CN115261973A - A kind of growth method of large size gallium oxide crystal - Google Patents
A kind of growth method of large size gallium oxide crystal Download PDFInfo
- Publication number
- CN115261973A CN115261973A CN202210974430.8A CN202210974430A CN115261973A CN 115261973 A CN115261973 A CN 115261973A CN 202210974430 A CN202210974430 A CN 202210974430A CN 115261973 A CN115261973 A CN 115261973A
- Authority
- CN
- China
- Prior art keywords
- gallium oxide
- crucible
- alloy
- crystal
- growing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims description 47
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims description 43
- 229910001195 gallium oxide Inorganic materials 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 32
- 239000000956 alloy Substances 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 13
- 239000000155 melt Substances 0.000 claims description 13
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052741 iridium Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 238000002109 crystal growth method Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001354791 Baliga Species 0.000 description 1
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域technical field
本发明属于晶体生长领域,具体涉及一种氧化镓晶体的生长方法,尤其是针对3英寸以上的β-Ga2O3单晶生长。The invention belongs to the field of crystal growth, and in particular relates to a gallium oxide crystal growth method, especially for the growth of β-Ga 2 O 3 single crystals larger than 3 inches.
背景技术Background technique
氧化镓(β-Ga2O3)作为超宽禁带(Eg=4.5~4.9V)半导体材料,具有击穿电场强度高、化学性能稳定、大尺寸生长成本低等优势,其Baliga器件优值分别是GaN和SiC的4倍和10倍,为未来的高压、高功率器件发展提供了更广阔的视野。Gallium oxide (β-Ga 2 O 3 ), as an ultra-wide bandgap (E g = 4.5-4.9V) semiconductor material, has the advantages of high breakdown electric field strength, stable chemical properties, and low cost of large-scale growth. Its Baliga device is excellent The values are 4 times and 10 times that of GaN and SiC, respectively, providing a broader vision for the development of high-voltage and high-power devices in the future.
然而,大尺寸氧化镓单晶的生长存在巨大的挑战,其中一个重要的因素就是氧化镓本身熔点较高(约1790℃),而高温下又非常容易发生分解和挥发,这对于晶体生长设备尤其是坩埚的要求极高。目前从熔体中制备氧化镓的方法主要有光学浮区法、提拉法、坩埚下降法和导模法等。其中,提拉法、坩埚下降法和导模法都可以实现大尺寸氧化镓晶体的制备(≥2英寸),但是这些方法需要使用贵金属铱坩埚,成本高昂;且在高温环境下,氧化镓原料容易分解为单质镓和氧气,分解反应如下: 镓和铱坩埚反应形成共晶金属间GaIr相,损坏坩埚,特别是在较大尺寸的氧化镓晶体生长过程中,Ga单质的含量升高,对铱坩埚损耗严重;同时,熔体中的产生的氧气会产生大量的氧空位,影响氧化镓晶体质量与掺杂,进而严重影响器件性能。虽然光学浮区法不需要使用坩埚,且生长速率较高,生长得到的氧化镓晶体纯度高,但是制备的晶体尺寸较小,远远无法满足大尺寸应用的需求。However, there are huge challenges in the growth of large-sized gallium oxide single crystals. One of the important factors is that gallium oxide itself has a high melting point (about 1790 ° C), and it is very easy to decompose and volatilize at high temperatures, which is especially important for crystal growth equipment. Crucible is extremely demanding. At present, the methods for preparing gallium oxide from the melt mainly include the optical floating zone method, the pulling method, the crucible drop method and the guided mode method. Among them, the pulling method, the crucible falling method and the guided mode method can all realize the preparation of large-sized gallium oxide crystals (≥2 inches), but these methods need to use noble metal iridium crucibles, which are costly; and in high temperature environments, gallium oxide raw materials It is easily decomposed into elemental gallium and oxygen, and the decomposition reaction is as follows: Gallium and iridium crucibles react to form eutectic intermetallic GaIr phase, which damages the crucible, especially during the growth of large-sized gallium oxide crystals, the content of Ga elemental substance increases, which seriously damages the iridium crucible; at the same time, the melt produced Oxygen will generate a large number of oxygen vacancies, which will affect the quality and doping of gallium oxide crystals, and then seriously affect the device performance. Although the optical floating zone method does not require the use of a crucible, the growth rate is high, and the purity of the gallium oxide crystals obtained by growth is high, but the size of the prepared crystals is small, which is far from meeting the needs of large-scale applications.
为了抑制生长过程中氧化镓的分解,现有技术中通常选择通入惰性气体及混合气体作为保护气氛,如中国专利CN 114381800 A、CN 114086249 A中,使用氩气、氮气、氩气/氮气/氧气混合气体或者氧气/二氧化碳混合气体以保护坩埚;中国专利CN 107177885 B中通入7~12bar高纯空气抑制Ga2O3的分解,但是这些方法效率低,效果较差,且应用范围较小。德国莱布尼兹晶体生长研究院曾经提出,氧化镓生长过程中,氧分压的增加可以显著提高晶体生长质量,抑制分解反应,尤其是当晶体尺寸达到3英寸时,至少需要100vol.%的氧气才能有效抑制Ga单质的析出(Zbigniew Galazka,et.al.Scaling-Up of Bulkβ-Ga2O3Single Crystals by the Czochralski Method,ECS Journal of Solid State Scienceand Technology,2017,6(2)Q3007-Q3011)。但是需要强调的是,氧分压的增加也意味着铱更容易与氧反应,同样会造成现有技术中贵金属坩埚的损坏。In order to suppress the decomposition of gallium oxide during the growth process, in the prior art, an inert gas and a mixed gas are usually selected as a protective atmosphere. For example, in Chinese patents CN 114381800 A and CN 114086249 A, argon, nitrogen, argon/nitrogen/ Oxygen mixed gas or oxygen/carbon dioxide mixed gas to protect the crucible; Chinese patent CN 107177885 B feeds 7 to 12 bar high-purity air to suppress the decomposition of Ga 2 O 3 , but these methods have low efficiency, poor effect, and a small range of applications . The Leibniz Institute of Crystal Growth in Germany once proposed that during the growth of gallium oxide, the increase of oxygen partial pressure can significantly improve the quality of crystal growth and inhibit the decomposition reaction, especially when the crystal size reaches 3 inches, at least 100vol.% of Oxygen can effectively inhibit the precipitation of Ga single crystals (Zbigniew Galazka, et. al. Scaling-Up of Bulkβ-Ga2O3Single Crystals by the Czochralski Method, ECS Journal of Solid State Science and Technology, 2017, 6(2)Q3007-Q3011). However, it should be emphasized that the increase of oxygen partial pressure also means that iridium is more likely to react with oxygen, which will also cause damage to the noble metal crucible in the prior art.
发明内容Contents of the invention
针对上述的问题,尤其是氧化镓高温分解以及高成本贵金属坩埚的依赖性问题,本发明提出了一种可以有效抑制氧化镓分解的晶体生长方法,该方法成本低,应用范围更广泛,可以实现大尺寸的氧化镓晶体的生长。In view of the above-mentioned problems, especially the high-temperature decomposition of gallium oxide and the dependence of high-cost precious metal crucibles, the present invention proposes a crystal growth method that can effectively inhibit the decomposition of gallium oxide. This method has low cost and wider application range, and can realize Growth of large-sized gallium oxide crystals.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种大尺寸氧化镓晶体生长方法,其特点在于,采用冷坩埚或合金坩埚装填氧化镓原料,在压力范围为0.1<p<0.7MPa的纯氧气氛下进行氧化镓晶体生长;所述合金坩埚为Pt与Ir和Rh中任意一种或多种金属的合金,其中Pt的含量为75%~90%。A large-size gallium oxide crystal growth method, which is characterized in that a cold crucible or an alloy crucible is used to fill a gallium oxide raw material, and the gallium oxide crystal is grown under a pure oxygen atmosphere with a pressure range of 0.1<p<0.7MPa; the alloy crucible It is an alloy of Pt and any one or more metals of Ir and Rh, wherein the content of Pt is 75% to 90%.
进一步,采用冷坩埚时,在氧化镓原料中间区域放入金属Ga或石墨片作为引燃剂。Further, when a cold crucible is used, metal Ga or graphite flakes are placed in the middle region of the gallium oxide raw material as an igniter.
进一步,采用合金坩埚时,纯氧气氛压力为0.1<p≤0.4MPa。Further, when an alloy crucible is used, the pressure of the pure oxygen atmosphere is 0.1<p≤0.4MPa.
所述合金坩埚或冷坩埚的径深比为1:1~2:1,使熔体表面与氧气充分接触。The diameter-to-depth ratio of the alloy crucible or cold crucible is 1:1-2:1, so that the surface of the melt is fully in contact with oxygen.
一种大尺寸氧化镓晶体生长方法,主要包含以下步骤:A large-size gallium oxide crystal growth method mainly includes the following steps:
①装料:准备高纯氧化镓原料并在真空环境下进行干燥处理,将原料装入位于炉膛中心的坩埚中,装料体积为坩埚体积的75%~90%;①Charging: prepare high-purity gallium oxide raw materials and dry them in a vacuum environment, and put the raw materials into the crucible located in the center of the furnace, and the charging volume is 75% to 90% of the volume of the crucible;
②抽真空:将炉膛抽真空至2×10-3Pa以下,通入高纯的氧气气氛,压力范围为:0.1<p<0.7MPa;②Vacuumizing: Vacuumize the furnace to below 2×10 -3 Pa, and introduce high-purity oxygen atmosphere, the pressure range is: 0.1<p<0.7MPa;
③升温:启动感应加热装置,使坩埚中产生高温,原料粉末熔化,随后提高电源功率使熔化区域逐渐扩大,当温度达到1750~1850℃后保持1~3h;③Heating up: Start the induction heating device to generate high temperature in the crucible and melt the raw material powder, then increase the power supply to gradually expand the melting area, and keep it for 1-3 hours after the temperature reaches 1750-1850 °C;
④长晶:待原料熔化后使用坩埚升降法、温梯法、提拉法等熔体法进行氧化镓晶体的生长;晶体生长完成后,缓慢降低电源功率直至晶体冷却至室温,冷却速度控制在5~15℃/min;④Crystal growth: After the raw materials are melted, use crucible lifting method, temperature gradient method, pulling method and other melt methods to grow gallium oxide crystals; after the crystal growth is completed, slowly reduce the power until the crystal cools to room temperature, and the cooling rate is controlled at 5~ 15°C/min;
使用的坩埚为冷坩埚或合金坩埚;合金坩埚为Pt与Ir和Rh中任意一种或多种金属的合金,其中Pt的含量为70%~90%。The used crucible is a cold crucible or an alloy crucible; the alloy crucible is an alloy of any one or more metals of Pt, Ir and Rh, wherein the content of Pt is 70%-90%.
其中,所述的冷坩埚和合金坩埚的径深比为1:1~2:1,使熔体表面与氧气充分接触;Wherein, the diameter-to-depth ratio of the cold crucible and the alloy crucible is 1:1 to 2:1, so that the surface of the melt is fully in contact with oxygen;
其中,使用合金坩埚时,纯氧压力为0.1<p≤0.4MPa;Among them, when using an alloy crucible, the pure oxygen pressure is 0.1<p≤0.4MPa;
所述的冷坩埚由水冷瓣和水冷台组合而成,生长过程中,外部的粉料由于水冷作用不会被加热熔化,因而形成一层未熔壳,熔体在未熔壳内进行晶体生长。将原料装入冷坩埚时,在原料中间区域均匀地放入金属Ga或者石墨片作为原料的引燃剂;The cold crucible is composed of a water-cooled flap and a water-cooled table. During the growth process, the external powder will not be heated and melted due to water cooling, thus forming a layer of unmelted shell, and the melt undergoes crystal growth in the unmelted shell. . When loading the raw material into the cold crucible, evenly put metal Ga or graphite sheet in the middle area of the raw material as the igniter of the raw material;
优选地,所述的合金坩埚中Ir含量为20~25wt%;Preferably, the Ir content in the alloy crucible is 20-25wt%;
优选地,所述的合金坩埚中Rh含量为15~25wt%;Preferably, the Rh content in the alloy crucible is 15-25wt%;
以保证合金坩埚在1900℃左右不会融化。To ensure that the alloy crucible will not melt at around 1900°C.
本发明的技术优势:Technical advantage of the present invention:
(1)本发明使用高压纯氧气氛,抑制生长过程中的氧化镓分解,提高晶体生长质量,尤其是生长3英寸以上的大尺寸氧化镓晶体的情况;(1) The present invention uses a high-pressure pure oxygen atmosphere to suppress the decomposition of gallium oxide during the growth process and improve the quality of crystal growth, especially when growing large-sized gallium oxide crystals larger than 3 inches;
(2)本发明坩埚系统中采用冷坩埚或者成分优化的合金坩埚,可以在高压纯氧气氛下使用,减少贵金属损耗,极大降低成本;(2) The crucible system of the present invention adopts a cold crucible or an alloy crucible with optimized composition, which can be used under a high-pressure pure oxygen atmosphere to reduce the loss of precious metals and greatly reduce the cost;
(3)高压纯氧气氛可以有效抑制氧化镓晶体中的氧空位形成,提高器件性能;此外,低的氧空位浓度下,受主缺陷形成能高,有利于进一步发展p型掺杂器件。(3) The high-pressure pure oxygen atmosphere can effectively inhibit the formation of oxygen vacancies in gallium oxide crystals and improve device performance; in addition, at low oxygen vacancy concentrations, the formation energy of acceptor defects is high, which is conducive to the further development of p-type doped devices.
附图说明Description of drawings
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例具体说明本发明。此处实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and embodiments. The examples here are only used to explain the present invention, not to limit the present invention.
实施例一Embodiment one
3英寸Ga2O3晶体生长: 3 inch Ga2O3 crystal growth:
采用纯度为99.99%的氧化镓粉末,放入炉膛中心的坩埚中,装料体积为坩埚的80%;坩埚使用Rh含量为25wt%的Pt-Rh坩埚,坩埚直径150mm,高度100mm;打开机械泵和分子泵,将炉膛抽真空至2×10-3Pa,打开气阀,充入99.99%高纯氧气,待炉膛内压力达到0.2MPa时,启动电源,当温度达到1800℃时保持2h使原料充分熔化;随后降低加热功率并使用提拉法生长晶体,提拉速度和转速分别为2mm/h和10rpm,熔体温度逐渐下降同时结晶生长;生长结束后降低电源功率至关闭,控制炉膛内降温速度为10℃/min,直至降至室温。Use gallium oxide powder with a purity of 99.99%, put it into the crucible in the center of the furnace, and the charging volume is 80% of the crucible; the crucible uses a Pt-Rh crucible with a Rh content of 25wt%, the diameter of the crucible is 150mm, and the height is 100mm; turn on the mechanical pump and molecular pump, vacuumize the furnace to 2×10 -3 Pa, open the gas valve, fill in 99.99% high-purity oxygen, when the pressure in the furnace reaches 0.2MPa, turn on the power supply, and keep it for 2 hours when the temperature reaches 1800°C to make the raw materials Fully melt; then reduce the heating power and use the pulling method to grow crystals, the pulling speed and rotation speed are 2mm/h and 10rpm respectively, the temperature of the melt gradually drops and crystals grow at the same time; after the growth is completed, reduce the power supply to off, and control the cooling in the furnace The speed is 10°C/min until it cools down to room temperature.
最终得到φ82mm的晶坯,加工后可获得3英寸级别的β-Ga2O3单晶片;强光灯下观测晶体表面无气泡,显微镜下观察无孔洞,FWHM=50arcsec,现有技术中氧化镓单晶产品FWHM大约在100~150arcsec之间。本次生长后,合金坩埚损耗大约为0.5g,对比现有技术中铱金坩埚在1800℃下保温1h损耗约为1.6g,损耗降低了68%。Finally, a crystal blank of φ82mm is obtained, and a 3-inch-level β-Ga 2 O 3 single wafer can be obtained after processing; there are no bubbles on the surface of the crystal when observed under a strong light, and no holes when observed under a microscope, FWHM=50arcsec, gallium oxide in the prior art The FWHM of single crystal products is about 100-150arcsec. After this growth, the loss of the alloy crucible is about 0.5g, compared with the loss of about 1.6g in the prior art when the iridium crucible is kept at 1800°C for 1 hour, the loss is reduced by 68%.
实施例二Embodiment two
4英寸Ga2O3晶体生长: 4 inch Ga2O3 crystal growth:
采用纯度为99.99%的氧化镓粉末,放入炉膛中心的坩埚中,装料体积为坩埚的85%;使用水冷瓣和水冷台围成直径108mm,高度55mm的冷坩埚,在原料内部中间区域径向铺排100g石墨片作为引燃剂;打开机械泵和分子泵,将炉膛抽真空至2×10-3Pa后,打开气阀,充入99.99%高纯氧气,待炉膛内压力达到0.5MPa时,启动电源,调节加热功率至石墨片周围产生小的熔区,持续加热熔体逐渐扩大,外部由于水冷形成一层未熔壳,当温度达到1805℃时保持3h使熔体与外部未熔壳达到热平衡;随后缓慢下降冷坩埚,使冷坩埚下部离开加热区,熔体温度降低并结晶。待生长结束后,降低电源功率至关闭,控制炉膛内降温速度为12℃/min,冷却至室温后即可取出晶块。Use gallium oxide powder with a purity of 99.99%, put it into the crucible in the center of the furnace, and the charging volume is 85% of the crucible; use water cooling valves and water cooling tables to form a cold crucible with a diameter of 108 mm and a height of 55 mm. Lay out 100g of graphite flakes as an ignition agent; turn on the mechanical pump and molecular pump, vacuumize the furnace to 2×10 -3 Pa, open the gas valve, and fill in 99.99% high-purity oxygen until the pressure in the furnace reaches 0.5MPa , start the power supply, adjust the heating power to produce a small melting zone around the graphite sheet, continue to heat the melt to gradually expand, and form a layer of unmelted shell on the outside due to water cooling. When the temperature reaches 1805 ° C, keep it for 3 hours to make the melt and the outer unmelted shell Reach thermal equilibrium; then slowly lower the cold crucible, so that the lower part of the cold crucible leaves the heating zone, the temperature of the melt decreases and crystallizes. After the growth is over, reduce the power supply to off, control the cooling rate in the furnace to 12°C/min, and take out the crystal block after cooling to room temperature.
最终得到φ106mm的晶坯,加工后可获得4英寸级别的β-Ga2O3单晶片,在强光灯下观测表面无气泡,显微镜下观察无孔洞,FWHM=58arcsec,本次生长使用冷坩埚,无贵金属损耗,成本极大降低。Finally, a φ106mm crystal billet is obtained. After processing, a 4-inch β-Ga 2 O 3 single wafer can be obtained. There are no bubbles on the surface observed under a strong light, and no holes observed under a microscope. FWHM=58arcsec. This growth uses a cold crucible , no loss of precious metals, the cost is greatly reduced.
实施例三Embodiment three
6英寸Ga2O3晶体生长:6 inch Ga 2 O 3 crystal growth:
采用纯度为99.99%的氧化镓粉末,放入炉膛中心的坩埚中,装料体积为坩埚的70%;使用水冷瓣和水冷台围成坩埚直径165mm,高度85mm的冷坩埚,在原料内部中间区域径向铺排100g Ga片作为引燃剂;打开机械泵和分子泵,将炉膛抽真空至2×10-3Pa后,打开气阀,充入99.99%高纯氧气,待炉膛内压力达到0.65MPa时,启动电源,调节加热功率至石墨片周围产生小的熔区,持续加热熔体逐渐扩大,外部由于水冷形成一层未熔壳,当温度达到1805℃时保持3h使熔体与外部未熔壳达到热平衡;随后降低加热功率使用提拉法生长晶体,提拉速度为1.5mm/h,转速8rpm。生长结束后降低电源功率至关闭,控制炉膛内降温速度为12℃/min,直至降至室温。Gallium oxide powder with a purity of 99.99% is put into the crucible in the center of the furnace, and the charging volume is 70% of the crucible; a cold crucible with a crucible diameter of 165mm and a height of 85mm is formed by using water-cooling valves and water-cooling tables, and is placed in the middle area of the raw material. Arrange 100g Ga sheets radially as the ignition agent; turn on the mechanical pump and molecular pump, vacuumize the furnace to 2×10 -3 Pa, open the gas valve, and fill in 99.99% high-purity oxygen until the pressure in the furnace reaches 0.65MPa At the same time, start the power supply, adjust the heating power to produce a small melting zone around the graphite sheet, continue to heat the melt and gradually expand, and form a layer of unmelted shell on the outside due to water cooling. When the temperature reaches 1805 ° C, keep it for 3 hours to make the melt and the outside unmelted The shell reaches thermal equilibrium; then the heating power is reduced and the crystal is grown by the pulling method, the pulling speed is 1.5mm/h, and the rotation speed is 8rpm. After the growth is over, reduce the power supply to off, and control the cooling rate in the furnace to 12°C/min until it drops to room temperature.
最终得到φ160mm的晶坯,加工后可获得6英寸级别的β-Ga2O3单晶片,在强光灯下观测表面无气泡,显微镜下观察无孔洞,FWHM=65arcsec,本次生长使用冷坩埚,无贵金属损耗,成本极大降低。Finally, a φ160mm crystal billet is obtained. After processing, a 6-inch β-Ga 2 O 3 single wafer can be obtained. There are no bubbles on the surface observed under a strong light, no holes observed under a microscope, FWHM=65arcsec, and a cold crucible is used for this growth , no loss of precious metals, the cost is greatly reduced.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210974430.8A CN115261973A (en) | 2022-08-15 | 2022-08-15 | A kind of growth method of large size gallium oxide crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210974430.8A CN115261973A (en) | 2022-08-15 | 2022-08-15 | A kind of growth method of large size gallium oxide crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115261973A true CN115261973A (en) | 2022-11-01 |
Family
ID=83751126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210974430.8A Pending CN115261973A (en) | 2022-08-15 | 2022-08-15 | A kind of growth method of large size gallium oxide crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115261973A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116892054A (en) * | 2023-06-25 | 2023-10-17 | 北京厚朴思技术有限公司 | A growth method for preparing large-sized gallium oxide crystals by cold crucible pulling method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017061396A (en) * | 2015-09-24 | 2017-03-30 | 株式会社Sumco | Crucible for growing gallium oxide single crystal and manufacturing method of gallium oxide single crystal |
CN111041558A (en) * | 2019-07-16 | 2020-04-21 | 中国科学院上海光学精密机械研究所 | A rare earth sesquioxide laser crystal growth method |
WO2021068153A1 (en) * | 2019-10-10 | 2021-04-15 | 南京同溧晶体材料研究院有限公司 | Gallium oxide crystal growing method using cold crucible |
CN114086249A (en) * | 2021-12-02 | 2022-02-25 | 北京镓和半导体有限公司 | Method for inhibiting raw material decomposition and iridium crucible oxidation in gallium oxide single crystal preparation |
CN114108086A (en) * | 2021-11-17 | 2022-03-01 | 北京镓创科技有限公司 | Crucible design and preparation method for preparing gallium oxide single crystal by cold crucible method |
-
2022
- 2022-08-15 CN CN202210974430.8A patent/CN115261973A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017061396A (en) * | 2015-09-24 | 2017-03-30 | 株式会社Sumco | Crucible for growing gallium oxide single crystal and manufacturing method of gallium oxide single crystal |
CN111041558A (en) * | 2019-07-16 | 2020-04-21 | 中国科学院上海光学精密机械研究所 | A rare earth sesquioxide laser crystal growth method |
WO2021068153A1 (en) * | 2019-10-10 | 2021-04-15 | 南京同溧晶体材料研究院有限公司 | Gallium oxide crystal growing method using cold crucible |
CN114108086A (en) * | 2021-11-17 | 2022-03-01 | 北京镓创科技有限公司 | Crucible design and preparation method for preparing gallium oxide single crystal by cold crucible method |
CN114086249A (en) * | 2021-12-02 | 2022-02-25 | 北京镓和半导体有限公司 | Method for inhibiting raw material decomposition and iridium crucible oxidation in gallium oxide single crystal preparation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116892054A (en) * | 2023-06-25 | 2023-10-17 | 北京厚朴思技术有限公司 | A growth method for preparing large-sized gallium oxide crystals by cold crucible pulling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104372408B (en) | Large size gallium oxide single crystal Czochralski growing method under normal pressure | |
CN111424310B (en) | Method for synthesizing indium phosphide by liquid phosphorus injection method | |
CN104828825B (en) | A kind of method of low cost low temperature synthesizing silicon carbide powder | |
CN101580961A (en) | Method for growing crystal by reducing atmosphere Kyropoulos method | |
CN102168307B (en) | Method for growing cerium-yttrium-aluminum garnet crystal | |
CN116121870B (en) | Solution method for growing SiC single crystal | |
JP2003277197A (en) | CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL | |
CN101264890A (en) | Method for preparing Mg2Si powder by semi-solid-state reaction | |
WO2020103280A1 (en) | High-purity silicon carbide powder and preparation method therefor | |
CN114232070A (en) | Double-cavity structure and method for growing gallium oxide crystal by Czochralski method | |
CN118600532A (en) | Device, system and method for growing large-size (010) primary surface gallium oxide single crystal by guided mode method | |
WO2021068153A1 (en) | Gallium oxide crystal growing method using cold crucible | |
CN115261973A (en) | A kind of growth method of large size gallium oxide crystal | |
CN110067027B (en) | Method for improving yield of bulk hexagonal phase boron nitride single crystal | |
CN114059173B (en) | Device and method for preparing gallium oxide material rod | |
CN106830081B (en) | A kind of MoO2The preparation method of nanometer rods | |
CN114561701B (en) | Method for growing gallium oxide single crystal by casting method and semiconductor device containing gallium oxide single crystal | |
JP5861770B2 (en) | Polycrystalline silicon and casting method thereof | |
JP2014162673A (en) | Sapphire single crystal core and manufacturing method of the same | |
CN111962143A (en) | An optically assisted induction heating self-crucible single crystal growth device and its application | |
CN101597791A (en) | Nitrogen-doped directionally solidified cast polysilicon and its preparation method | |
CN103757689A (en) | Method for casting monocrystalline silicon by inducing growth utilizing monocrystalline silicon seed and product | |
Huang et al. | Growth of gallium oxide bulk crystals: a review | |
CN115491747B (en) | A method for hexagonal boron nitride single crystal | |
CN115652426A (en) | A pulling method for reducing the fragmentation rate of large-size N-type Czochralski monocrystalline silicon wafers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221101 |