared tunable pure soliton fiber laser based on cascaded amplification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115296125A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169243A1 (en) * | 2023-02-13 | 2024-08-22 | 深圳大学 | Method for obtaining mid-infrared ultrashort pulse laser light, and laser |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040196544A1 (en) * | 2002-12-20 | 2004-10-07 | Rosolem Joao Batista | Double pass optical amplifier with unidirectional compensation of chromatic dispersion and obstruction of backscattering |
CN103606815A (en) * | 2009-03-06 | 2014-02-26 | Imra美国公司 | Optical scanning and imaging systems based on dual pulsed laser systems |
EP2831963B1 (en) * | 2012-03-30 | 2017-08-23 | Heriot-Watt University | Fibre laser |
CN216773785U (en) * | 2021-11-08 | 2022-06-17 | 宁波大学 | 2-3 mu m broadband tuned intermediate infrared Raman soliton femtosecond laser |
CN218216091U (en) * | 2022-07-07 | 2023-01-03 | 深圳大学 | Cascade amplification-based intermediate infrared tunable pure soliton fiber laser |
-
2022
- 2022-07-07 CN CN202210803192.4A patent/CN115296125A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040196544A1 (en) * | 2002-12-20 | 2004-10-07 | Rosolem Joao Batista | Double pass optical amplifier with unidirectional compensation of chromatic dispersion and obstruction of backscattering |
CN103606815A (en) * | 2009-03-06 | 2014-02-26 | Imra美国公司 | Optical scanning and imaging systems based on dual pulsed laser systems |
EP2831963B1 (en) * | 2012-03-30 | 2017-08-23 | Heriot-Watt University | Fibre laser |
CN216773785U (en) * | 2021-11-08 | 2022-06-17 | 宁波大学 | 2-3 mu m broadband tuned intermediate infrared Raman soliton femtosecond laser |
CN218216091U (en) * | 2022-07-07 | 2023-01-03 | 深圳大学 | Cascade amplification-based intermediate infrared tunable pure soliton fiber laser |
Non-Patent Citations (1)
Title |
---|
楼洋;魏一振;: "基于级联型光纤的孤子自频移增强特性", 光子学报, no. 08, 15 August 2017 (2017-08-15), pages 93 - 97 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169243A1 (en) * | 2023-02-13 | 2024-08-22 | 深圳大学 | Method for obtaining mid-infrared ultrashort pulse laser light, and laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6822978B2 (en) | Remote UV laser system and methods of use | |
CN109802290B (en) | Mid-infrared ultrashort pulse fiber laser based on synchronous mode locking | |
CN208093940U (en) | A kind of big energy optical fiber amplifier of the high power that repetition is tunable | |
JPH10213827A (en) | Apparatus and method for generating high output optical pulse | |
CN101510663A (en) | Polarization dual wavelength fiber-optical ultrashort pulse laser | |
CN109038187A (en) | A kind of tunable wave length graphene oxide mode-locked all fibre mixes thulium laser | |
Simakov et al. | Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source | |
CN106785835A (en) | The infrared super continuous laser transmitter of ultra wide band in a kind of all -fiber | |
CN103701022A (en) | Double-resonant-cavity all-optical-fiber mode-locked pulse laser | |
Huang et al. | Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd: YVO4/Nd: GdVO4 crystal | |
CN108039636A (en) | A kind of mid-infrared light fibre optical parametric oscillator based on 2 μm of ultra-short pulse laser pumpings | |
CN106410586A (en) | High-power high-repetition-frequency mode-locking pulse optical fiber laser | |
CN218216091U (en) | Cascade amplification-based intermediate infrared tunable pure soliton fiber laser | |
CN106253041A (en) | A kind of all-fiber mid-infrared ultra-short pulse laser emitter | |
CN105896249A (en) | High-power broadband tunable soliton-self-similar pulse mode-locked fiber laser | |
CN115347441B (en) | Cascade-pumped 3.5 μm all-fiber femtosecond amplifier based on frequency-shifted Raman solitons | |
CN115296125A (en) | A mid-infrared tunable pure soliton fiber laser based on cascaded amplification | |
Kracht et al. | Innovative laser sources operating around 2 μm | |
US9588399B2 (en) | All-fiber laser frequency mixer and frequency-mixing fiber laser thereof | |
WO2024169243A1 (en) | Method for obtaining mid-infrared ultrashort pulse laser light, and laser | |
CN109256664B (en) | Mid-IR Fluoride Fiber Mode-locked Laser Based on Germanium Dispersion Management | |
Stachowiak et al. | High-power pump combiners for Tm-doped fibre lasers | |
JP7337726B2 (en) | Pulsed laser light generation and transmission device and laser processing device | |
CN114597746A (en) | Ytterbium-doped mode-locked fiber laser based on fiber grating circulator | |
CN108039638B (en) | Low-threshold two-stage spectrum shaping flexible optical fiber high-power mode-locked laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |