CN115284079A - Magnetorheological Polishing Calibration Method - Google Patents
Magnetorheological Polishing Calibration Method Download PDFInfo
- Publication number
- CN115284079A CN115284079A CN202211204854.2A CN202211204854A CN115284079A CN 115284079 A CN115284079 A CN 115284079A CN 202211204854 A CN202211204854 A CN 202211204854A CN 115284079 A CN115284079 A CN 115284079A
- Authority
- CN
- China
- Prior art keywords
- ball
- laser tracker
- coordinate system
- probe
- measuring head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 49
- 238000005259 measurement Methods 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000000523 sample Substances 0.000 claims description 79
- 230000008569 process Effects 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 241001422033 Thestylus Species 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
- B24B1/005—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B31/00—Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
- B24B31/10—Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
- B24B31/112—Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using magnetically consolidated grinding powder, moved relatively to the workpiece under the influence of pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/12—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及磁流变抛光定标技术领域,特别涉及一种磁流变抛光标定方法。The invention relates to the technical field of magnetorheological polishing calibration, in particular to a magnetorheological polishing calibration method.
背景技术Background technique
磁流变抛光技术是高精度光学加工领域一种常用的加工技术,该加工技术具有去除函数稳定、加工确定性高以及收敛效率快等优点。磁流变抛光技术通常与加工设备相结合,基于机床优异的运动性能与较高的轨迹精度,磁流变抛光技术可以对口径超过1m量级的大口径光学元件实现纳米量级的加工精度。而利用磁流变抛光技术实现高精度加工目标的一个前提条件是精确标定光学元件相对于机床的空间位置,常用的一种标定方法是采用测头定位法确定光学元件的空间位姿,根据测头与抛光轮之间的空间转换关系,最终确定光学元件相对于机床的空间位姿。因此测头与抛光轮之间能否建立准确的空间位置转换关系将直接影响光学元件相对于机床的标定精度,进而影响最终的加工精度。Magnetorheological polishing technology is a commonly used processing technology in the field of high-precision optical processing. This processing technology has the advantages of stable removal function, high processing certainty and fast convergence efficiency. Magneto-rheological polishing technology is usually combined with processing equipment. Based on the excellent motion performance and high trajectory accuracy of machine tools, magnetorheological polishing technology can achieve nanometer-level processing accuracy for large-diameter optical components with a diameter of more than 1m. A prerequisite for using magnetorheological polishing technology to achieve high-precision machining goals is to accurately calibrate the spatial position of the optical component relative to the machine tool. A commonly used calibration method is to use the probe positioning method to determine the spatial position and orientation of the optical component. The spatial conversion relationship between the head and the polishing wheel finally determines the spatial pose of the optical element relative to the machine tool. Therefore, whether an accurate spatial position conversion relationship can be established between the probe and the polishing wheel will directly affect the calibration accuracy of the optical element relative to the machine tool, and then affect the final machining accuracy.
目前关于测头与抛光轮之间空间位置转换关系的标定方法主要有两种:一种是依靠设备的设计图纸与加工装配精度计算两者之间的空间转换矩阵,该方法依赖于硬件的加工和装配精度,增加设备整体的成本;另一种是基于标准块的接触式标定方法获取两者之间的空间转换关系,该方法依赖于操作人员的操作经验,存在因操作失误导致标定精度降低的风险。At present, there are mainly two calibration methods for the spatial position conversion relationship between the probe and the polishing wheel: one is to rely on the design drawings of the equipment and the processing and assembly accuracy to calculate the spatial conversion matrix between the two, and this method depends on the processing of the hardware and assembly accuracy, increasing the overall cost of the equipment; the other is to obtain the spatial conversion relationship between the two based on the contact calibration method of the standard block. This method relies on the operator's operating experience, and the calibration accuracy is reduced due to operational errors. risks of.
发明内容Contents of the invention
本发明的目的是为了克服已有技术的缺陷,提出一种磁流变抛光标定方法,基于激光跟踪仪测量精度高的优点,通过非接触式的标定方法实现磁流变抛光轮与测头之间空间转换关系的精准标定。该方法不依赖于硬件的加工精度与装配精度,并且降低了对操作人员的操作经验需求。The purpose of the present invention is to overcome the defects of the prior art, and propose a magneto-rheological polishing calibration method. Based on the advantages of high measurement accuracy of the laser tracker, the contact between the magnetorheological polishing wheel and the measuring head can be realized through a non-contact calibration method. Accurate calibration of the spatial transformation relationship between them. The method does not depend on the machining accuracy and assembly accuracy of the hardware, and reduces the need for operating experience of operators.
为实现上述目的,本发明采用以下具体技术方案:To achieve the above object, the present invention adopts the following specific technical solutions:
本发明提供的磁流变抛光标定方法,利用磁流变抛光标定装置实现,磁流变抛光标定装置包括加工设备、磁流变抛光轮、测头、激光跟踪仪和数据处理器,磁流变抛光轮与测头分别安装在加工设备上,磁流变抛光标定方法包括如下步骤:The magnetorheological polishing calibration method provided by the present invention is realized by a magnetorheological polishing calibration device. The magnetorheological polishing calibration device includes processing equipment, a magnetorheological polishing wheel, a measuring head, a laser tracker and a data processor. The polishing wheel and the measuring head are respectively installed on the processing equipment, and the magnetorheological polishing calibration method includes the following steps:
S1、基于激光跟踪仪与加工设备的工具坐标系建立激光跟踪仪的测量坐标系;S1. Establish the measurement coordinate system of the laser tracker based on the tool coordinate system of the laser tracker and the processing equipment;
S2、基于激光跟踪仪的球拟合功能或圆拟合功能测得测头在测量坐标系中的空间坐标,以及基于激光跟踪仪的球拟合功能测得磁流变抛光轮在测量坐标系中的空间坐标;S2. Measure the spatial coordinates of the probe in the measurement coordinate system based on the ball fitting function or circle fitting function of the laser tracker, and measure the magnetorheological polishing wheel in the measurement coordinate system based on the ball fitting function of the laser tracker The spatial coordinates in;
S3、数据处理器通过获取测头的空间坐标与磁流变抛光轮的空间坐标并相减,获得测头与磁流变抛光轮之间的空间位置转换关系。S3. The data processor acquires the spatial position conversion relationship between the measuring head and the magnetorheological polishing wheel by obtaining the spatial coordinates of the measuring head and the spatial coordinates of the magnetorheological polishing wheel and subtracting them.
优选地,测头包括从上至下同轴相连的测头支架、测头本体与测头球部,通过测头支架将测头本体与加工设备固定连接。Preferably, the stylus includes a stylus bracket connected coaxially from top to bottom, a stylus body and a stylus ball, and the stylus body is fixedly connected to the processing equipment through the stylus bracket.
优选地,在通过激光跟踪仪的球拟合功能测得测头的空间坐标的过程中,将激光跟踪仪的靶球放置于测头球部表面的不同位置,通过激光跟踪仪测量靶球在不同位置时的坐标,利用激光跟踪仪的球拟合功能确定测头球部的中心点坐标(x2,y2,z2)以及测头球部的半径R2,则测头球部在测量坐标系中的空间坐标为(x2,y2,z2-R2)。Preferably, in the process of measuring the spatial coordinates of the measuring head through the ball fitting function of the laser tracker, the target ball of the laser tracker is placed on different positions on the surface of the probe ball, and the target ball is measured by the laser tracker at Coordinates at different positions, using the ball fitting function of the laser tracker to determine the center point coordinates (x 2 , y 2 , z 2 ) of the probe ball and the radius R 2 of the probe ball, then the probe ball is at The spatial coordinates in the measurement coordinate system are (x 2 , y 2 , z 2 −R 2 ).
优选地,在通过激光跟踪仪的圆拟合功能测得测头的空间坐标的过程中,首先,在加工设备的工作区域内放置一个物体,驱动加工设备沿工具坐标系的Z轴方向缓慢向下移动,当测头球部刚好触碰物体的上表面时,停止加工设备运动,并保持当前姿态不变;其次,将靶球放置于测头本体表面的不同位置,通过激光跟踪仪测量靶球在不同位置时的坐标,利用激光跟踪仪的圆拟合功能确定测头本体所在圆的中心点坐标(x2,y2);然后,标记测头球部在物体的上表面位置并将测头从物体的上表面移开,将靶球放置在标记位置并利用激光跟踪仪测量此时靶球的位置坐标z2,则测头球部在测量坐标系中的空间坐标为(x2,y2,z2-r),r为靶球的半径值。Preferably, in the process of measuring the spatial coordinates of the measuring head through the circle fitting function of the laser tracker, firstly, an object is placed in the working area of the processing equipment, and the processing equipment is driven to move slowly along the Z-axis direction of the tool coordinate system. Move down, when the ball of the probe just touches the upper surface of the object, stop the movement of the processing equipment and keep the current posture unchanged; secondly, place the target ball at different positions on the surface of the probe body, and measure the target through the laser tracker For the coordinates of the ball at different positions, use the circle fitting function of the laser tracker to determine the coordinates (x 2 , y 2 ) of the center point of the circle where the probe body is located; then, mark the position of the probe ball on the upper surface of the object and Move the probe away from the upper surface of the object, place the target ball at the marked position and use the laser tracker to measure the position coordinate z 2 of the target ball at this time, then the spatial coordinates of the probe ball in the measurement coordinate system are (x 2 , y 2 , z 2 -r), r is the radius value of the target ball.
优选地,在通过激光跟踪仪的球拟合功能测得磁流变抛光轮的空间坐标的过程中,当加工设备处于静止状态时,将靶球放置于磁流变抛光轮表面的不同位置,通过激光跟踪仪测量靶球在不同位置时的坐标,利用激光跟踪仪的球拟合功能确定磁流变抛光轮的中心点坐标(x1,y1,z1)以及抛光轮半径R1,由此可以得到磁流变抛光轮在测量坐标系中的空间坐标为(x1,y1,z1-R1)。Preferably, during the process of measuring the spatial coordinates of the magnetorheological polishing wheel through the ball fitting function of the laser tracker, when the processing equipment is in a static state, the target balls are placed on different positions on the surface of the magnetorheological polishing wheel, The coordinates of the target ball at different positions are measured by the laser tracker, and the center point coordinates (x 1 , y 1 , z 1 ) of the magnetorheological polishing wheel and the radius R 1 of the polishing wheel are determined by using the ball fitting function of the laser tracker. Thus, the spatial coordinates of the magnetorheological polishing wheel in the measurement coordinate system can be obtained as (x 1 , y 1 , z 1 -R 1 ).
优选地,测头与磁流变抛光轮之间的空间位置转换关系表示为(x2,y2,z2-R2)-(x1,y1,z1-R1)或表示为(x2,y2,z2-r)-(x1,y1,z1-R1)。Preferably, the spatial position conversion relationship between the measuring head and the magnetorheological polishing wheel is expressed as (x 2 , y 2 , z 2 -R 2 )-(x 1 , y 1 , z 1 -R 1 ) or expressed as (x 2 , y 2 , z 2 -r)-(x 1 , y 1 , z 1 -R 1 ).
优选地,将激光跟踪仪的靶球放置于加工设备上,加工设备携带靶球分别沿着加工设备的工具坐标系的三个坐标轴移动,同时利用激光跟踪仪测量靶球在不同位置时的坐标,基于激光跟踪仪的直线拟合功能确定激光跟踪仪的测量坐标系的三个坐标轴的方向,使得测量坐标系的三个坐标轴的方向与工具坐标系的三个坐标轴的方向相一致。Preferably, the target ball of the laser tracker is placed on the processing equipment, and the processing equipment carries the target ball to move along the three coordinate axes of the tool coordinate system of the processing equipment, and the laser tracker is used to measure the target ball at different positions. Coordinates, based on the straight line fitting function of the laser tracker, determine the directions of the three coordinate axes of the measurement coordinate system of the laser tracker, so that the directions of the three coordinate axes of the measurement coordinate system are consistent with the directions of the three coordinate axes of the tool coordinate system unanimous.
本发明能够取得如下技术效果:基于磁流变抛光轮和测头的几何外形特征,利用激光跟踪仪测量精度高的优点,通过非接触方式精确标定磁流变抛光轮与测头之间的空间位置关系,该标定方法不依赖于硬件的加工精度与装配精度,不需要借助标准块辅助标定,同时还能降低操作人员的操作经验的需求,整个标定过程操作步骤简单,标定时间短,标定精度高,满足磁流变加工设备对磁流变抛光轮与测头之间空间位置关系的标定精度要求。The present invention can achieve the following technical effects: based on the geometric shape characteristics of the magneto-rheological polishing wheel and the measuring head, the space between the magneto-rheological polishing wheel and the measuring head can be accurately calibrated in a non-contact manner by utilizing the advantages of high measurement accuracy of the laser tracker Positional relationship, this calibration method does not depend on the processing accuracy and assembly accuracy of the hardware, does not need to use standard blocks to assist calibration, and can also reduce the need for operator experience. The entire calibration process has simple steps, short calibration time, and high calibration accuracy. High, meeting the calibration accuracy requirements of the magnetorheological processing equipment for the spatial position relationship between the magnetorheological polishing wheel and the measuring head.
附图说明Description of drawings
图1是根据本发明实施例提供的磁流变抛光标定装置的结构示意图;Fig. 1 is a schematic structural diagram of a magneto-rheological polishing calibration device provided according to an embodiment of the present invention;
图2是根据本发明实施例提供的磁流变抛光标定方法的流程示意图。Fig. 2 is a schematic flowchart of a calibration method for magnetorheological polishing provided according to an embodiment of the present invention.
其中的附图标记包括:激光跟踪仪1、靶球2、磁流变加工模块3、加工设备4、磁流变抛光轮5、过渡板6、测头7、测头支架7-1、测头本体7-2和测头球部7-3。The reference signs include:
具体实施方式Detailed ways
在下文中,将参考附图描述本发明的实施例。在下面的描述中,相同的模块使用相同的附图标记表示。在相同的附图标记的情况下,它们的名称和功能也相同。因此,将不重复其详细描述。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the same blocks are denoted by the same reference numerals. With the same reference numerals, their names and functions are also the same. Therefore, its detailed description will not be repeated.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.
本发明实施例提供一种磁流变抛光标定方法,该标定方法基于磁流变抛光标定装置实现,在描述该标定方法之前先对该标定装置进行描述。An embodiment of the present invention provides a magneto-rheological polishing calibration method, which is implemented based on a magnetorheological polishing calibration device. Before describing the calibration method, the calibration device will be described.
图1示出了根据本发明实施例提供的磁流变抛光标定装置的结构。Fig. 1 shows the structure of a magneto-rheological polishing calibration device provided according to an embodiment of the present invention.
如图1所示,本发明实施例提供的磁流变抛光标定装置,包括激光跟踪仪1、靶球2、磁流变加工模块3、加工设备4和数据处理器,靶球2放置在磁流变加工模块3的不同位置,配合激光跟踪仪1完成测量工作;磁流变加工模块3安装在加工设备4上,由加工设备4驱动磁流变加工模块3移动,加工设备4可以为精密数控机床或六自由度工业机械臂,下面以精密数控机床作为加工设备4进行说明,六自由度工业机械臂同理可知。As shown in Figure 1, the magnetorheological polishing calibration device provided by the embodiment of the present invention includes a
磁流变加工模块3包括磁流变抛光轮5、过渡板6和测头7,磁流变抛光轮5通过过渡板6安装在精密数控机床4上,测头7也安装在精密数控机床4上且位于磁流变抛光轮5的一侧。The
测头7包括从上至下同轴的测头支架7-1、测头本体7-2和测头球部7-3,测头球部7-3位于测头本体7-2的下端,测头支架7-1将测头本体7-2固定在精密数控机床4上。The probe 7 includes a probe bracket 7-1 coaxial from top to bottom, a probe body 7-2 and a probe ball 7-3, the probe ball 7-3 is located at the lower end of the probe body 7-2, The probe bracket 7-1 fixes the probe body 7-2 on the precision numerical control machine tool 4.
通过激光跟踪仪1与靶球2的配合实现对测头7和磁流变抛光轮5的空间坐标测量,数据处理器通过获取测头7的空间坐标与磁流变抛光轮5的空间坐标并相减,获得测头7与磁流变抛光轮5之间的空间位置转换关系。Through the cooperation of the
图2示出了根据本发明实施例提供的磁流变抛光标定方法的流程。Fig. 2 shows the flow of a calibration method for magneto-rheological polishing provided according to an embodiment of the present invention.
如图2所示,本发明实施例提供的磁流变抛光标定方法,包括如下步骤:As shown in Figure 2, the magnetorheological polishing calibration method provided by the embodiment of the present invention includes the following steps:
S1、建立激光跟踪仪的测量坐标系{M}。S1. Establish the measurement coordinate system {M} of the laser tracker.
基于精密数控机床4的工具坐标系{F}建立激光跟踪仪1的测量坐标系{M},使得测量坐标系{M}与工具坐标系{F}相一致。The measurement coordinate system {M} of the
更为具体地,将靶球2放置于过渡板6的上表面并固定。工具坐标系{F}使其处于零点位姿,驱动精密数控机床4分别沿着工具坐标系{F}的X轴、Y轴和Z轴方向移动,同时利用激光跟踪仪1测量靶球2在不同位置时的坐标,各轴的测量点数不少于2个,通过激光跟踪仪1的直线拟合功能,确定测量坐标系{M}的X轴、Y轴和Z轴方向,使得测量坐标系{M}的X轴、Y轴和Z轴方向与工具坐标系{F}的X轴、Y轴和Z轴方向保持一致。More specifically, the
S2、利用激光跟踪仪分别测量测头与磁流变抛光轮的空间坐标。S2. Using a laser tracker to measure the spatial coordinates of the measuring head and the magnetorheological polishing wheel respectively.
基于激光跟踪仪的球拟合功能或圆拟合功能测得测头在测量坐标系中的空间坐标。Based on the ball fitting function or circle fitting function of the laser tracker, the spatial coordinates of the probe in the measurement coordinate system are measured.
激光跟踪仪的球拟合功能和圆拟合功能为现有技术,球面拟合功能请参照百度百科中《激光跟踪测量系统》的最后一段,圆拟合功能请参照《机器人坐标系与激光跟踪仪坐标系的快速转换方法》的第一页和第二页。The ball fitting function and circle fitting function of the laser tracker are existing technologies. For the spherical fitting function, please refer to the last paragraph of "Laser Tracking and Measurement System" in Baidu Encyclopedia. For the circle fitting function, please refer to "Robot Coordinate System and Laser Tracking The first and second pages of "Quick Transformation Method of Instrument Coordinate System".
本发明实施例通过两种测量方法实现测头空间坐标的测量,第一种测量方法是利用激光跟踪仪1的拟合球功能直接测量测头球部7-3的空间坐标;第二种测量方法是先利用激光跟踪仪1的拟合圆功能确定测头本体7-2的X轴和Y轴坐标,由于测头支架7-1、测头本体7-2和测头球部7-3在同一条中心线上,因此测头球部7-3的X轴和Y轴坐标等于测头本体7-2的X轴和Y轴坐标,再借助一个稳定的上表面平整的物体确定测头球部7-3的Z轴坐标,以此测量出测头球部7-3的空间坐标。The embodiment of the present invention realizes the measurement of the spatial coordinates of the probe through two measurement methods. The first measurement method is to use the fitting ball function of the
对于第一种测量方法,具体步骤如下:For the first measurement method, the specific steps are as follows:
将靶球2放置于测头球部7-3外表面的不同位置,位置个数不小于4个,同时利用激光跟踪仪1测量靶球2在不同位置时的坐标,利用激光跟踪仪1的球拟合功能确定测头球部7-3的中心点坐标(x2,y2,z2)以及测头球部7-3半径的R2。Place the
R2= R2`-r,R2`为靶球2位于测头球部7-3外表面时以靶球2为球心及以到测头球部7-3的中心点为半径所在球的半径值,r为靶球2的半径值,由此可以得到测头球部7-3在测量坐标系{M}中的空间坐标为(x2,y2,z2-R2)=(x2,y2,z2-R2`+r)。R 2 = R 2 `-r, R 2 ` is where the
该方法可以直接获得测头球部7-3在测量坐标系{M}的空间位置,但由于靶球2与测头球部7-3接触时易导致测头球部7-3位置微动,测量精度有所下降,因此在操作时需要严格控制靶球2与测头球部7-3之间的作用力。This method can directly obtain the spatial position of the probe ball 7-3 in the measurement coordinate system {M}, but the position of the probe ball 7-3 is likely to move slightly when the
对于第二种测量方法,具体步骤如下:For the second measurement method, the specific steps are as follows:
(1)在精密数控机床4的工作区域内放置一个物体,该物体在高度方向的尺寸需要在测头7的可测量范围内,物体放置后静止不动,物体上表面目测平整无明显倾斜,对于其他方向的尺寸以及物体的重量与材料无限制。(1) Place an object in the working area of the precision CNC machine tool 4. The size of the object in the height direction needs to be within the measurable range of the probe 7. After the object is placed, it does not move, and the upper surface of the object is visually flat and has no obvious inclination. There are no restrictions on dimensions in other directions and on the weight and material of the object.
