CN115295483B - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN115295483B CN115295483B CN202210923546.9A CN202210923546A CN115295483B CN 115295483 B CN115295483 B CN 115295483B CN 202210923546 A CN202210923546 A CN 202210923546A CN 115295483 B CN115295483 B CN 115295483B
- Authority
- CN
- China
- Prior art keywords
- layer
- opening
- dielectric layer
- protective layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000010410 layer Substances 0.000 claims abstract description 220
- 239000011241 protective layer Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 30
- 238000005530 etching Methods 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 230000000149 penetrating effect Effects 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 13
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000231 atomic layer deposition Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000010408 film Substances 0.000 claims 18
- 239000010409 thin film Substances 0.000 claims 1
- 230000003139 buffering effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000000717 retained effect Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- -1 GaP Chemical class 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明属于集成电路制造技术领域,具体涉及一种半导体器件及其制作方法。The present invention belongs to the technical field of integrated circuit manufacturing, and in particular relates to a semiconductor device and a manufacturing method thereof.
背景技术Background Art
硅通孔(TSV,Through Silicon Via)是通过在芯片与芯片之间、晶圆和晶圆之间制作垂直导通,实现芯片之间互连的最新技术。与以往的IC封装键合和使用凸点的叠加技术不同,TSV能够使芯片在三维方向堆叠的密度更大、外形更小,并且大大改善芯片速度和功耗的性能。Through Silicon Via (TSV) is the latest technology to interconnect chips by making vertical connections between chips and wafers. Different from the previous IC packaging bonding and stacking technology using bumps, TSV can make chips stacked in three dimensions with higher density and smaller size, and greatly improve chip speed and power consumption.
TSV制程的集成方式很多,但是都面临一个相同的难题,TSV制程需要打通(贯穿)不同的材料层,例如包括硅层、IC中各种绝缘层或导电层。TSV技术需满足轮廓控制,随着TSV尺寸的减小,硅通孔的侧壁粗糙度需要控制的很小。实际工艺中,晶圆中的Low-k(低介电常数)材料的金属间电介质(IMD,Inter-Metal Dielectric)层在硅通孔刻蚀过程中很容易被刻蚀损伤,进而影响半导体器件的性能。There are many ways to integrate the TSV process, but they all face the same problem. The TSV process needs to break through (penetrate) different material layers, such as silicon layers, various insulating layers or conductive layers in ICs. TSV technology needs to meet profile control. As the size of TSV decreases, the sidewall roughness of the silicon via needs to be controlled very small. In actual processes, the inter-metal dielectric (IMD) layer of the Low-k (low dielectric constant) material in the wafer is easily etched and damaged during the silicon via etching process, which in turn affects the performance of semiconductor devices.
发明内容Summary of the invention
本发明的目的在于提供一种半导体器件及其制作方法,避免硅通孔刻蚀过程中的损伤,减少硅通孔侧壁的粗糙度,提高了半导体器件的性能和良品率。The object of the present invention is to provide a semiconductor device and a manufacturing method thereof, so as to avoid damage during TSV etching, reduce the roughness of the TSV sidewall, and improve the performance and yield of the semiconductor device.
本发明提供一种半导体器件的制作方法,包括:The present invention provides a method for manufacturing a semiconductor device, comprising:
提供一基底,所述基底上形成有介质层;Providing a substrate, on which a dielectric layer is formed;
形成第一开口,所述第一开口贯穿所述介质层且暴露出所述基底;forming a first opening, wherein the first opening penetrates the dielectric layer and exposes the substrate;
形成保护层,所述保护层至少覆盖所述第一开口的侧壁与所述介质层的表面,并执行一热处理工艺致密化所述保护层;forming a protective layer, the protective layer at least covering the sidewall of the first opening and the surface of the dielectric layer, and performing a heat treatment process to densify the protective layer;
以致密化的所述保护层为掩膜刻蚀所述第一开口下的所述基底形成第二开口,所述第一开口侧壁与所述介质层表面仍保留部分厚度的所述保护层。The substrate under the first opening is etched using the densified protective layer as a mask to form a second opening, and a partial thickness of the protective layer is still retained on the sidewall of the first opening and the surface of the dielectric layer.
进一步的,所述介质层中嵌设有金属层,所述保留的部分厚度所述保护层与与所述金属层接触且覆盖所述金属层。Furthermore, a metal layer is embedded in the dielectric layer, and the reserved portion of the protective layer is in contact with and covers the metal layer.
进一步的,所述保护层的材质包括:SiO2、SiON、SiBCN、SiCN中的至少一种。Furthermore, the material of the protection layer includes at least one of SiO 2 , SiON, SiBCN, and SiCN.
进一步的,采用原子层沉积工艺或者化学气相沉积工艺形成所述保护层。Furthermore, the protective layer is formed by an atomic layer deposition process or a chemical vapor deposition process.
进一步的,采用所述原子层沉积工艺中,通过重复执行交替给反应室提供硅源气体和氧源气体的循环形成所述保护层,所述硅源气体选自氯化硅化合物,所述氧源气体选自水或过氧化氢。Furthermore, in the atomic layer deposition process, the protective layer is formed by repeatedly performing a cycle of alternately providing a silicon source gas and an oxygen source gas to the reaction chamber, wherein the silicon source gas is selected from a silicon chloride compound, and the oxygen source gas is selected from water or hydrogen peroxide.
进一步的,所述基底与所述介质层之间,和/或所述介质层的表面形成有导电薄膜层,形成所述第一开口时,所述第一开口还贯穿所述导电薄膜层。Furthermore, a conductive film layer is formed between the substrate and the dielectric layer, and/or on the surface of the dielectric layer, and when the first opening is formed, the first opening also penetrates the conductive film layer.
进一步的,所述导电薄膜层包括低k介质层与金属层依次交替层叠的堆叠结构,所述低k介质层的介电系数小于等于3.5。Furthermore, the conductive film layer includes a stacked structure in which low-k dielectric layers and metal layers are alternately stacked in sequence, and the dielectric constant of the low-k dielectric layer is less than or equal to 3.5.
进一步的,所述低k介质层包括氮化硅层、氧化硅层、氮掺杂的碳化硅层、碳掺杂的氧化硅以及聚酰亚胺膜中的至少一种。Furthermore, the low-k dielectric layer includes at least one of a silicon nitride layer, a silicon oxide layer, a nitrogen-doped silicon carbide layer, a carbon-doped silicon oxide layer and a polyimide film.
进一步的,形成所述第二开口之后,还包括:Furthermore, after forming the second opening, the method further includes:
形成互连层,所述互连层填充所述第一开口与所述第二开口以形成硅通孔;所述互连层的材质包括铝、铜、钨以及钴中的至少一种。An interconnection layer is formed, wherein the interconnection layer fills the first opening and the second opening to form a through silicon via; the material of the interconnection layer includes at least one of aluminum, copper, tungsten and cobalt.
本发明还提供一种半导体器件,包括:The present invention also provides a semiconductor device, comprising:
基底,所述基底上形成有介质层,所述介质层中嵌设有金属层;A substrate, wherein a dielectric layer is formed on the substrate, and a metal layer is embedded in the dielectric layer;
第一开口,所述第一开口贯穿所述介质层;a first opening, wherein the first opening penetrates the dielectric layer;
致密化的保护层,所述致密化的保护层至少覆盖所述第一开口的侧壁与所述介质层的表面,并与所述金属层接触且覆盖所述金属层;a densified protective layer, the densified protective layer at least covering the sidewall of the first opening and the surface of the dielectric layer, and contacting with and covering the metal layer;
第二开口,位于所述第一开口正下方的所述基底内,所述第二开口为在所述基底的厚度方向上将所述第一开口顺沿至所述基底内部;A second opening is located in the base directly below the first opening, and the second opening extends along the first opening to the inside of the base in the thickness direction of the base;
互连层,所述互连层填充所述第一开口与所述第二开口以形成硅通孔,其中,在所述第一开口所在处的所述互连层与所述介质层之间形成有所述致密化的保护层。An interconnection layer fills the first opening and the second opening to form a through silicon via, wherein the densified protection layer is formed between the interconnection layer and the dielectric layer at the location of the first opening.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供了一种半导体器件及其制作方法,包括:提供一基底,所述基底上形成有介质层;形成第一开口,所述第一开口贯穿所述介质层且暴露出所述基底;形成保护层,所述保护层至少覆盖所述第一开口的侧壁与所述介质层的表面,并执行一热处理工艺致密化所述保护层;以致密化的所述保护层为掩膜刻蚀所述第一开口下的所述基底形成第二开口,所述第一开口侧壁与所述介质层表面仍保留部分厚度的所述保护层。所述第一开口和所述第二开口构成硅通孔。本发明形成第二开口时,由于第一开口的侧壁形成保护层,避免了位于第一开口侧壁的介质层在形成第二开口的刻蚀工艺中被刻蚀损伤,减少侧壁的粗糙度;同时保护层也起到保护缓冲作用,使得硅通孔刻蚀后的侧壁均匀光滑,提高了半导体器件的性能。The present invention provides a semiconductor device and a method for manufacturing the same, comprising: providing a substrate, on which a dielectric layer is formed; forming a first opening, the first opening penetrating the dielectric layer and exposing the substrate; forming a protective layer, the protective layer at least covering the sidewall of the first opening and the surface of the dielectric layer, and performing a heat treatment process to densify the protective layer; etching the substrate under the first opening using the densified protective layer as a mask to form a second opening, the sidewall of the first opening and the surface of the dielectric layer still retaining a portion of the thickness of the protective layer. The first opening and the second opening constitute a through silicon via. When the present invention forms the second opening, since the protective layer is formed on the sidewall of the first opening, the dielectric layer located on the sidewall of the first opening is prevented from being etched and damaged in the etching process of forming the second opening, thereby reducing the roughness of the sidewall; at the same time, the protective layer also plays a protective buffer role, so that the sidewall of the through silicon via after etching is uniform and smooth, thereby improving the performance of the semiconductor device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的半导体器件的制作方法流程示意图。FIG. 1 is a schematic flow chart of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
图2为本发明实施例的半导体器件的制作方法中提供基底后的示意图。FIG. 2 is a schematic diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention after providing a substrate.
图3为本发明实施例的半导体器件的制作方法中形成第一开口后的示意图。FIG. 3 is a schematic diagram of a semiconductor device manufacturing method after a first opening is formed according to an embodiment of the present invention.
图4为本发明实施例的半导体器件的制作方法中形成保护层后的示意图。FIG. 4 is a schematic diagram of a semiconductor device manufacturing method after a protection layer is formed according to an embodiment of the present invention.
图5为本发明实施例的半导体器件的制作方法中形成第二开口后的示意图。FIG. 5 is a schematic diagram of a semiconductor device manufacturing method after a second opening is formed according to an embodiment of the present invention.
图6为本发明实施例的半导体器件的制作方法中形成互连层后的示意图。FIG. 6 is a schematic diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention after an interconnection layer is formed.
图7为一种半导体器件的制作方法中介质层在硅通孔刻蚀中被损伤的示意图。FIG. 7 is a schematic diagram showing a method for manufacturing a semiconductor device in which a dielectric layer is damaged during TSV etching.
图8为本发明实施例的半导体器件的制作方法中有保护层避免介质层损伤的示意图。FIG. 8 is a schematic diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention in which a protective layer is provided to prevent damage to a dielectric layer.
其中,附图标记如下:The reference numerals are as follows:
10-基底;A-导电薄膜层;11-介质层;12-金属层;13-保护层;14-互连层;V1-第一开口;V2-第二开口。10 - substrate; A - conductive film layer; 11 - dielectric layer; 12 - metal layer; 13 - protective layer; 14 - interconnection layer; V 1 - first opening; V 2 - second opening.
具体实施方式DETAILED DESCRIPTION
基于上述研究,本发明实施例提供了一种半导体器件及其制作方法。以下结合附图和具体实施例对本发明进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图均采用非常简化的形式且使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。Based on the above research, an embodiment of the present invention provides a semiconductor device and a method for manufacturing the same. The present invention is further described in detail below in conjunction with the accompanying drawings and specific embodiments. According to the following description, the advantages and features of the present invention will become clearer. It should be noted that the drawings are all in a very simplified form and use an inaccurate scale, which is only used to conveniently and clearly assist in explaining the purpose of the embodiments of the present invention.
为了便于描述,本申请一些实施例可以使用诸如“在…上方”、“在…之下”、“顶部”、“下方”等空间相对术语,以描述如实施例各附图所示的一个元件或部件与另一个(或另一些)元件或部件之间的关系。应当理解的是,除了附图中描述的方位之外,空间相对术语还旨在包括装置在使用或操作中的不同方位。例如若附图中的装置被翻转,则被描述为在其它元件或部件“下方”或“之下”的元件或部件,随后将被定位为在其它元件或部件“上方”或“之上”。下文中的术语“第一”、“第二”、等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换。For ease of description, some embodiments of the present application may use spatially relative terms such as "above", "below", "top", "below", etc. to describe the relationship between one element or component and another (or other) elements or components as shown in the various figures of the embodiments. It should be understood that in addition to the orientations described in the drawings, the spatially relative terms are also intended to include different orientations of the device in use or operation. For example, if the device in the drawings is turned over, the elements or components described as being "below" or "below" other elements or components will subsequently be positioned as being "above" or "above" other elements or components. The terms "first", "second", etc. below are used to distinguish between similar elements and are not necessarily used to describe a specific order or time sequence. It is to be understood that these terms used in this way are interchangeable where appropriate.
本发明实施例提供了一种半导体器件的制作方法,如图1所示,包括:An embodiment of the present invention provides a method for manufacturing a semiconductor device, as shown in FIG1 , comprising:
步骤S1、提供一基底,所述基底上形成有介质层;Step S1, providing a substrate, wherein a dielectric layer is formed on the substrate;
步骤S2、形成第一开口,所述第一开口贯穿所述介质层且暴露出所述基底;Step S2, forming a first opening, wherein the first opening penetrates the dielectric layer and exposes the substrate;
步骤S3、形成保护层,所述保护层至少覆盖所述第一开口的侧壁与所述介质层的表面,并执行一热处理工艺致密化所述保护层;Step S3, forming a protection layer, the protection layer at least covering the sidewall of the first opening and the surface of the dielectric layer, and performing a heat treatment process to densify the protection layer;
步骤S4、以致密化的所述保护层为掩膜刻蚀所述第一开口下的所述基底形成第二开口,所述第一开口侧壁与所述介质层表面仍保留部分厚度的所述保护层。Step S4, using the densified protective layer as a mask to etch the substrate under the first opening to form a second opening, and a partial thickness of the protective layer is still retained on the sidewall of the first opening and the surface of the dielectric layer.
下面结合图2至图8详细介绍本发明实施例的半导体器件的制作方法的各步骤。The steps of the method for manufacturing a semiconductor device according to an embodiment of the present invention will be described in detail below with reference to FIGS. 2 to 8 .
如图2所示,提供基底10,所述基底10上形成有介质层11,所述介质层11中嵌设有金属层12。示例性的,所述介质层11的上表面与金属层12的上表面齐平。基底10可包括例如硅、锗、硅-锗等的半导体材料,或者例如GaP、GaAs、GaSb等的III-V半导体化合物。在一些实施例中,基底10可为绝缘体上硅(SOI)衬底或绝缘体上锗(GOI)衬底。此外,虽然未示出,但是基底10可以包括导电图案,导电图案可以是金属线路、接触件、导电焊盘等,并且可以是晶体管的栅电极、晶体管的源极/漏极、或二极管,但是实施例不限于此。金属层12的材质包括铝、铜、钨以及钴中的至少一种。As shown in FIG2 , a substrate 10 is provided, on which a dielectric layer 11 is formed, and a metal layer 12 is embedded in the dielectric layer 11. Exemplarily, the upper surface of the dielectric layer 11 is flush with the upper surface of the metal layer 12. The substrate 10 may include semiconductor materials such as silicon, germanium, silicon-germanium, etc., or III-V semiconductor compounds such as GaP, GaAs, GaSb, etc. In some embodiments, the substrate 10 may be a silicon-on-insulator (SOI) substrate or a germanium-on-insulator (GOI) substrate. In addition, although not shown, the substrate 10 may include a conductive pattern, which may be a metal line, a contact, a conductive pad, etc., and may be a gate electrode of a transistor, a source/drain of a transistor, or a diode, but the embodiment is not limited thereto. The material of the metal layer 12 includes at least one of aluminum, copper, tungsten and cobalt.
在一示例中,所述介质层11包括氧化硅。在另一示例中,介质层11可包括含碳和氢的硅氧化物(SiCOH);例如,介质层可包括约10%至约50%的碳。在又一示例中,介质层可包括含氟的氧化硅(F-SiO2)和/或多孔氧化硅等。In one example, the dielectric layer 11 includes silicon oxide. In another example, the dielectric layer 11 may include silicon oxide containing carbon and hydrogen (SiCOH); for example, the dielectric layer may include about 10% to about 50% carbon. In yet another example, the dielectric layer may include fluorine-containing silicon oxide (F-SiO 2 ) and/or porous silicon oxide, etc.
所述基底10与所述介质层11之间,和/或所述介质层11的表面形成有导电薄膜层A,后续形成所述第一开口时,所述第一开口还贯穿所述导电薄膜层A。导电薄膜层A包括低k介质层与金属层依次交替层叠的堆叠结构,相邻金属层之间通过低k介质层进行隔离,所述低k介质层的介电系数小于等于3.5。低k介质层例如可具有2.0至3.5的介电常数。Low-k(低介电系数)材料由于其固有的低介电系数,可产生较低的电容值,因而被广泛的应用于半导体制造领域,如作为填充于金属层(包括互连线、通孔)间的介质层材料。低k介质层可包括氮化硅层、氧化硅层、氮掺杂的碳化硅层(NDC,Nitrogen Dopped Silicon Carbite)、碳掺杂的氧化硅以及聚酰亚胺膜中的至少一种。金属层的材质可包括铜、铝以及钨中的至少一种。A conductive film layer A is formed between the substrate 10 and the dielectric layer 11, and/or on the surface of the dielectric layer 11. When the first opening is subsequently formed, the first opening also penetrates the conductive film layer A. The conductive film layer A includes a stacked structure in which low-k dielectric layers and metal layers are alternately stacked in sequence, and adjacent metal layers are isolated by low-k dielectric layers, and the dielectric constant of the low-k dielectric layer is less than or equal to 3.5. The low-k dielectric layer may have a dielectric constant of 2.0 to 3.5, for example. Low-k (low dielectric constant) materials can produce lower capacitance values due to their inherent low dielectric constants, and are therefore widely used in the field of semiconductor manufacturing, such as as dielectric layer materials filled between metal layers (including interconnects and through holes). The low-k dielectric layer may include at least one of a silicon nitride layer, a silicon oxide layer, a nitrogen-doped silicon carbide layer (NDC), a carbon-doped silicon oxide, and a polyimide film. The material of the metal layer may include at least one of copper, aluminum, and tungsten.
如图3所示,形成第一开口V1,所述第一开口V1贯穿所述介质层11且暴露出所述基底10。示例性的,第一开口V1的周侧的介质层11中嵌设有金属层12。As shown in Fig. 3, a first opening V1 is formed, and the first opening V1 penetrates the dielectric layer 11 and exposes the substrate 10. Exemplarily, a metal layer 12 is embedded in the dielectric layer 11 around the first opening V1 .
如图4所示,形成保护层13,所述保护层13至少覆盖所述第一开口V1的侧壁与所述介质层11的表面,并执行一热处理工艺致密化所述保护层13。所述保护层13还覆盖第一开口V1的底面(第一开口V1暴露出的基底10的表面)。可采用原子层沉积工艺或者化学气相沉积工艺形成所述保护层13。所述保护层的材料包括:SiO2、SiON、SiBCN、SiCN中的至少一种。在一具体示例性中,所述保护层的材质为氧化层,可采用原子层沉积方法沉积所述保护层13。原子层沉积工艺的间隙填充性能和阶梯覆盖性好,相应提高了保护层的保形覆盖能力。可通过重复执行交替给反应室提供硅源气体和氧源气体的循环形成保护层,所述硅源气体选自氯化硅(SixCly)化合物,这里表示硅原子比率的x在1到4之间,而表示氯化物原子比率的y在1到8之间。通过重复交替给反应室提供硅源气体和诸如水(H2O)和过氧化氢(H2O2)的氧源气体的循环形成保护层13,其中硅源气体选自诸如四氯化硅(SiCl4)和六氯化二硅(Si2Cl6)。保护层13优选地在20℃到400℃之间的温度沉积。As shown in FIG4 , a protective layer 13 is formed, and the protective layer 13 at least covers the sidewall of the first opening V1 and the surface of the dielectric layer 11, and a heat treatment process is performed to densify the protective layer 13. The protective layer 13 also covers the bottom surface of the first opening V1 (the surface of the substrate 10 exposed by the first opening V1 ). The protective layer 13 can be formed by an atomic layer deposition process or a chemical vapor deposition process. The material of the protective layer includes: at least one of SiO 2 , SiON, SiBCN, and SiCN. In a specific example, the material of the protective layer is an oxide layer, and the protective layer 13 can be deposited by an atomic layer deposition method. The atomic layer deposition process has good gap filling performance and step coverage, and correspondingly improves the conformal coverage ability of the protective layer. The protective layer can be formed by repeatedly performing a cycle of alternately providing a silicon source gas and an oxygen source gas to a reaction chamber, and the silicon source gas is selected from a silicon chloride (SixCly) compound, where x representing the silicon atomic ratio is between 1 and 4, and y representing the chloride atomic ratio is between 1 and 8. The protective layer 13 is formed by repeatedly supplying a silicon source gas selected from silicon tetrachloride (SiCl 4 ) and disilicon hexachloride (Si 2 Cl 6 ) and an oxygen source gas such as water (H 2 O) and hydrogen peroxide (H 2 O 2 ) to the reaction chamber . The protective layer 13 is preferably deposited at a temperature between 20°C and 400°C.
沉积保护层13后,执行一热处理工艺来致密化所述保护层13。该热处理在500℃到1200℃的温度下在选自一气体组的气氛中进行超过5分钟,该气体组由氢气(H2),氧气(O2),氮气(N2),臭氧(O3)和一氧化二氮(N2O)的混合气组成。热处理可采用在大于600℃的温度进行超过5秒种的快速热处理(RTP)。After the protective layer 13 is deposited, a heat treatment process is performed to densify the protective layer 13. The heat treatment is performed at a temperature of 500° C. to 1200° C. for more than 5 minutes in an atmosphere selected from a gas group consisting of a mixed gas of hydrogen (H 2 ), oxygen (O 2 ), nitrogen (N 2 ), ozone (O 3 ) and nitrous oxide (N 2 O). The heat treatment may be performed by a rapid thermal process (RTP) at a temperature greater than 600° C. for more than 5 seconds.
如图5所示,以致密化的所述保护层13为掩膜刻蚀所述第一开口V1下方的部分厚度的所述基底10形成第二开口V2,所述第一开口V1侧壁与所述介质层11表面仍保留部分厚度的所述保护层13。具体的,第二开口V2贯穿第一开口V1底部的保护层13及其正下方的部分厚度的所述基底10,在基底10的厚度方向上将第一开口顺沿至基底10内部。所述第一开口V1和所述第二开口V2构成硅通孔(TSV)。可采用干法刻蚀工艺形成第二开口V2。As shown in FIG5 , the densified protective layer 13 is used as a mask to etch a portion of the thickness of the substrate 10 below the first opening V 1 to form a second opening V 2 , and a portion of the thickness of the protective layer 13 is still retained on the sidewall of the first opening V 1 and the surface of the dielectric layer 11. Specifically, the second opening V 2 penetrates the protective layer 13 at the bottom of the first opening V 1 and a portion of the thickness of the substrate 10 directly below it, and extends the first opening along the thickness direction of the substrate 10 to the inside of the substrate 10. The first opening V 1 and the second opening V 2 constitute a through silicon via (TSV). The second opening V 2 can be formed by a dry etching process.
接着,如图6所示,可使用传统的大马士革镶嵌工艺在硅通孔中沉积金属阻挡层(未示出)和互连层14。可在硅通孔的侧壁和底面形成金属阻挡层,金属阻挡层可包括例如钛、氮化钛、钽和氮化钽等。所述互连层14覆盖所述金属阻挡层并填满所述硅通孔,即互连层的侧面和底部被金属阻挡层包裹。所述互连层14的材质包括铝、铜、钨以及钴中的至少一种。Next, as shown in FIG6 , a metal barrier layer (not shown) and an interconnection layer 14 may be deposited in the through silicon via using a conventional damascene process. A metal barrier layer may be formed on the sidewall and bottom surface of the through silicon via, and the metal barrier layer may include, for example, titanium, titanium nitride, tantalum, and tantalum nitride. The interconnection layer 14 covers the metal barrier layer and fills the through silicon via, that is, the side and bottom of the interconnection layer are wrapped by the metal barrier layer. The material of the interconnection layer 14 includes at least one of aluminum, copper, tungsten, and cobalt.
TSV制程中,由于硅通孔待贯穿的膜层种类复杂,在选择制程工艺参数上难度较大,很难覆盖到各个膜层最佳的蚀刻参数,TSV刻蚀选择分两步进行,先进行介质层11的刻蚀,再进行基底10刻蚀,当调节好介质层11的制程参数,再进行基底10刻蚀时会将已刻蚀好的介质层11恶化,使介质层11的粗糙度增大,特别是有导电薄膜层A时会导致导电薄膜层A被破坏(如图7椭圆内所示)。并且,在形成第一开口V1之后,紧接着形成第二开口V2,则第二开口V2刻蚀基底10的过程中,会将第一开口V1侧壁的介质层11一起刻蚀,亦即第一开口V1侧壁的介质层11被损伤,导致第一开口V1向周圈外扩甚至暴露出金属层12。In the TSV process, due to the complexity of the types of film layers to be penetrated by the through silicon via, it is difficult to select the process parameters, and it is difficult to cover the best etching parameters for each film layer. The TSV etching is selected in two steps, first the dielectric layer 11 is etched, and then the substrate 10 is etched. When the process parameters of the dielectric layer 11 are adjusted, the etched dielectric layer 11 will be deteriorated when the substrate 10 is etched, and the roughness of the dielectric layer 11 will increase, especially when there is a conductive film layer A, the conductive film layer A will be damaged (as shown in the oval in Figure 7). In addition, after the first opening V1 is formed, the second opening V2 is formed immediately. In the process of etching the substrate 10 of the second opening V2 , the dielectric layer 11 on the side wall of the first opening V1 will be etched together, that is, the dielectric layer 11 on the side wall of the first opening V1 is damaged, causing the first opening V1 to expand outward to the periphery and even expose the metal layer 12.
本发明实施例中,形成第二开口V2时,由于第一开口V1的侧壁形成保护层13,避免了位于第一开口V1侧壁的介质层11在形成第二开口V2的刻蚀工艺中被刻蚀损伤,减少硅通孔侧壁的粗糙度;同时保护层13也起到保护缓冲作用,使得TSV刻蚀后的侧壁均匀光滑(如图8椭圆内所示),提高了半导体器件的性能和良品率。同时,所述介质层11表面仍保留部分厚度的所述保护层13,避免了介质层11中的金属层12在形成第二开口V2的刻蚀工艺中被刻蚀损伤。进一步的,所述基底10与所述介质层11之间,和/或所述介质层11的表面形成有导电薄膜层A时,形成所述第一开口V1时,所述第一开口V1还贯穿所述导电薄膜层A。保护层13还覆盖第一开口暴露出的导电薄膜层A的侧壁,也避免了位于第一开口V1侧壁的导电薄膜层A在形成第二开口V2的刻蚀工艺中被刻蚀损伤,减少硅通孔侧壁的粗糙度。In the embodiment of the present invention, when the second opening V2 is formed, since the protective layer 13 is formed on the side wall of the first opening V1 , the dielectric layer 11 located on the side wall of the first opening V1 is prevented from being etched and damaged in the etching process of forming the second opening V2 , and the roughness of the side wall of the through silicon via is reduced; at the same time, the protective layer 13 also plays a protective buffer role, so that the side wall after TSV etching is uniform and smooth (as shown in the ellipse of Figure 8), thereby improving the performance and yield rate of the semiconductor device. At the same time, the protective layer 13 of a certain thickness is still retained on the surface of the dielectric layer 11, so that the metal layer 12 in the dielectric layer 11 is prevented from being etched and damaged in the etching process of forming the second opening V2 . Further, when a conductive film layer A is formed between the substrate 10 and the dielectric layer 11, and/or on the surface of the dielectric layer 11, when the first opening V1 is formed, the first opening V1 also penetrates the conductive film layer A. The protection layer 13 also covers the sidewalls of the conductive film layer A exposed by the first opening, thereby preventing the conductive film layer A located on the sidewalls of the first opening V1 from being etched and damaged during the etching process of forming the second opening V2 , thereby reducing the roughness of the sidewalls of the through silicon via.
本发明以致密化的保护层13为掩膜刻蚀第一开口下的基底形成第二开口,第一开口侧壁与介质层表面仍保留部分厚度的保护层,保留的部分厚度的保护层能够保留下来作为器件的一部分,一方面,能够保护第一开口侧壁的同时能够用作功能层用于覆盖嵌设在介质层中的金属层12,另一方面,不需要额外的工艺去除保护层避免去除过程中对第一开口的侧壁、第二开口的基底表面、嵌设在介质层11中的金属层12造成二次破坏。The present invention uses the densified protective layer 13 as a mask to etch the substrate under the first opening to form a second opening. The sidewall of the first opening and the surface of the dielectric layer still retain a partial thickness of the protective layer. The retained partial thickness of the protective layer can be retained as a part of the device. On the one hand, it can protect the sidewall of the first opening and can be used as a functional layer to cover the metal layer 12 embedded in the dielectric layer. On the other hand, no additional process is required to remove the protective layer to avoid secondary damage to the sidewall of the first opening, the substrate surface of the second opening, and the metal layer 12 embedded in the dielectric layer 11 during the removal process.
本发明实施例还提供一种半导体器件,如图6所示,包括:An embodiment of the present invention further provides a semiconductor device, as shown in FIG6 , comprising:
基底10,所述基底10上形成有介质层11,所述介质层11中嵌设有金属层12;A substrate 10, wherein a dielectric layer 11 is formed on the substrate 10, and a metal layer 12 is embedded in the dielectric layer 11;
第一开口,所述第一开口贯穿所述介质层11;A first opening, wherein the first opening penetrates the dielectric layer 11;
致密化的保护层13,所述致密化的保护层13至少覆盖所述第一开口的侧壁与所述介质层11的表面,并与所述金属层12接触且覆盖所述金属层12;a densified protective layer 13, wherein the densified protective layer 13 at least covers the sidewall of the first opening and the surface of the dielectric layer 11, and is in contact with and covers the metal layer 12;
第二开口,位于所述第一开口正下方的所述基底10内,所述第二开口为在所述基底10的厚度方向上将所述第一开口顺沿至所述基底10内部;A second opening is located in the base 10 directly below the first opening, and the second opening extends along the first opening to the inside of the base 10 in the thickness direction of the base 10;
互连层14,所述互连层14填充所述第一开口与所述第二开口以形成硅通孔,其中,在所述第一开口所在处的所述互连层14与所述介质层11之间形成有所述致密化的保护层13。An interconnection layer 14 is provided, wherein the interconnection layer 14 fills the first opening and the second opening to form a through silicon via, wherein the densified protection layer 13 is formed between the interconnection layer 14 and the dielectric layer 11 at the location of the first opening.
具体的,所述互连层14的材质包括铝、铜、钨以及钴中的至少一种。所述基底10与所述介质层11之间,和/或所述介质层11的表面还可形成有导电薄膜层A,第一开口V1贯穿所述导电薄膜层A。保护层13还覆盖第一开口暴露出的导电薄膜层A的侧壁。Specifically, the material of the interconnection layer 14 includes at least one of aluminum, copper, tungsten and cobalt. A conductive film layer A may be formed between the substrate 10 and the dielectric layer 11, and/or on the surface of the dielectric layer 11, and the first opening V1 penetrates the conductive film layer A. The protective layer 13 also covers the sidewalls of the conductive film layer A exposed by the first opening.
综上所述,本发明提供了一种半导体器件及其制作方法,包括:提供一基底,所述基底上形成有介质层;形成第一开口,所述第一开口贯穿所述介质层且暴露出所述基底;形成保护层,所述保护层至少覆盖所述第一开口的侧壁与所述介质层的表面,并执行一热处理工艺致密化所述保护层;以致密化的所述保护层为掩膜刻蚀所述第一开口下的所述基底形成第二开口,所述第一开口侧壁与所述介质层表面仍保留部分厚度的所述保护层。所述第一开口和所述第二开口构成硅通孔。本发明形成第二开口时,由于第一开口的侧壁形成保护层,避免了位于第一开口侧壁的介质层在形成第二开口的刻蚀工艺中被刻蚀损伤,减少侧壁的粗糙度;同时保护层也起到保护缓冲作用,使得硅通孔刻蚀后的侧壁均匀光滑,提高了半导体器件的性能。In summary, the present invention provides a semiconductor device and a method for manufacturing the same, including: providing a substrate, on which a dielectric layer is formed; forming a first opening, the first opening penetrating the dielectric layer and exposing the substrate; forming a protective layer, the protective layer at least covering the sidewalls of the first opening and the surface of the dielectric layer, and performing a heat treatment process to densify the protective layer; using the densified protective layer as a mask to etch the substrate under the first opening to form a second opening, the sidewalls of the first opening and the surface of the dielectric layer still retain a portion of the thickness of the protective layer. The first opening and the second opening constitute a through silicon via. When the present invention forms the second opening, since the protective layer is formed on the sidewalls of the first opening, the dielectric layer located on the sidewalls of the first opening is prevented from being etched and damaged in the etching process of forming the second opening, thereby reducing the roughness of the sidewalls; at the same time, the protective layer also plays a protective buffer role, so that the sidewalls of the through silicon via after etching are uniform and smooth, thereby improving the performance of the semiconductor device.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于与实施例公开的器件相对应,所以描述的比较简单,相关之处参见方法部分说明即可。In this specification, each embodiment is described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the embodiments can be referred to each other. For the method disclosed in the embodiment, since it corresponds to the device disclosed in the embodiment, the description is relatively simple, and the relevant parts can be referred to the method part description.
上述描述仅是对本发明较佳实施例的描述,并非对本发明权利范围的任何限定,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。The above description is only a description of the preferred embodiment of the present invention, and is not any limitation on the scope of rights of the present invention. Any technical personnel in this field can make possible changes and modifications to the technical solution of the present invention by using the methods and technical contents disclosed above without departing from the spirit and scope of the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention shall fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411420695.9A CN119297155A (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
CN202210923546.9A CN115295483B (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210923546.9A CN115295483B (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411420695.9A Division CN119297155A (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115295483A CN115295483A (en) | 2022-11-04 |
CN115295483B true CN115295483B (en) | 2024-10-29 |
Family
ID=83825951
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411420695.9A Pending CN119297155A (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
CN202210923546.9A Active CN115295483B (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411420695.9A Pending CN119297155A (en) | 2022-08-02 | 2022-08-02 | Semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN119297155A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119495670A (en) * | 2023-08-17 | 2025-02-21 | 华为技术有限公司 | Semiconductor structure and manufacturing method thereof and electronic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2693467A1 (en) * | 2012-08-01 | 2014-02-05 | ams AG | A method of producing a semiconductor device having an interconnect through the substrate |
CN106206598A (en) * | 2016-07-27 | 2016-12-07 | 上海华虹宏力半导体制造有限公司 | Gate-division type flash memory device making method |
CN109755175A (en) * | 2017-11-03 | 2019-05-14 | 中芯国际集成电路制造(上海)有限公司 | interconnection structure and forming method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10321466B4 (en) * | 2003-05-13 | 2007-01-25 | Infineon Technologies Ag | Trench storage capacitor and method for its production |
KR20080028591A (en) * | 2006-09-27 | 2008-04-01 | 주식회사 하이닉스반도체 | Contact hole formation method of semiconductor device |
US7833895B2 (en) * | 2008-05-12 | 2010-11-16 | Texas Instruments Incorporated | TSVS having chemically exposed TSV tips for integrated circuit devices |
JP5504053B2 (en) * | 2010-05-27 | 2014-05-28 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
US8859430B2 (en) * | 2012-06-22 | 2014-10-14 | Tokyo Electron Limited | Sidewall protection of low-K material during etching and ashing |
KR101932229B1 (en) * | 2012-08-28 | 2019-03-21 | 에스케이하이닉스 주식회사 | Semiconductor device having buried bitline and method for fabricating the same |
CN103839919B (en) * | 2012-11-23 | 2018-09-14 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method, fuse equipment and its manufacturing method of electrode |
CN105460883B (en) * | 2014-09-05 | 2017-11-14 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and preparation method thereof, electronic installation |
US10622394B2 (en) * | 2016-12-02 | 2020-04-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensing device |
CN114093763B (en) * | 2021-11-23 | 2024-10-18 | 武汉新芯集成电路股份有限公司 | Semiconductor manufacturing method |
-
2022
- 2022-08-02 CN CN202411420695.9A patent/CN119297155A/en active Pending
- 2022-08-02 CN CN202210923546.9A patent/CN115295483B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2693467A1 (en) * | 2012-08-01 | 2014-02-05 | ams AG | A method of producing a semiconductor device having an interconnect through the substrate |
CN106206598A (en) * | 2016-07-27 | 2016-12-07 | 上海华虹宏力半导体制造有限公司 | Gate-division type flash memory device making method |
CN109755175A (en) * | 2017-11-03 | 2019-05-14 | 中芯国际集成电路制造(上海)有限公司 | interconnection structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115295483A (en) | 2022-11-04 |
CN119297155A (en) | 2025-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10847418B2 (en) | Formation method of damascene structure | |
US9984922B2 (en) | Interconnects having sealing structures to enable selective metal capping layers | |
JP4350337B2 (en) | Semiconductor device | |
US6972253B2 (en) | Method for forming dielectric barrier layer in damascene structure | |
US8629560B2 (en) | Self aligned air-gap in interconnect structures | |
US8847405B2 (en) | Integrated circuits including air gaps around interconnect structures, and fabrication methods thereof | |
US9576897B2 (en) | Semiconductor interconnect device | |
JP3080071B2 (en) | Semiconductor device and manufacturing method thereof | |
US20180308793A1 (en) | Structure and formation method of interconnection structure of semiconductor device | |
US20220310544A1 (en) | Semiconductor device structure and methods of forming the same | |
CN112435958B (en) | Integrated circuit structure and method for forming the same | |
CN115295483B (en) | Semiconductor device and method for manufacturing the same | |
US10453794B2 (en) | Interconnect structure for semiconductor devices | |
US11469311B2 (en) | Method for forming semiconductor device with air gap between two conductive features | |
US6881661B2 (en) | Manufacturing method of semiconductor device | |
KR20240018550A (en) | Liner-free conductive structures with anchor points | |
US20230099965A1 (en) | Airgap isolation for back-end-of-the-line semiconductor interconnect structure with top via | |
JP2004207604A (en) | Semiconductor device and its manufacturing method | |
TWI840964B (en) | Method for forming semiconductor structure | |
JP2004289009A (en) | Method for manufacturing semiconductor device | |
TWI809823B (en) | Method of forming semiconductor device | |
US20240266216A1 (en) | Metal structures with seams | |
US10818596B2 (en) | Method for forming semiconductor device structure with graphene layer | |
TW202518580A (en) | Method of forming semiconductor structure and interconnect structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province Applicant after: Wuhan Xinxin Integrated Circuit Co.,Ltd. Address before: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province Applicant before: Wuhan Xinxin Semiconductor Manufacturing Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |