CN115295564A - Array substrates and display panels - Google Patents
Array substrates and display panels Download PDFInfo
- Publication number
- CN115295564A CN115295564A CN202211179821.7A CN202211179821A CN115295564A CN 115295564 A CN115295564 A CN 115295564A CN 202211179821 A CN202211179821 A CN 202211179821A CN 115295564 A CN115295564 A CN 115295564A
- Authority
- CN
- China
- Prior art keywords
- active layer
- rare earth
- layer
- array substrate
- mobility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/423—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本申请涉及显示领域,具体涉及一种阵列基板和显示面板。The present application relates to the display field, in particular to an array substrate and a display panel.
背景技术Background technique
随着高分辨率、高清晰度的显示设备市场需求进一步增加,金属氧化物凭借其相对非晶硅更高的迁移率及相对低温多晶硅更低的漏电流,且与当前工艺较为兼容及出色的制程均匀性等特点,成为了近年来阵列基板领域研究的热点,越来越多被应用在LCD和AMOLED的显示器件中。但碍于当前常规的氧化铟镓锌器件迁移率相对较低,目前还难以应用于对于分辨率和清晰度要求更高的智能终端高端产品中。With the further increase in the market demand for high-resolution and high-definition display equipment, metal oxides have higher mobility than amorphous silicon and lower leakage current than low-temperature polysilicon, and are more compatible with current processes and have excellent performance. Process uniformity and other characteristics have become a research hotspot in the field of array substrates in recent years, and are increasingly used in LCD and AMOLED display devices. However, due to the relatively low mobility of current conventional InGaZnO devices, it is currently difficult to apply to high-end smart terminal products that require higher resolution and clarity.
因此,亟需提供一种性能优异的阵列基板,用以解决现有技术的问题。Therefore, there is an urgent need to provide an array substrate with excellent performance to solve the problems in the prior art.
发明内容Contents of the invention
本申请的目的在于提供一种阵列基板,可以提高器件迁移率,解决了上述现有技术的不足。The purpose of the present application is to provide an array substrate, which can improve device mobility and solve the above-mentioned shortcomings of the prior art.
本申请提供一种阵列基板,包括:The application provides an array substrate, including:
衬底基板,以及设置于所述衬底基板上的栅极、栅绝缘层和有源层;a base substrate, and a gate, a gate insulating layer and an active layer disposed on the base substrate;
所述有源层包括层叠设置的第一有源层和第二有源层;其中,所述第一有源层靠近所述栅极设置,所述第二有源层位于所述第一有源层背离所述栅极的一侧;The active layer includes a first active layer and a second active layer stacked; wherein, the first active layer is arranged close to the gate, and the second active layer is located on the first active layer. a side of the source layer away from the gate;
所述第一有源层的迁移率高于所述第二有源层的迁移率。The mobility of the first active layer is higher than that of the second active layer.
可选的,在本申请的一些实施例中,所述有源层的材料包括氧化物半导体和稀土金属氧化物。Optionally, in some embodiments of the present application, the material of the active layer includes oxide semiconductor and rare earth metal oxide.
可选的,在本申请的一些实施例中,所述氧化物半导体包括氧化铟镓锌、氧化铟镓锡、氧化铟镓、氧化铟和氧化铟锌中的一种或多种。Optionally, in some embodiments of the present application, the oxide semiconductor includes one or more of indium gallium zinc oxide, indium gallium tin oxide, indium gallium oxide, indium oxide and indium zinc oxide.
可选的,在本申请的一些实施例中,所述稀土金属氧化物中的稀土元素包括钐、铽、镝、铕、铒、锡、镧、铈、镱和镨中的一种或多种。Optionally, in some embodiments of the present application, the rare earth elements in the rare earth metal oxide include one or more of samarium, terbium, dysprosium, europium, erbium, tin, lanthanum, cerium, ytterbium and praseodymium .
可选的,在本申请的一些实施例中,所述第一有源层中的稀土元素包括钐、铽、镝、铕、铒和锡中的一种或多种。Optionally, in some embodiments of the present application, the rare earth elements in the first active layer include one or more of samarium, terbium, dysprosium, europium, erbium and tin.
可选的,在本申请的一些实施例中,所述第一有源层中的稀土金属氧化物的掺杂比为0.001-0.1。进一步地,所述第一有源层中的稀土金属氧化物的掺杂比为0.01-0.05。Optionally, in some embodiments of the present application, the doping ratio of the rare earth metal oxide in the first active layer is 0.001-0.1. Further, the doping ratio of the rare earth metal oxide in the first active layer is 0.01-0.05.
可选的,在本申请的一些实施例中,所述第二有源层中的稀土元素包括镧、铽、镝、铈、铒、镱和镨中的一种或多种。Optionally, in some embodiments of the present application, the rare earth elements in the second active layer include one or more of lanthanum, terbium, dysprosium, cerium, erbium, ytterbium and praseodymium.
可选的,在本申请的一些实施例中,所述第二有源层中的稀土金属氧化物的掺杂比为0.1-0.3。Optionally, in some embodiments of the present application, the doping ratio of the rare earth metal oxide in the second active layer is 0.1-0.3.
可选的,在本申请的一些实施例中,所述第二有源层中的稀土金属氧化物的掺杂比与所述第一有源层中的稀土金属氧化物的掺杂比相同,所述第二有源层中的稀土元素的迁移率比所述第一有源层中的稀土元素的迁移率低。Optionally, in some embodiments of the present application, the doping ratio of the rare earth metal oxide in the second active layer is the same as the doping ratio of the rare earth metal oxide in the first active layer, The mobility of the rare earth element in the second active layer is lower than that of the rare earth element in the first active layer.
可选的,在本申请的一些实施例中,所述第二有源层中的稀土元素与所述第一有源层中的稀土元素相同,所述第二有源层中的稀土金属氧化物的掺杂比为0.15-0.3。Optionally, in some embodiments of the present application, the rare earth element in the second active layer is the same as the rare earth element in the first active layer, and the rare earth metal in the second active layer is oxidized The doping ratio of the compound is 0.15-0.3.
可选的,在本申请的一些实施例中,所述第二有源层中的稀土元素与所述第一有源层中的稀土元素不相同,且所述第二有源层中的稀土元素的迁移率比所述第一有源层中的稀土元素低,所述第二有源层中的稀土金属氧化物的掺杂比为0.1-0.3。Optionally, in some embodiments of the present application, the rare earth element in the second active layer is different from the rare earth element in the first active layer, and the rare earth element in the second active layer The mobility of the element is lower than that of the rare earth element in the first active layer, and the doping ratio of the rare earth metal oxide in the second active layer is 0.1-0.3.
可选的,在本申请的一些实施例中,所述第一有源层内掺杂的稀土金属氧化物的迁移率高于所述第二有源层内稀土金属氧化物的迁移率。Optionally, in some embodiments of the present application, the mobility of the rare earth metal oxide doped in the first active layer is higher than the mobility of the rare earth metal oxide in the second active layer.
可选的,在本申请的一些实施例中,所述阵列基板包括:Optionally, in some embodiments of the present application, the array substrate includes:
衬底基板;Substrate substrate;
第二有源层,设置在所述衬底基板上;a second active layer disposed on the base substrate;
第一有源层,设置在所述第二有源层上,所述第一有源层包括源区、沟道区及漏区;a first active layer disposed on the second active layer, the first active layer including a source region, a channel region and a drain region;
栅绝缘层,设置在所述第一有源层上的沟道区;a gate insulating layer disposed on the channel region on the first active layer;
栅极,设置在所述栅绝缘层上;a gate disposed on the gate insulating layer;
源极,设置在所述第一有源层上的源区;a source, a source region disposed on the first active layer;
漏极,设置在所述第一有源层上的漏区;a drain, a drain region disposed on the first active layer;
钝化层,设置在所述第二有源层、所述第一有源层、所述栅绝缘层、所述栅极、所述源极和所述漏极上。a passivation layer disposed on the second active layer, the first active layer, the gate insulating layer, the gate, the source and the drain.
可选的,在本申请的一些实施例中,所述阵列基板包括:Optionally, in some embodiments of the present application, the array substrate includes:
衬底基板;Substrate substrate;
栅极,设置在所述衬底基板上;a gate, arranged on the base substrate;
栅绝缘层,设置在所述栅极和所述衬底基板上;a gate insulating layer disposed on the gate and the base substrate;
第一有源层,设置在所述栅绝缘层上;a first active layer disposed on the gate insulating layer;
第二有源层,设置在所述第一有源层上;所述第二有源层包括源区、沟道区及漏区;a second active layer disposed on the first active layer; the second active layer includes a source region, a channel region and a drain region;
源极,设置在所述第二有源层上的源区;a source, a source region disposed on the second active layer;
漏极,设置在所述第二有源层上的漏区;a drain, a drain region disposed on the second active layer;
钝化层,设置在所述栅极、所述栅绝缘层、所述第一有源层、所述第二有源层、所述源极和所述漏极上。a passivation layer disposed on the gate, the gate insulating layer, the first active layer, the second active layer, the source and the drain.
可选的,在本申请的一些实施例中,所述阵列基板还包括刻蚀阻挡层。Optionally, in some embodiments of the present application, the array substrate further includes an etching stopper layer.
所述刻蚀阻挡层设置在所述第二有源层与所述源极、所述漏极之间。The etch barrier layer is disposed between the second active layer, the source electrode, and the drain electrode.
所述刻蚀阻挡层设置在所述第二有源层上的沟道区以及部分的源区和部分的漏区。The etch barrier layer is disposed on the channel region, part of the source region and part of the drain region on the second active layer.
可选的,在本申请的一些实施例中,所述钝化层的材料包括SiOx(硅的氧化物)和SiNx(硅的氮化物)中的一种或多种。Optionally, in some embodiments of the present application, the material of the passivation layer includes one or more of SiO x (silicon oxide) and SiN x (silicon nitride).
可选的,在本申请的一些实施例中,所述钝化层包括第一钝化层和/或第二钝化层。Optionally, in some embodiments of the present application, the passivation layer includes a first passivation layer and/or a second passivation layer.
本申请的有益效果在于:The beneficial effect of this application is:
本申请实施例采用掺杂稀土元素的叠层有源层,前沟道侧形成迁移率相对较高、开态电流相对较高的薄膜,可以提高开态电流;在背沟道侧形成迁移率较低和关态电流相对较低的薄膜,可以降低关态电流。In the embodiment of the present application, a stacked active layer doped with rare earth elements is used, and a thin film with relatively high mobility and relatively high on-state current is formed on the front channel side, which can increase the on-state current; Low and relatively low off-state current films can reduce the off-state current.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本申请实施例提供的阵列基板的结构示意图一;FIG. 1 is a first structural schematic diagram of an array substrate provided by an embodiment of the present application;
图2是本申请实施例提供的阵列基板的结构示意图二;Fig. 2 is a schematic diagram II of the structure of the array substrate provided by the embodiment of the present application;
图3是本申请实施例提供的阵列基板的结构示意图三;Fig. 3 is a schematic diagram of the third structure of the array substrate provided by the embodiment of the present application;
图4是本申请实施例1~4提供的器件参数及特性检测的数据图;Fig. 4 is the data diagram of the device parameter and characteristic detection that the
图5是本申请实施例9~12提供的器件参数及特性检测的数据图;Fig. 5 is the data diagram of the device parameter and characteristic detection that the embodiment of the present application 9~12 provides;
图6是本申请实施例17~20提供的器件参数及特性检测的数据图;Fig. 6 is the data diagram of the device parameter and characteristic detection that the embodiment 17~20 of the present application provides;
图7是本申请实施例5~8提供的器件特参数及性检测的数据图;Fig. 7 is the data diagram of the device characteristic parameter and property detection that the embodiment 5~8 of the present application provides;
图8是本申请实施例13~16提供的器件参数及特性检测的数据图;Fig. 8 is a data diagram of device parameters and characteristic detection provided by Embodiments 13 to 16 of the present application;
图9是本申请实施例21~24提供的器件参数及特性检测的数据图。FIG. 9 is a data diagram of device parameters and characteristic detection provided by Examples 21-24 of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。The following will clearly and completely describe the technical solutions in the embodiments of the application with reference to the drawings in the embodiments of the application. Apparently, the described embodiments are only some of the embodiments of the application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of this application. In addition, it should be understood that the specific implementations described here are only used to illustrate and explain the present application, and are not intended to limit the present application. In addition, in the description of the present application, the term "including" means "including but not limited to". The terms first, second, third, etc. are used for designation only and do not impose numerical requirements or establish an order. Various embodiments of the present application may exist in the form of a range; it should be understood that the description in the form of a range is only for convenience and brevity, and should not be construed as a rigid limitation on the scope of the application; therefore, the described range should be regarded as The description has specifically disclosed all possible subranges as well as individual values within that range.
在对现有技术的研究和实践过程中,本申请的发明人发现,使用稀土元素掺杂的金属氧化物半导体因在具备低漏电流的基础上,进一步增加迁移率,使之更为满足高端显示产品的开发需求。然而,由于相对传统的氧化铟镓锌体系有较低的稳定性,故限制了其推广。本申请发明人精准控制稀土掺杂量及做好器件结构的设计,进而实现器件性能的进一步提高。During the research and practice of the existing technology, the inventors of the present application found that the use of metal oxide semiconductors doped with rare earth elements further increases the mobility on the basis of low leakage current, making it more satisfying for high-end Show the development requirements of the product. However, due to the lower stability compared with the traditional InGaZnO system, its popularization is limited. The inventors of the present application precisely controlled the amount of rare earth doping and designed the structure of the device, so as to further improve the performance of the device.
本申请发明人提出了由稀土元素和特定摩尔比的叠层金属氧化物半导体器件,能同时兼备不同掺杂比下器件的不同优势,使器件兼备更为优异的性能。The inventors of the present application have proposed a stacked metal oxide semiconductor device composed of rare earth elements and a specific molar ratio, which can simultaneously combine different advantages of devices with different doping ratios, so that the device has more excellent performance.
本申请实施例提供一种阵列基板(TFT,Thin Film Transistor)和显示面板。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。Embodiments of the present application provide an array substrate (TFT, Thin Film Transistor) and a display panel. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
本申请实施例提供一种阵列基板,包括衬底基板、栅极、栅绝缘层和有源层。栅极、栅绝缘层和有源层均设置于所述衬底基板上。An embodiment of the present application provides an array substrate, including a base substrate, a gate, a gate insulating layer, and an active layer. The gate, the gate insulating layer and the active layer are all arranged on the base substrate.
所述有源层包括层叠设置的第一有源层和第二有源层。进一步地,所述第一有源层靠近所述栅极设置,所述第二有源层位于所述第一有源层背离所述栅极的一侧;所述第一有源层的迁移率高于所述第二有源层的迁移率。The active layer includes a first active layer and a second active layer stacked. Further, the first active layer is arranged close to the gate, and the second active layer is located on the side of the first active layer away from the gate; the migration of the first active layer rate is higher than the mobility of the second active layer.
本申请实施例通过叠层有源层结构,形成同时兼备多种掺杂氧化物半导体的优势,提升阵列基板的性能。In the embodiment of the present application, the advantages of multiple doped oxide semiconductors are simultaneously formed through the stacked active layer structure, and the performance of the array substrate is improved.
本申请实施例中,阵列基板中的有源层为叠层结构,靠近栅极的那一层的迁移率要高于远离栅极的那一层。本申请可以通过有源层的材料来调控迁移率,进而时实现迁移率的高低的效果。In the embodiment of the present application, the active layer in the array substrate is a stacked layer structure, and the mobility of the layer close to the gate is higher than that of the layer far away from the gate. In the present application, the mobility can be regulated through the material of the active layer, and then the effect of the level of the mobility can be realized.
在本申请的一些实施例中,所述有源层的材料包括氧化物半导体和稀土金属氧化物。进一步地,所述氧化物半导体包括氧化铟镓锌、氧化铟镓锡、氧化铟镓、氧化铟和氧化铟锌中的一种或多种。进一步地,所述稀土金属氧化物中的稀土元素包括钐、铽、镝、铕、铒、锡、镧、铈、镱和镨中的一种或多种。In some embodiments of the present application, the material of the active layer includes oxide semiconductor and rare earth metal oxide. Further, the oxide semiconductor includes one or more of indium gallium zinc oxide, indium gallium tin oxide, indium gallium oxide, indium oxide and indium zinc oxide. Further, the rare earth elements in the rare earth metal oxide include one or more of samarium, terbium, dysprosium, europium, erbium, tin, lanthanum, cerium, ytterbium and praseodymium.
更进一步地,所述稀土元素掺杂以其金属氧化物形式,例如,稀土金属氧化物选自氧化钐、氧化铽、氧化镝、氧化铕、氧化铒、氧化锡、氧化镧、氧化铈、氧化镱和氧化镨中的一种或多种。Further, the rare earth element is doped in the form of its metal oxide, for example, the rare earth metal oxide is selected from samarium oxide, terbium oxide, dysprosium oxide, europium oxide, erbium oxide, tin oxide, lanthanum oxide, cerium oxide, oxide One or more of ytterbium and praseodymium oxide.
可以理解,所述第一有源层内掺杂的稀土金属氧化物的迁移率高于所述第二有源层内稀土金属氧化物的迁移率。也就是说,第一有源层,前沟道需使用迁移率较高的氧化物半导体;第二有源层,背沟道使用迁移率相对较低的金属氧化物半导体。It can be understood that the mobility of the doped rare earth metal oxide in the first active layer is higher than the mobility of the rare earth metal oxide in the second active layer. That is to say, in the first active layer, the front channel needs to use an oxide semiconductor with high mobility; in the second active layer, the back channel needs to use a metal oxide semiconductor with relatively low mobility.
在本申请的一些实施例中,所述第一有源层包括所述氧化物半导体和所述稀土金属氧化物。其中,所述第一有源层中的稀土元素包括钐、铽、镝、铕、铒和锡中的一种或多种。并且,所述第一有源层中的稀土金属氧化物的掺杂比为0.001-0.1。进一步地,所述第一有源层中的稀土金属氧化物的掺杂比可以为0.01-0.05。可以理解,本申请的掺杂比为掺杂元素的摩尔比,例如0.001-0.1即为0.001-0.1:1,将第一有源层的记为1计算得到。例如,稀土金属氧化物在第一有源层中的掺杂比可以为0.001:1、0.002:1、0.003:1、0.004:1、0.005:1、0.006:1、0.007:1、0.008:1、0.009:1、0.01:1、0.02:1、0.03:1、0.04:1、0.05:1、0.06:1、0.07:1、0.08:1、0.09:1或0.1:1。In some embodiments of the present application, the first active layer includes the oxide semiconductor and the rare earth metal oxide. Wherein, the rare earth elements in the first active layer include one or more of samarium, terbium, dysprosium, europium, erbium and tin. Moreover, the doping ratio of the rare earth metal oxide in the first active layer is 0.001-0.1. Further, the doping ratio of the rare earth metal oxide in the first active layer may be 0.01-0.05. It can be understood that the doping ratio in the present application is the molar ratio of doping elements, for example, 0.001-0.1 is 0.001-0.1:1, and the calculation is obtained by recording the value of the first active layer as 1. For example, the doping ratio of the rare earth metal oxide in the first active layer can be 0.001:1, 0.002:1, 0.003:1, 0.004:1, 0.005:1, 0.006:1, 0.007:1, 0.008:1 , 0.009:1, 0.01:1, 0.02:1, 0.03:1, 0.04:1, 0.05:1, 0.06:1, 0.07:1, 0.08:1, 0.09:1 or 0.1:1.
在本申请的一些实施例中,所述第二有源层包括所述氧化物半导体和所述稀土金属氧化物。其中,所述第二有源层中的稀土元素包括镧、铽、镝、铈、铒、镱和镨中的一种或多种。所述第二有源层中的稀土金属氧化物的掺杂比为0.1-0.3。进一步地,所述第二有源层中的稀土金属氧化物的掺杂比为0.3~0.7:1。例如,稀土金属氧化物在第二有源层中的掺杂比可以为0.1:1、0.12:1、0.15:1、0.2:1、0.25:1或0.3:1。In some embodiments of the present application, the second active layer includes the oxide semiconductor and the rare earth metal oxide. Wherein, the rare earth elements in the second active layer include one or more of lanthanum, terbium, dysprosium, cerium, erbium, ytterbium and praseodymium. The doping ratio of the rare earth metal oxide in the second active layer is 0.1-0.3. Further, the doping ratio of the rare earth metal oxide in the second active layer is 0.3-0.7:1. For example, the doping ratio of the rare earth metal oxide in the second active layer may be 0.1:1, 0.12:1, 0.15:1, 0.2:1, 0.25:1 or 0.3:1.
所述第一有源层内掺杂的稀土金属氧化物的迁移率高于所述第二有源层内稀土金属氧化物的迁移率。本申请实施例中,可以通过调整第一有源层、第二有源层内的稀土金属氧化物的稀土元素的种类和/或稀土金属氧化物的具体掺杂比来控制第一有源层和第二有源层迁移率差。The mobility of the rare earth metal oxide doped in the first active layer is higher than the mobility of the rare earth metal oxide in the second active layer. In the embodiment of the present application, the first active layer can be controlled by adjusting the type of rare earth element of the rare earth metal oxide in the first active layer and the second active layer and/or the specific doping ratio of the rare earth metal oxide. and the mobility of the second active layer is poor.
例如,当所述第二有源层中的稀土金属氧化物的掺杂比与所述第一有源层中的稀土金属氧化物的掺杂比相同,所述第二有源层中的稀土元素的迁移率比所述第一有源层中的稀土元素的迁移率低。For example, when the doping ratio of the rare earth metal oxide in the second active layer is the same as that of the rare earth metal oxide in the first active layer, the rare earth metal oxide in the second active layer Mobility of the element is lower than that of the rare earth element in the first active layer.
例如,当所述第二有源层中的稀土元素与所述第一有源层中的稀土元素相同时,所述第二有源层中的稀土金属氧化物的掺杂比为0.15-0.3。可以理解,此时通过掺杂比,使得第一有源层的迁移率高于第二有源层的迁移率。For example, when the rare earth element in the second active layer is the same as the rare earth element in the first active layer, the doping ratio of the rare earth metal oxide in the second active layer is 0.15-0.3 . It can be understood that at this time, the doping ratio makes the mobility of the first active layer higher than the mobility of the second active layer.
例如,当所述第二有源层中的稀土元素与所述第一有源层中的稀土元素不相同时,且所述第二有源层中的稀土元素的迁移率比所述第一有源层中的稀土元素低。也就是说,不同元素在同掺杂比例下,能够使得第一有源层内掺杂的稀土金属氧化物的迁移率高于第二有源层内稀土金属氧化物的迁移率。此时,所述第二有源层中的稀土金属氧化物的掺杂比可以为0.1-0.3。For example, when the rare earth element in the second active layer is different from the rare earth element in the first active layer, and the mobility of the rare earth element in the second active layer is higher than that in the first active layer Rare earth elements in the active layer are low. That is to say, under the same doping ratio of different elements, the mobility of the rare earth metal oxide doped in the first active layer can be higher than that of the rare earth metal oxide in the second active layer. At this time, the doping ratio of the rare earth metal oxide in the second active layer may be 0.1-0.3.
本申请实施例中,稀土金属氧化物的掺杂比为该稀土金属氧化物中的稀土元素在对应的有源层中的摩尔掺杂比。In the embodiments of the present application, the doping ratio of the rare earth metal oxide is the molar doping ratio of the rare earth elements in the rare earth metal oxide in the corresponding active layer.
本申请实施例中,形成使用稀土元素掺杂的特定摩尔比的氧化物半导体叠层薄膜,前沟道侧形成迁移率相对较高、开态电流相对较高的薄膜,可以提高开态电流;在背沟道侧形成迁移率较低和关态电流相对较低的薄膜,可以降低关态电流。In the embodiment of the present application, an oxide semiconductor laminate film with a specific molar ratio doped with rare earth elements is formed, and a film with relatively high mobility and relatively high on-state current is formed on the front channel side, which can increase the on-state current; Forming a thin film with low mobility and relatively low off-state current on the back channel side can reduce the off-state current.
在本申请的一些实施例中,所述钝化层的材料包括SiOx(硅的氧化物)和SiNx(硅的氮化物)中的一种或多种。进一步地,所述钝化层包括第一钝化层和/或第二钝化层。例如,所述第一钝化层的材料为SiOx;例如,所述第二钝化层的材料为SiNx。In some embodiments of the present application, the material of the passivation layer includes one or more of SiO x (silicon oxide) and SiN x (silicon nitride). Further, the passivation layer includes a first passivation layer and/or a second passivation layer. For example, the material of the first passivation layer is SiO x ; for example, the material of the second passivation layer is SiN x .
在本申请的一些实施例中,本申请的阵列基板可为BCE结构的阵列基板。请参阅图1,所述阵列基板包括:设置在衬底基板101上的栅极102、栅绝缘层103、有源层104、源极1081、漏极1082、钝化层107。In some embodiments of the present application, the array substrate of the present application may be an array substrate of a BCE structure. Referring to FIG. 1 , the array substrate includes: a
具体地,在阵列基板中,栅极102设置在所述衬底基板101上。栅绝缘层103设置在所述栅极102和所述衬底基板101上。有源层104设置在所述栅绝缘层103上。所述有源层104包括源区、沟道区及漏区。源极1081设置在所述有源层104上的源区。漏极1082设置在所述有源层104上的漏区。钝化层107设置在所述栅极102、所述栅绝缘层103、所述有源层104、所述源极1081和所述漏极1082上。Specifically, in the array substrate, the
请继续参阅图1,有源层104包括层叠设置的第一有源层1041和第二有源层1042。此时,有源层104的双层叠层结构中,靠近栅极102的为第一有源层1041,远离栅极102的为第二有源层1042,第一有源层1041的迁移率要高于第二有源层1042。参考上述对有源层掺杂的稀土元素以及掺杂比的选择,实现第一有源层1041的迁移率高于第二有源层1042的迁移率。例如,第一有源层1041可以使用迁移率较高的稀土金属氧化物,而第二有源层1042使用迁移率相对较低的稀土金属氧化物,用以实现第一有源层1041的迁移率相对高于第二有源层1042的迁移率。此外,还可以采用相同氧化物半导体但掺杂比不同,进而实现第一有源层1041的迁移率相对高于第二有源层1042的迁移率。Please continue to refer to FIG. 1 , the active layer 104 includes a first
在本申请的一些实施例中,本申请的阵列基板可为ESL结构的阵列基板。请参阅图2,所述阵列基板包括:设置在衬底基板201上的栅极202、栅绝缘层203、有源层204、刻蚀阻挡层205、源极2081、漏极2082、钝化层207。In some embodiments of the present application, the array substrate of the present application may be an array substrate of an ESL structure. Please refer to FIG. 2, the array substrate includes: a
具体地,在阵列基板中,栅极202设置在所述衬底基板201上。栅绝缘层203设置在所述栅极202和所述衬底基板201上。有源层204设置在所述栅绝缘层203上;所述有源层204包括源区、沟道区及漏区。刻蚀阻挡层205设置在所述有源层204上的沟道区,以及部分的源区和部分的漏区。源极2081设置在所述有源层204上的源区,并且,设置在部分的所述刻蚀阻挡层上。漏极2082设置在所述有源层204上的漏区,并且,设置在部分的所述刻蚀阻挡层205上。钝化层207设置在所述栅极202、所述栅绝缘层203、所述有源层204、所述源极2081和所述漏极2082上。Specifically, in the array substrate, the
本申请实施例中,刻蚀阻挡层(ESL)结构的阵列基板可以提高氧化物阵列基板稳定性,该结构可有效降低外界环境因素与源漏电极的刻蚀损伤对背沟道的影响。In the embodiment of the present application, the array substrate with an etch stop layer (ESL) structure can improve the stability of the oxide array substrate, and this structure can effectively reduce the influence of external environmental factors and etching damage of the source and drain electrodes on the back channel.
请继续参阅图2,有源层204包括层叠设置的第一有源层2041和第二有源层2042。此时,在有源层204的双层叠层结构中,靠近栅极202的为第一有源层2041,远离栅极202的为第二有源层2042,第一有源层2041的迁移率要高于第二有源层2042。同理,双层叠层结构中的迁移率差,可以通过有源层中掺杂的稀土元素以及掺杂比的选择来实现第一有源层2041的迁移率高于第二有源层2042的迁移率的目的。例如,第一有源层2041可以使用迁移率较高的稀土金属氧化物,而第二有源层2042使用迁移率相对较低的稀土金属氧化物,用以实现第一有源层2041的迁移率相对高于第二有源层2042的迁移率。此外,还可以采用相同氧化物半导体但掺杂比不同,进而实现第一有源层2041的迁移率相对高于第二有源层2042的迁移率。Please continue to refer to FIG. 2 , the
在本申请的一些实施例中,本申请的阵列基板可为顶栅型(Top-Gate)阵列基板。请参阅图3,所述阵列基板包括:设置在衬底基板301上的有源层304、栅绝缘层305、栅极306、源极3081、漏极3082、钝化层。In some embodiments of the present application, the array substrate of the present application may be a Top-Gate array substrate. Referring to FIG. 3 , the array substrate includes: an
具体地,在阵列基板中,有源层304设置在所述衬底基板301上,所述有源层304包括源区、沟道区及漏区。栅绝缘层305设置在所述有源层304上的沟道区。栅极306设置在所述栅绝缘层305上。源极3081设置在所述有源层304上的源区。漏极3082设置在所述有源层304上的漏区。钝化层设置在所述有源层304、所述栅绝缘层305、所述栅极306、所述源极3081和所述漏极3082上。Specifically, in the array substrate, an
本实施例中,请继续参阅图3,有源层304包括层叠设置的第一有源层3041和第二有源层3042。此时,有源层304的双层叠层结构中,靠近栅极306的为第一有源层3041,远离栅极306的为第二有源层3042,第一有源层3041的迁移率要高于第二有源层3042。例如,第一有源层3041可以使用迁移率较高的稀土金属氧化物,而第二有源层3042使用迁移率相对较低的稀土金属氧化物,这样可以实现第一有源层3041的迁移率相对高于第二有源层3042的迁移率。此外,还可以采用相同氧化物半导体但掺杂比不同,进而实现第一有源层3041的迁移率相对高于第二有源层3042的迁移率。In this embodiment, please continue to refer to FIG. 3 , the
进一步地,请继续参阅图3,钝化层包括第一钝化层307和第二钝化层309。Further, please continue to refer to FIG. 3 , the passivation layer includes a
进一步地,请继续参阅图3,先在衬底基板301设置有金属层302以及覆盖在金属层302上的绝缘层303。再在绝缘层303上依次设置上述的有源层304、栅绝缘层305、栅极306、源极3081、漏极3082、钝化层。进一步地,所述钝化层包括第一钝化层307和第二钝化层309。Further, please continue to refer to FIG. 3 , firstly, a
本申请实施例的阵列基板的制备方法,包括:通过稀土金属氧化物靶和金属氧化物基质靶共溅射形成氧化物半导体层,其中通过调整工艺参数可获得对应掺杂比的半导体薄膜,即制成有源层。The method for preparing an array substrate according to an embodiment of the present application includes: forming an oxide semiconductor layer by co-sputtering a rare earth metal oxide target and a metal oxide matrix target, wherein a semiconductor film with a corresponding doping ratio can be obtained by adjusting the process parameters, namely Make the active layer.
本申请实施例的所述顶栅型(Top Gate)、ESL、BCE架构的阵列基板工艺流程分别如图下。The process flows of the array substrates of the top gate type (Top Gate), ESL, and BCE structures in the embodiment of the present application are as follows.
在一些实施例中,本申请实施例的顶栅型(Top Gate)架构的阵列基板工艺流程可以采用本领域常规的制备工艺制成。例如,请参见图3,顶栅型阵列基板的制备工艺包括:In some embodiments, the process flow of the top gate (Top Gate) array substrate in the embodiment of the present application can be manufactured by conventional manufacturing processes in the field. For example, please refer to FIG. 3, the preparation process of the top-gate array substrate includes:
衬底基板301:CVD(ChemicalVaporDeposition,化学气相沉积);Substrate substrate 301: CVD (Chemical Vapor Deposition, chemical vapor deposition);
金属层302:PVD(Physical Vapor Deposition,物理气相沉积)→PH→WET(湿法刻蚀)→STR(灰化);Metal layer 302: PVD (Physical Vapor Deposition, physical vapor deposition) → PH → WET (wet etching) → STR (ashing);
绝缘层303:CVD→PH→DET(干法刻蚀)→STR;Insulating layer 303: CVD→PH→DET (dry etching)→STR;
有源层304:PVD→PH→DET→STR→Anneal(退火);Active layer 304: PVD→PH→DET→STR→Anneal (annealing);
栅绝缘层305:CVD→PH→DET→STR→Anneal;Gate insulating layer 305: CVD→PH→DET→STR→Anneal;
栅极306:PVD→PH→WET→STR;Gate 306: PVD→PH→WET→STR;
第一钝化层307:CVD→PH→DET→STR;The first passivation layer 307: CVD→PH→DET→STR;
源极3081和漏极3082:PVD→PH→WET→STR;
第二钝化层309:CVD→PH→DET→STR。The second passivation layer 309: CVD→PH→DET→STR.
在一些实施例中,本申请实施例的ESL结构的阵列基板工艺流程可以采用本领域常规的制备工艺制成。例如,请参见图2,ESL结构的阵列基板的制备工艺可以包括如下工艺流程:In some embodiments, the process flow of the array substrate of the ESL structure in the embodiment of the present application can be made by using conventional manufacturing processes in the field. For example, referring to FIG. 2, the manufacturing process of an array substrate with an ESL structure may include the following process flow:
衬底基板201:CVD(化学气相沉积);Substrate substrate 201: CVD (Chemical Vapor Deposition);
栅极202:PVD(物理气相沉积)→PH→WET(湿法刻蚀)→STR(灰化);Gate 202: PVD (physical vapor deposition) → PH → WET (wet etching) → STR (ashing);
栅绝缘层203:CVD→PH→DET(干法刻蚀)→STR;Gate insulating layer 203: CVD→PH→DET (dry etching)→STR;
有源层204:PVD→PH→DET→STR→Anneal;Active layer 204: PVD→PH→DET→STR→Anneal;
刻蚀阻挡层205:CVD→PH→DET→STR→Anneal;Etching barrier layer 205: CVD→PH→DET→STR→Anneal;
源极2081和漏极2082:PVD→PH→WET→STR;
钝化层207:CVD→PH→DET→STR。Passivation layer 207: CVD→PH→DET→STR.
在一些实施例中,本申请实施例的BCE结构的阵列基板工艺流程可以采用本领域常规的制备工艺制成。例如,请参见图1,BCE结构的阵列基板的制备工艺可以包括如下工艺流程:In some embodiments, the process flow of the array substrate of the BCE structure in the embodiment of the present application can be manufactured by conventional preparation processes in the field. For example, please refer to FIG. 1, the preparation process of the array substrate of the BCE structure may include the following process flow:
衬底基板101:CVD(ChemicalVaporDeposition,化学气相沉积);Substrate substrate 101: CVD (Chemical Vapor Deposition, chemical vapor deposition);
栅极102:PVD(Physical Vapor Deposition,物理气相沉积)→PH→WET(湿法刻蚀)→STR(灰化);Gate 102: PVD (Physical Vapor Deposition, physical vapor deposition) → PH → WET (wet etching) → STR (ashing);
栅绝缘层103:CVD→PH→DET(干法刻蚀)→STR;Gate insulating layer 103: CVD→PH→DET (dry etching)→STR;
有源层104:PVD→PH→DET→STR→Anneal(退火);Active layer 104: PVD→PH→DET→STR→Anneal (annealing);
源极1081和漏极1082:PVD→PH→WET→STR;
钝化层107:CVD→PH→DET→STR→Anneal。Passivation layer 107: CVD→PH→DET→STR→Anneal.
本申请实施例还提供一种显示面板,该显示面板包括上述的阵列基板。显示面板还包括触控结构、封装结构等常规结构。合适显示面板的示例包括但不限于:LCD、OLED、Micro LED。An embodiment of the present application further provides a display panel, which includes the above-mentioned array substrate. The display panel also includes conventional structures such as a touch control structure and a packaging structure. Examples of suitable display panels include, but are not limited to: LCD, OLED, Micro LED.
本申请先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。The present application has carried out several tests successively, and a part of the test results are given as a reference to further describe the invention in detail, and will be described in detail below in conjunction with specific examples.
实施例1~4Example 1~4
实施例1~4提供一种Top-Gate架构的阵列基板,请参考图3,包括:设置在衬底基板301上的有源层304、栅绝缘层305、栅极306、源极3081、漏极3082、钝化层。有源层304包括层叠设置的第一有源层3041和第二有源层3042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。第一有源层的迁移率高于第二有源层的迁移率。
实施例1~4中,第一有源层、第二有源层中的稀土金属氧化物采用同元素不同比例掺杂。In Examples 1-4, the rare earth metal oxides in the first active layer and the second active layer are doped with the same element in different proportions.
具体地,第一有源层、第二有源层采用相同稀土元素且以不同比例掺杂时,稀土元素及掺杂摩尔比请详见图4所示。本实施例1~4采用图4中的参数获得的Top-Gate架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图4所示。Specifically, when the first active layer and the second active layer are doped with the same rare earth element but in different proportions, please refer to FIG. 4 for the rare earth element and doping molar ratio. In Examples 1 to 4, the array substrate of the Top-Gate structure obtained by the parameters in Figure 4 is used to detect device characteristics, such as threshold voltage, mobility, sub-threshold swing, switching current ratio, PBTS, and NBTIS. For the test results, see Figure 4 shows.
实施例5~8Embodiment 5~8
实施例5~8提供一种Top-Gate架构的阵列基板,请参考图3,包括:设置在衬底基板301上的有源层304、栅绝缘层305、栅极306、源极3081、漏极3082、钝化层。有源层304包括层叠设置的第一有源层3041和第二有源层3042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。第一有源层的迁移率高于第二有源层的迁移率。Embodiments 5 to 8 provide an array substrate of a Top-Gate structure, please refer to FIG.
实施例5~8中,第一有源层、第二有源层中的稀土金属氧化物为不同元素不同比例掺杂。In Examples 5-8, the rare earth metal oxides in the first active layer and the second active layer are doped with different elements in different proportions.
具体地,第一有源层、第二有源层采用不同稀土元素且以不同比例掺杂(相对高迁掺杂+相对低迁元素掺杂)时,稀土元素及掺杂摩尔比请详见图7所示,其中,第一有源层中是相对高迁移率元素掺杂,第二有源层中是相对低迁移率元素掺杂。本实施例5~8采用图7参数获得的Top-Gate架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图7所示。Specifically, when the first active layer and the second active layer are doped with different rare earth elements and in different proportions (relatively high transition doping + relatively low transition element doping), please refer to the rare earth element and doping molar ratio for details. As shown in FIG. 7 , the first active layer is doped with relatively high-mobility elements, and the second active layer is doped with relatively low-mobility elements. In Examples 5 to 8, the array substrate of the Top-Gate structure obtained by the parameters in Figure 7 is used to detect device characteristics, such as threshold voltage, mobility, sub-threshold swing, on-off current ratio, PBTS, and NBTIS, and the test results are shown in Figure 7. shown.
实施例9~12Embodiment 9~12
实施例9~12提供一种ESL架构的阵列基板,请参考图2,包括:设置在衬底基板201上的栅极202、栅绝缘层203、有源层204、刻蚀阻挡层205、源极2081、漏极2082、钝化层207。有源层204包括层叠设置的第一有源层2041和第二有源层2042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。Embodiments 9 to 12 provide an array substrate of an ESL structure, please refer to FIG.
实施例9~12中,第一有源层、第二有源层中的稀土金属氧化物为同元素不同比例掺杂。In Examples 9-12, the rare earth metal oxides in the first active layer and the second active layer are doped with the same element in different proportions.
具体地,第一有源层、第二有源层采用相同稀土元素且以不同比例掺杂时,稀土元素及掺杂摩尔比请详见图5所示。本实施例9~12采用图5参数获得的ESL架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图5所示。Specifically, when the first active layer and the second active layer are doped with the same rare earth element but in different proportions, the rare earth element and doping molar ratio are shown in FIG. 5 in detail. In Examples 9 to 12, the array substrate of the ESL structure obtained by the parameters in Figure 5 is used to detect device characteristics, such as threshold voltage, mobility, sub-threshold swing, switch current ratio, PBTS, and NBTIS. The test results are shown in Figure 5. .
实施例13~16Example 13~16
实施例13~16提供一种ESL架构的阵列基板,请参考图2,包括:设置在衬底基板201上的栅极202、栅绝缘层203、有源层204、刻蚀阻挡层205、源极2081、漏极2082、钝化层207。有源层204包括层叠设置的第一有源层2041和第二有源层2042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。Embodiments 13 to 16 provide an array substrate of an ESL structure, please refer to FIG.
实施例13~16中,第一有源层、第二有源层中的稀土金属氧化物为不同元素不同比例掺杂。In Examples 13-16, the rare earth metal oxides in the first active layer and the second active layer are doped with different elements in different proportions.
具体地,第一有源层、第二有源层采用不同稀土元素且以不同比例掺杂时,稀土元素及掺杂摩尔比请详见图8所示,其中,第一有源层中是相对高迁移率元素掺杂,第二有源层中是相对低迁移率元素掺杂。本实施例13~16采用图8参数获得的ESL架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图8所示。Specifically, when the first active layer and the second active layer are doped with different rare earth elements and in different proportions, the rare earth elements and doping molar ratios are shown in Figure 8, wherein the first active layer is Elements with relatively high mobility are doped, and the second active layer is doped with elements with relatively low mobility. In Examples 13 to 16, the array substrate of the ESL structure obtained by the parameters in Figure 8 is used to detect device characteristics, such as threshold voltage, mobility, sub-threshold swing, switch current ratio, PBTS, and NBTIS. The test results are shown in Figure 8. .
实施例17~20Example 17~20
实施例17~20提供一种BCE架构的阵列基板,请参考图1,包括:设置在衬底基板101上的栅极102、栅绝缘层103、有源层104、源极1081、漏极1082、钝化层107。有源层104包括层叠设置的第一有源层1041和第二有源层1042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。Embodiments 17-20 provide an array substrate with a BCE structure, please refer to FIG. 1 , including: a
实施例17~20中,第一有源层、第二有源层中的稀土金属氧化物为同元素不同比例掺杂。In Examples 17-20, the rare earth metal oxides in the first active layer and the second active layer are doped with the same element in different proportions.
具体地,第一有源层、第二有源层采用相同稀土元素且以不同比例掺杂时,稀土元素及掺杂摩尔比请详见图6所示。对实施例17~20采用图6参数获得的BCE架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图6所示。Specifically, when the first active layer and the second active layer are doped with the same rare earth element but in different proportions, the rare earth element and doping molar ratio are shown in FIG. 6 in detail. For the array substrates of the BCE structure obtained in Examples 17 to 20 using the parameters in Figure 6, the device characteristics are tested, such as threshold voltage, mobility, sub-threshold swing, switch current ratio, PBTS, and NBTIS. The test results are shown in Figure 6. .
实施例21~24Examples 21~24
实施例21~24提供一种BCE架构的阵列基板,请参考图1,包括:设置在衬底基板101上的栅极102、栅绝缘层103、有源层104、源极1081、漏极1082、钝化层107。有源层104包括层叠设置的第一有源层1041和第二有源层1042。第一有源层、第二有源层分别包括氧化物半导体(氧化铟锌)和稀土金属氧化物。Embodiments 21 to 24 provide an array substrate with a BCE structure, please refer to FIG. 1 , including: a
实施例21~24中,第一有源层、第二有源层中的稀土金属氧化物为不同元素不同比例掺杂。In Examples 21-24, the rare earth metal oxides in the first active layer and the second active layer are doped with different elements in different proportions.
具体地,第一有源层、第二有源层采用不同稀土元素且以不同比例掺杂时,稀土元素及掺杂摩尔比请详见图9所示,其中,第一有源层中是相对高迁移率元素掺杂,第二有源层中是相对低迁移率元素掺杂。对实施例21~24采用图9参数获得的BCE架构的阵列基板进行器件特性检测,如阈值电压、迁移率、亚阈值摆幅、开关电流比、PBTS、NBTIS,检测结果详见图9所示。Specifically, when the first active layer and the second active layer are doped with different rare earth elements and in different proportions, the rare earth elements and doping molar ratios are shown in Figure 9, wherein the first active layer is Elements with relatively high mobility are doped, and the second active layer is doped with elements with relatively low mobility. For the array substrates of the BCE structure obtained in Examples 21 to 24 using the parameters in Figure 9, the device characteristics are tested, such as threshold voltage, mobility, sub-threshold swing, switch current ratio, PBTS, and NBTIS. The test results are shown in Figure 9. .
综上,根据图4、图5、图6可知,本申请实施例1~4、9~12、17~20中的阵列基板,其中的第一有源层、第二有源层采用相同元素(铽)以及结合第一有源层更小的掺杂摩尔来实现迁移率差别。In summary, according to Fig. 4, Fig. 5, and Fig. 6, it can be seen that the array substrates in Examples 1-4, 9-12, 17-20 of the present application use the same elements for the first active layer and the second active layer (Tb) and in combination with smaller doping moles in the first active layer to achieve a mobility differential.
根据图7、图8、图9可知,本申请实施例5~8、13~16、21~24中的阵列基板,其中的第一有源层、第二有源层采用不同元素(第一有源层掺杂铽元素,第二有源层掺杂镱元素),以及结合掺杂摩尔使得第一有源层的相对迁移率高。According to Fig. 7, Fig. 8 and Fig. 9, it can be known that in the array substrates in Examples 5-8, 13-16, 21-24 of the present application, the first active layer and the second active layer use different elements (the first The active layer is doped with terbium element, the second active layer is doped with ytterbium element), and the combined doping mole makes the relative mobility of the first active layer high.
结合图4~6和图7~9,本申请实施例的阵列基板的器件特性优异。例如,实施例1中,阈值电压可以达到-0.5V,迁移率μ可以达到32.9cm2V-1s-1,亚阈值摆幅可以为0.3 V/decade,开关电流比约为8×106,PBTS可以达到0.42V,NBTIS可以达到-1.21V;例如,实施例5,阈值电压可以达到0V,迁移率μ可以达到30.7cm2V-1s-1,亚阈值摆幅可以为0.3V/decade,开关电流比约在5×106,PBTS可以达到0.55V,NBTIS可以达到-1.03V,等。由此可见,本申请实施例得到的阵列基板具有优异的器件特性,进而可以增加其应用的显示面板的性能。4-6 and 7-9, it can be seen that the device characteristics of the array substrate of the embodiment of the present application are excellent. For example, in Example 1, the threshold voltage can reach -0.5V, the mobility μ can reach 32.9cm 2 V -1 s -1 , the subthreshold swing can be 0.3 V/decade, and the on-off current ratio is about 8×106, PBTS can reach 0.42V, and NBTIS can reach -1.21V; for example, in Example 5, the threshold voltage can reach 0V, the mobility μ can reach 30.7cm 2 V -1 s -1 , and the subthreshold swing can be 0.3V/decade , The switch current ratio is about 5×106, PBTS can reach 0.55V, NBTIS can reach -1.03V, etc. It can be seen that the array substrate obtained in the embodiment of the present application has excellent device characteristics, and can further increase the performance of the display panel to which it is applied.
综上所述,本申请通过共掺杂的特定摩尔比的氧化物半导体叠层薄膜,前沟道侧形成迁移率相对较高、开态电流相对较高的薄膜,可以提高开态电流;在背沟道侧形成迁移率较低和关态电流相对较低的薄膜,可以降低关态电流。In summary, this application forms a film with relatively high mobility and relatively high on-state current on the front channel side by co-doping oxide semiconductor laminated films with a specific molar ratio, which can increase the on-state current; Forming a thin film with low mobility and relatively low off-state current on the back channel side can reduce the off-state current.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the foregoing embodiments, the descriptions of each embodiment have their own emphases, and for parts not described in detail in a certain embodiment, reference may be made to relevant descriptions of other embodiments.
以上对本申请实施例所提供的一种阵列基板和显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The above is a detailed introduction to an array substrate and a display panel provided by the embodiments of the present application. In this paper, specific examples are used to illustrate the principles and implementation methods of the present application. The descriptions of the above embodiments are only used to help understand the present application. method and its core idea; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope. Application Restrictions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211179821.7A CN115295564A (en) | 2022-09-27 | 2022-09-27 | Array substrates and display panels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211179821.7A CN115295564A (en) | 2022-09-27 | 2022-09-27 | Array substrates and display panels |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115295564A true CN115295564A (en) | 2022-11-04 |
Family
ID=83833327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211179821.7A Pending CN115295564A (en) | 2022-09-27 | 2022-09-27 | Array substrates and display panels |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115295564A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117457753A (en) * | 2023-11-20 | 2024-01-26 | 漳州市合琦靶材科技有限公司 | Double-active-layer terbium-doped oxide thin film transistor and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832235A (en) * | 2012-09-14 | 2012-12-19 | 华南理工大学 | Oxide semiconductor and method for manufacturing same |
CN103412450A (en) * | 2013-07-26 | 2013-11-27 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display device |
CN103500764A (en) * | 2013-10-21 | 2014-01-08 | 京东方科技集团股份有限公司 | Thin-film transistor, and preparation method, array substrate and display thereof |
CN104300007A (en) * | 2014-10-27 | 2015-01-21 | 京东方科技集团股份有限公司 | Thin film transistor and manufacturing method thereof, array substrate as well as display device |
US20160315163A1 (en) * | 2016-06-30 | 2016-10-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for forming gate insulators for tft structures |
CN106158978A (en) * | 2016-07-08 | 2016-11-23 | 武汉华星光电技术有限公司 | Thin film transistor (TFT), array base palte and preparation method thereof |
US20190363170A1 (en) * | 2017-05-08 | 2019-11-28 | Boe Technology Group Co., Ltd. | Thin film transistor, manufacturing method thereof, array substrate, display panel, and display device |
CN114122142A (en) * | 2021-11-03 | 2022-03-01 | Tcl华星光电技术有限公司 | Thin film transistor, array substrate and display panel |
-
2022
- 2022-09-27 CN CN202211179821.7A patent/CN115295564A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832235A (en) * | 2012-09-14 | 2012-12-19 | 华南理工大学 | Oxide semiconductor and method for manufacturing same |
CN103412450A (en) * | 2013-07-26 | 2013-11-27 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display device |
CN103500764A (en) * | 2013-10-21 | 2014-01-08 | 京东方科技集团股份有限公司 | Thin-film transistor, and preparation method, array substrate and display thereof |
CN104300007A (en) * | 2014-10-27 | 2015-01-21 | 京东方科技集团股份有限公司 | Thin film transistor and manufacturing method thereof, array substrate as well as display device |
US20160315163A1 (en) * | 2016-06-30 | 2016-10-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for forming gate insulators for tft structures |
CN106158978A (en) * | 2016-07-08 | 2016-11-23 | 武汉华星光电技术有限公司 | Thin film transistor (TFT), array base palte and preparation method thereof |
US20190363170A1 (en) * | 2017-05-08 | 2019-11-28 | Boe Technology Group Co., Ltd. | Thin film transistor, manufacturing method thereof, array substrate, display panel, and display device |
CN114122142A (en) * | 2021-11-03 | 2022-03-01 | Tcl华星光电技术有限公司 | Thin film transistor, array substrate and display panel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117457753A (en) * | 2023-11-20 | 2024-01-26 | 漳州市合琦靶材科技有限公司 | Double-active-layer terbium-doped oxide thin film transistor and preparation method thereof |
CN117457753B (en) * | 2023-11-20 | 2024-11-19 | 漳州市合琦靶材科技有限公司 | Double-active-layer terbium-doped oxide thin film transistor and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8890141B2 (en) | Oxide semiconductor transistors and methods of manufacturing the same | |
CN106158978B (en) | Thin film transistor (TFT), array substrate and preparation method thereof | |
CN105097829B (en) | Array base palte and preparation method thereof | |
CN102723367B (en) | Oxide semiconductor thin film transistor | |
CN106169480B (en) | Thin film transistor substrate having high reliability metal oxide semiconductor material | |
TW201140850A (en) | Thin-film field-effect transistor and method for manufacturing the same | |
CN103811549A (en) | Lateral mosfet | |
CN110752219B (en) | A thin film transistor and display panel | |
KR101694270B1 (en) | Substrate for high mobility electronic sensor and manufacturing method thereof | |
US20180197973A1 (en) | Manufacturing method of top gate thin-film transistor | |
CN102117836B (en) | Thin film transistor | |
CN105789117A (en) | Manufacturing method of TFT substrate and manufactured TFT substrate | |
CN101000926A (en) | Ferroelectric field effect transistor storage device structure and preparation method | |
CN104167448B (en) | Thin film transistor (TFT) and preparation method thereof, array base palte and display device | |
CN115295564A (en) | Array substrates and display panels | |
CN104685633B (en) | The method for making thin film transistor (TFT) | |
CN102709316A (en) | Three-dimensional (3D) oxide semiconductor thin film transistor and preparation method thereof | |
TWI383505B (en) | Thin film transistor and method of manufacturing same | |
CN103545377B (en) | A kind of oxide thin film transistor and manufacture method thereof | |
CN105870201A (en) | TFT device structure and production method thereof | |
CN102214700A (en) | Barrier layer applied to wet etching of oxide thin film transistor array | |
CN109148598B (en) | Thin film transistor and preparation method thereof | |
CN106601621A (en) | Method for preparing thin-film transistor and thin-film transistor with conductive isolated island | |
CN103545375B (en) | The discrete control type non-impurity-doped field-effect transistor of the nearly nearly drain-gate of source grid | |
CN107452810A (en) | A kind of metal oxide thin-film transistor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221104 |