(2)驱动精密数控机床4沿着工具坐标系{F}的Z轴方向缓慢向下移动,当测头球部7-3刚刚触碰物体的上表面时,停止精密数控机床4运动,并保持当前姿态不变。将靶球2放置于测头本体7-2外表面的不同位置,位置个数不小于3个,同时利用激光跟踪仪1测量靶球2在不同位置的坐标,利用激光跟踪仪1的圆拟合功能确定测头本体7-2所在圆的中心点坐标(x2,y2)。(2) Drive the precision CNC machine tool 4 to slowly move downward along the Z-axis direction of the tool coordinate system {F}. When the ball part 7-3 of the probe just touches the upper surface of the object, stop the movement of the precision CNC machine tool 4, and Keep the current posture unchanged. Place the
(3)标记测头球部7-3在物体上表面的位置并将测头7从物体上表面移开,将靶球2放置在标记位置并利用激光跟踪仪1测量此时靶球2的位置坐标z2。(3) Mark the position of the probe ball 7-3 on the upper surface of the object and remove the probe 7 from the upper surface of the object, place the
由于测头球部7-3、测头本体7-2以及测头支架7-1在同一条中心线上,因此测头球部7-3在测量坐标系{M}的空间坐标为(x2,y2,z2-r)。Since the probe ball 7-3, the probe body 7-2 and the probe bracket 7-1 are on the same center line, the spatial coordinates of the probe ball 7-3 in the measurement coordinate system {M} are (x 2 , y 2 , z 2 -r).
该方法需要借助一个物体辅助确定测头球部7-3的空间坐标,但可以避免靶球2与测头球部7-3直接接触导致测头球部7-3位置的微移,有利于降低测量误差。This method requires the help of an object to assist in determining the spatial coordinates of the probe ball 7-3, but it can avoid the direct contact between the
基于激光跟踪仪的球拟合功能测得磁流变抛光轮在测量坐标系中的空间坐标,具体步骤如下:Based on the ball fitting function of the laser tracker, the spatial coordinates of the magnetorheological polishing wheel in the measurement coordinate system are measured, and the specific steps are as follows:
在测头头部7-3接触物体上表面后保持精密数控机床4静止状态时,测量磁流变抛光轮5的空间坐标。When the precision CNC machine tool 4 is kept in a static state after the probe head 7-3 touches the upper surface of the object, the spatial coordinates of the magnetorheological polishing wheel 5 are measured.
当精密数控机床4处于静止状态时,将靶球2放置于磁流变抛光轮5外表面的不同位置,位置个数不小于4个,同时利用激光跟踪仪1测量靶球2在不同位置时的坐标,利用激光跟踪仪1的球拟合功能确定磁流变抛光轮5的中心点坐标(x1,y1,z1)以及磁流变抛光轮5半径的R1。When the precision numerical control machine tool 4 is in a static state, the
R1= R1`-r,R1`为靶球2位于磁流变抛光轮5外表面时以靶球2的球心及以到测头球部7-3的中心点为半径所在球的半径值,由此可以得到磁流变抛光轮5在测量坐标系{M}的空间坐标为(x1,y1,z1-R1)= (x1,y1,z1-R1`+r)。R 1 = R 1 `-r, R 1 ` is the ball where the
S3、数据处理器通过获取测头的空间坐标与磁流变抛光轮的空间坐标并相减,获得测头与磁流变抛光轮之间的空间位置转换关系。S3. The data processor acquires the spatial position conversion relationship between the measuring head and the magnetorheological polishing wheel by obtaining the spatial coordinates of the measuring head and the spatial coordinates of the magnetorheological polishing wheel and subtracting them.
由于在应用测头定位法进行光学元件定位时,测头7与磁流变抛光轮5处于平移状态,因此测头7与磁流变抛光轮5之间的空间位置转换关系可以表示为T=(∆x,∆y,∆z)=(x2,y2,z2-R2)- (x1,y1,z1-R1)= (x2-x1,y2-y1,z2-z1+R1`-R2`)或T=(∆x,∆y,∆z)= (x2,y2,z2-r)- (x1,y1,z1-R1)= (x2-x1,y2-y1,z2-z1+R1`-2r)。Since the probe 7 and the magneto-rheological polishing wheel 5 are in a translational state when the probe positioning method is used for positioning the optical components, the spatial position conversion relationship between the probe 7 and the magneto-rheological polishing wheel 5 can be expressed as T= (∆x, ∆y, ∆z)=(x 2 , y 2 , z 2 -R 2 )- (x 1 , y 1 , z 1 -R 1 )= (x 2 -x 1 , y 2 -y 1 , z 2 -z 1 +R 1 `-R 2 `) or T=(∆x,∆y,∆z)=(x 2 ,y 2 ,z 2 -r)-(x 1 ,y 1 , z 1 −R 1 )= (x 2 −x 1 , y 2 −y 1 , z 2 −z 1 +R 1 `−2r).
在实际应用时,只需要利用测头7确认光学元件在工具坐标系{F}中的坐标(xF,yF,zF),可以确定光学元件相对于磁流变抛光轮5工作点坐标为(xF,yF,zF)= (xF,yF,zF)-T=(xF-∆x,yF-∆y,zF-∆z)。In practical application, it is only necessary to use the probe 7 to confirm the coordinates (x F , y F , z F ) of the optical element in the tool coordinate system {F}, and the coordinates of the working point of the optical element relative to the magnetorheological polishing wheel 5 can be determined As (x F , y F , z F ) = (x F , y F , z F )-T=(x F -∆x, y F -∆y, z F -∆z).
本发明基于磁流变抛光轮和测头的几何外形特征,利用激光跟踪仪测量精度高的优点,通过非接触式的方法精确标定磁流变抛光轮工作点与测头之间的空间位置关系,该方法不依赖于硬件的加工精度与装配精度,不需要借助标准块辅助标定,同时也降低了操作人员的操作经验的需求,整个标定过程操作步骤简单,标定时间短,标定精度高,满足磁流变加工设备对抛光轮工作点与测头之间空间位置关系的标定精度要求。Based on the geometric shape characteristics of the magnetorheological polishing wheel and the measuring head, the present invention utilizes the advantages of high measurement accuracy of the laser tracker, and accurately calibrates the spatial position relationship between the working point of the magnetorheological polishing wheel and the measuring head through a non-contact method , this method does not depend on the processing accuracy and assembly accuracy of the hardware, does not need to use standard blocks to assist calibration, and also reduces the need for operator experience. The entire calibration process has simple steps, short calibration time, and high calibration accuracy. The calibration accuracy requirements of the magnetorheological processing equipment for the spatial position relationship between the working point of the polishing wheel and the measuring head.
本发明不仅仅适用于磁流变抛光轮与测头之间的空间位置关系的高精度标定,还适用于测头与小磨头、气囊等具有明显几何尺寸的加工工具空间位置关系的高精度标定。The invention is not only suitable for high-precision calibration of the spatial position relationship between the magnetorheological polishing wheel and the measuring head, but also suitable for high-precision calibration of the spatial positional relationship between the measuring head and small grinding heads, air bags and other processing tools with obvious geometric dimensions calibration.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。The above specific implementation manners of the present invention do not constitute a limitation to the protection scope of the present invention. Any other corresponding changes and modifications made according to the technical concept of the present invention shall be included in the protection scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211204854.2A CN115284079B (en) | 2022-09-30 | 2022-09-30 | Magnetorheological polishing calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211204854.2A CN115284079B (en) | 2022-09-30 | 2022-09-30 | Magnetorheological polishing calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115284079A true CN115284079A (en) | 2022-11-04 |
CN115284079B CN115284079B (en) | 2023-01-03 |
Family
ID=83833240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211204854.2A Active CN115284079B (en) | 2022-09-30 | 2022-09-30 | Magnetorheological polishing calibration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115284079B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118081493A (en) * | 2024-04-26 | 2024-05-28 | 中国科学院长春光学精密机械与物理研究所 | Magnetic field distribution detection device and method for magnetorheological polishing equipment |
CN118893523A (en) * | 2024-10-09 | 2024-11-05 | 中国科学院长春光学精密机械与物理研究所 | Polishing point calibration device, method and storage medium for magnetorheological polishing tool |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1251364A (en) * | 1968-02-05 | 1971-10-27 | ||
US20130182262A1 (en) * | 2012-01-17 | 2013-07-18 | Kla-Tencor Corporation | Method for Reducing Wafer Shape and Thickness Measurement Errors Resulted From Cavity Shape Changes |
CN104006759A (en) * | 2014-05-05 | 2014-08-27 | 中国科学院长春光学精密机械与物理研究所 | Composite detection method for large-diameter non-spherical reflector with large deviation in polishing process |
CN112484640A (en) * | 2020-11-23 | 2021-03-12 | 中国科学院光电技术研究所 | Device and method for calibrating magnetorheological polishing tool head for robot based on tracker |
CN112585438A (en) * | 2018-07-31 | 2021-03-30 | 布勒股份公司 | Introduction device for a roller mill, roller mill having an introduction device, and method for determining the level of grinding material in a storage tank of a roller mill |
CN114012585A (en) * | 2021-11-10 | 2022-02-08 | 中国工程物理研究院机械制造工艺研究所 | Polishing point position calibration method for double-pendulum-shaft type five-axis magnetorheological machine tool |
CN114393448A (en) * | 2022-01-21 | 2022-04-26 | 中国科学院长春光学精密机械与物理研究所 | A method for improving the trajectory accuracy of magnetorheological robot polishing equipment |
-
2022
- 2022-09-30 CN CN202211204854.2A patent/CN115284079B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1251364A (en) * | 1968-02-05 | 1971-10-27 | ||
US20130182262A1 (en) * | 2012-01-17 | 2013-07-18 | Kla-Tencor Corporation | Method for Reducing Wafer Shape and Thickness Measurement Errors Resulted From Cavity Shape Changes |
CN104006759A (en) * | 2014-05-05 | 2014-08-27 | 中国科学院长春光学精密机械与物理研究所 | Composite detection method for large-diameter non-spherical reflector with large deviation in polishing process |
CN112585438A (en) * | 2018-07-31 | 2021-03-30 | 布勒股份公司 | Introduction device for a roller mill, roller mill having an introduction device, and method for determining the level of grinding material in a storage tank of a roller mill |
CN112484640A (en) * | 2020-11-23 | 2021-03-12 | 中国科学院光电技术研究所 | Device and method for calibrating magnetorheological polishing tool head for robot based on tracker |
CN114012585A (en) * | 2021-11-10 | 2022-02-08 | 中国工程物理研究院机械制造工艺研究所 | Polishing point position calibration method for double-pendulum-shaft type five-axis magnetorheological machine tool |
CN114393448A (en) * | 2022-01-21 | 2022-04-26 | 中国科学院长春光学精密机械与物理研究所 | A method for improving the trajectory accuracy of magnetorheological robot polishing equipment |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118081493A (en) * | 2024-04-26 | 2024-05-28 | 中国科学院长春光学精密机械与物理研究所 | Magnetic field distribution detection device and method for magnetorheological polishing equipment |
CN118893523A (en) * | 2024-10-09 | 2024-11-05 | 中国科学院长春光学精密机械与物理研究所 | Polishing point calibration device, method and storage medium for magnetorheological polishing tool |
Also Published As
Publication number | Publication date |
---|---|
CN115284079B (en) | 2023-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111660295B (en) | Industrial robot absolute precision calibration system and calibration method | |
CN110978059B (en) | A portable six-axis manipulator calibration device and calibration method thereof | |
CN107042528B (en) | Kinematics calibration system and method for industrial robot | |
CN109655023B (en) | System for determining the state of a tool positioning machine | |
CN115284079B (en) | Magnetorheological polishing calibration method | |
CN109676636A (en) | A kind of industrial robot kinematics calibration system and scaling method | |
CN106393174B (en) | A method of demarcating robot architecture's parameter using ball bar | |
CN109822574A (en) | A method for calibrating a six-dimensional force sensor at the end of an industrial robot | |
CN105058387A (en) | Industrial robot base coordinate system calibration method based on laser tracker | |
CN111409067B (en) | Automatic calibration system and calibration method for robot user coordinate system | |
CN105865341B (en) | Industrial robot spatial pose repetitive positioning accuracy measuring device and method | |
CN102654387B (en) | Online industrial robot calibration device based on spatial curved surface restraint | |
JP2008275624A (en) | Coordinate measuring method and device | |
CN110871434B (en) | A kinematics calibration method for parallel processing equipment | |
CN105737735B (en) | Portable self calibration end effector repetitive positioning accuracy measuring device and method | |
CN113146613B (en) | An industrial robot D-H parameter three-dimensional self-calibration calibration device and method | |
CN110672049B (en) | Method and system for determining the relation between a robot coordinate system and a workpiece coordinate system | |
CN114102256B (en) | Method, device and storage medium for recognizing geometric error of rotary axis of machine tool | |
CN114012585B (en) | Polishing point position calibration method for double-pendulum-shaft type five-axis magnetorheological machine tool | |
CN112277002B (en) | Robot kinematics calibration device and calibration method based on incomplete pose information | |
CN109822422A (en) | A measuring device and adjustment method for geometric error of rotary axis of polishing machine tool | |
JP5600045B2 (en) | CMM calibration method | |
CN113733102B (en) | Error calibration device for industrial robot | |
CN114227539B (en) | Calibration tool and calibration method for robot of automobile hub deburring workstation | |
TWI710441B (en) | Coordinate calibration method of manipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |