CN115255606A - A kind of copper and graphite diffusion connection method containing aluminum intermediate layer - Google Patents
A kind of copper and graphite diffusion connection method containing aluminum intermediate layer Download PDFInfo
- Publication number
- CN115255606A CN115255606A CN202210706527.0A CN202210706527A CN115255606A CN 115255606 A CN115255606 A CN 115255606A CN 202210706527 A CN202210706527 A CN 202210706527A CN 115255606 A CN115255606 A CN 115255606A
- Authority
- CN
- China
- Prior art keywords
- graphite
- copper
- connection
- diffusion
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 81
- 239000010439 graphite Substances 0.000 title claims abstract description 81
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 74
- 239000010949 copper Substances 0.000 title claims abstract description 74
- 238000009792 diffusion process Methods 0.000 title claims abstract description 35
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 32
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 22
- 229910018565 CuAl Inorganic materials 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 238000003466 welding Methods 0.000 claims abstract description 16
- 238000005516 engineering process Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract 4
- 239000010410 layer Substances 0.000 claims description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 20
- 238000005498 polishing Methods 0.000 claims description 13
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 13
- 238000000227 grinding Methods 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000011229 interlayer Substances 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000005477 sputtering target Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 239000013077 target material Substances 0.000 claims 2
- 230000000087 stabilizing effect Effects 0.000 claims 1
- -1 C 3 compound Chemical class 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/14—Preventing or minimising gas access, or using protective gases or vacuum during welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
- B23K20/023—Thermo-compression bonding
- B23K20/026—Thermo-compression bonding with diffusion of soldering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/26—Auxiliary equipment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种含铝中间层的铜与石墨扩散连接方法,属于异种材料连接技术领域。本发明采用磁控溅射技术在石墨表面制备微米级的铝中间层,而后与铜装配进行真空扩散连接;在连接过程中,采用“二段法”工艺,首先使铜基体与铝中间层互扩散形成CuAl合金层,而后再与石墨基体进行扩散连接,最终形成铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。本发明的优点在于:(1)大幅度降低铜与石墨的扩散连接温度,降低了焊接应力;(2)促使连接界面发生反应,保证接头各界面均为良好的冶金结合。
A copper and graphite diffusion connection method with an aluminum intermediate layer belongs to the technical field of connection of dissimilar materials. The invention adopts the magnetron sputtering technology to prepare the micron-level aluminum intermediate layer on the graphite surface, and then performs vacuum diffusion connection with the copper assembly; in the connection process, the "two-stage method" process is adopted, and the copper matrix and the aluminum intermediate layer are first made of each other. The CuAl alloy layer is formed by diffusion, and then diffusion connection is performed with the graphite matrix, and finally a connection joint of the copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure is formed. The advantages of the present invention are: (1) greatly reducing the diffusion bonding temperature of copper and graphite, and reducing welding stress; (2) promoting the reaction of the connection interface to ensure that each interface of the joint is a good metallurgical bond.
Description
技术领域technical field
本发明属于异种材料焊接技术领域,特别是提供一种适用于铜与石墨的低连接温度、界面结合良好的扩散连接方法。The invention belongs to the technical field of dissimilar material welding, and in particular provides a diffusion connection method suitable for low connection temperature and good interface bonding of copper and graphite.
背景技术Background technique
石墨具有良好的导热性、导电性、高熔点、良好的抗热震性、抗热疲劳性、耐腐蚀性等优点,已经在冶金、电子、汽车、核电、航空航天等领域得到了越来越广泛的应用。然而,由于石墨存在强度低、脆性大、表面易掉黑等问题,难以单独应用,通常需要将其与金属进行连接制备部件。铜由于具有优良的导电导热性、延展性和耐辐射性等优点,是与石墨进行连接制备结构、功能部件最具前景的金属材料。石墨与铜的连接件,当前已经在核聚变反应堆的第一壁和汽车电机的换向器中得到了广泛应用。由于石墨与铜的熔点差异较大,因此难以采用熔化焊进行连接,当前石墨与铜的连接普遍采用扩散连接的方式进行连接。然而,石墨与铜扩散连接的难度较大,主要表现在(1)为了促进连接过程中石墨与铜之间的扩散,目前扩散连接温度普遍较高,而石墨与铜之间的热膨胀系数差异悬殊,在高温连接条件下接头会产生较大残余热应力;(2)石墨(碳)与铜之间相互作用较弱,既不能相互固溶,也不能形成金属间化合物,因此连接界面往往只处于“机械咬合”状态而非冶金结合,导致连接界面结合性差。因此,研究开发一种面向铜与石墨的低连接温度、界面结合良好的扩散连接方法已经成为异种材料连接领域所面临的关键问题之一。Graphite has the advantages of good thermal conductivity, electrical conductivity, high melting point, good thermal shock resistance, thermal fatigue resistance, corrosion resistance, etc., and has been used more and more in metallurgy, electronics, automobiles, nuclear power, aerospace and other fields. Wide range of applications. However, due to the problems of low strength, high brittleness, and easy blackening of the surface of graphite, it is difficult to use it alone, and it is usually necessary to connect it with metal to prepare parts. Due to its excellent electrical and thermal conductivity, ductility and radiation resistance, copper is the most promising metal material for connecting with graphite to prepare structural and functional components. Graphite and copper connectors have been widely used in the first wall of nuclear fusion reactors and commutators of automobile motors. Due to the large difference in the melting points of graphite and copper, it is difficult to use fusion welding to connect. Currently, the connection between graphite and copper is generally connected by diffusion connection. However, the diffusion connection between graphite and copper is more difficult, which is mainly reflected in (1) in order to promote the diffusion between graphite and copper during the connection process, the current diffusion connection temperature is generally high, and the thermal expansion coefficient difference between graphite and copper is very different , the joint will produce a large residual thermal stress under the condition of high temperature connection; (2) The interaction between graphite (carbon) and copper is weak, neither solid solution with each other nor intermetallic compound can be formed, so the connection interface is often only in the A "mechanical occlusion" state rather than a metallurgical bond results in poor interfacial bonding. Therefore, research and development of a diffusion bonding method for copper and graphite with low bonding temperature and good interfacial bonding has become one of the key issues in the field of bonding dissimilar materials.
发明内容Contents of the invention
本发明的目的是针对目前铜/石墨扩散连接中存在的连接温度高导致接头热应力大、石墨与铜之间相互作用弱导致界面结合性较差的问题,提出一种含铝中间层的铜与石墨扩散连接方法,该方法能够大幅度降低铜与石墨的扩散连接温度,降低了焊接应力,并促使连接界面发生反应,保证接头各界面均为良好的冶金结合。The purpose of the present invention is to propose a copper alloy with an aluminum-containing intermediate layer for the problems that the high connection temperature in the current copper/graphite diffusion connection leads to large joint thermal stress, and the weak interaction between graphite and copper leads to poor interfacial bonding. Diffusion connection method with graphite, which can greatly reduce the diffusion connection temperature of copper and graphite, reduce welding stress, and promote the reaction of the connection interface to ensure good metallurgical bonding at all interfaces of the joint.
一种含铝中间层的铜与石墨扩散连接方法,其特征在于采用磁控溅射技术在石墨表面制备微米级的铝中间层,而后与铜装配进行真空扩散连接;在连接过程中,采用“二段法”工艺,首先使铜基体与铝中间层互扩散形成CuAl合金层,而后再与石墨基体进行扩散连接,最终形成铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。A copper-graphite diffusion connection method for an aluminum-containing interlayer, characterized in that a micron-sized aluminum interlayer is prepared on the graphite surface by magnetron sputtering technology, and then assembled with copper for vacuum diffusion connection; during the connection process, " The two-stage method" process firstly makes the copper substrate interdiffused with the aluminum intermediate layer to form a CuAl alloy layer, and then diffuses and connects with the graphite substrate, finally forming a connection joint of copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure.
本发明具体工艺过程包括以下步骤:Concrete technological process of the present invention comprises the following steps:
步骤1,将打磨、抛光、超声波清洗、干燥处理后的石墨和铝靶材分别放置于磁控溅射系统样品室和靶材台,将样品室抽真空至1×10-3Pa~5×10-4Pa;Step 1, place the graphite and aluminum targets after grinding, polishing, ultrasonic cleaning and drying in the sample chamber and target stage of the magnetron sputtering system respectively, and vacuum the sample chamber to 1×10 -3 Pa~5× 10 -4 Pa;
步骤2,向样品室通入高纯度氩气至样品室内压力为0.5~0.8Pa,并将样品室的温度稳定在20℃~30℃,打开磁控溅射开关,向石墨表面溅射Al涂层,溅射时间45min~60min,溅射功率60W~85W,溅射涂层厚度为15~20μm;Step 2: Infuse high-purity argon gas into the sample chamber until the pressure in the sample chamber is 0.5-0.8 Pa, and stabilize the temperature of the sample chamber at 20°C-30°C, turn on the magnetron sputtering switch, and sputter Al coating on the graphite surface. layer, the sputtering time is 45min~60min, the sputtering power is 60W~85W, and the sputtering coating thickness is 15~20μm;
步骤3,将步骤2得到的溅射Al涂层的石墨再次打磨、抛光、超声波清洗、干燥处理后,与铜的待连接面进行装配,将铜置于经过磁控溅射Al镀层的石墨上方并放置于真空扩散连接模具中,得到装配好的预置焊接件;Step 3, after grinding, polishing, ultrasonic cleaning, and drying the sputtered Al-coated graphite obtained in step 2, assemble it with the copper surface to be connected, and place the copper on the magnetron sputtered Al-coated graphite and placed in the vacuum diffusion connection mold to obtain the assembled pre-welded parts;
步骤4,将装配好的预置焊接件放入高真空扩散焊炉的炉膛中并抽真空,当真空度达到1×10-4Pa时,开始加热加压,以4~8MPa/min的加压速率加载至40~60MPa并始终保持该压力,以5~10℃/min的升温速率升高至500~550℃并保温10~20min,而后再以5~10℃/min的升温速率升高至650~700℃,保温10~20min后随炉冷却,得到铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。Step 4, put the assembled pre-welded parts into the hearth of the high-vacuum diffusion welding furnace and evacuate it. When the vacuum degree reaches 1×10 -4 Pa, start heating and pressurizing at a pressure of 4-8 MPa/min. Load the pressure rate to 40~60MPa and keep the pressure all the time, raise the temperature to 500~550℃ at a rate of 5~10℃/min and keep it for 10~20min, and then increase the temperature at a rate of 5~10℃/min to 650-700° C., keep warm for 10-20 minutes, and then cool with the furnace to obtain a connection joint of copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure.
进一步地,步骤1所述的打磨、抛光、超声波清洗、干燥处理是将石墨和铝激光脉冲溅射靶材表面进行打磨、抛光后依次用丙酮、酒精、去离子水进行超声波清洗15~20min,放入恒温为40~50℃的干燥箱中干燥处理20~30min。Further, the grinding, polishing, ultrasonic cleaning, and drying treatment described in step 1 are to grind and polish the surface of graphite and aluminum laser pulse sputtering targets, and then use acetone, alcohol, and deionized water to perform ultrasonic cleaning for 15 to 20 minutes, Put it into a drying oven with a constant temperature of 40-50°C for 20-30 minutes.
进一步地,步骤3所述的打磨、抛光、超声波清洗、干燥处理是将经过磁控溅射Al涂层的石墨和铜表面进行打磨、抛光后依次用丙酮、酒精、去离子水进行超声波清洗15~20min,放入恒温为40~50℃的干燥箱中干燥处理20~30min。Further, the grinding, polishing, ultrasonic cleaning, and drying treatment described in step 3 are to grind and polish the graphite and copper surfaces coated with magnetron sputtering Al, and then use acetone, alcohol, and deionized water to perform ultrasonic cleaning for 15 minutes. ~20min, put it into a drying oven with a constant temperature of 40~50°C for 20~30min.
本发明具有如下优点:The present invention has the following advantages:
(1)以铝为中间层对铜与石墨采用“二段法”工艺进行扩散连接,借助铝元素与铜元素、铝元素与碳元素的强相互作用,在较低温度条件下即可实现连接,大幅度降低了连接接头焊接应力;(1) Copper and graphite are diffused and connected using the "two-stage method" process with aluminum as the intermediate layer. With the help of the strong interaction between aluminum and copper elements, aluminum and carbon elements, the connection can be realized at a relatively low temperature , greatly reducing the welding stress of the connecting joint;
(2)以铝为中间层对铜与石墨进行扩散连接,在第一阶段,铜/铝界面处发生元素互扩散,使铝中间层转变为CuAl合金层;第二阶段,CuAl合金层/石墨界面处发生反应,生成Al4C3化合物。借助铝中间层,避免了铜与石墨之间由于相互作用较弱导致连接界面仅为“机械咬合”的状态,连接接头各界面均实现了良好的冶金结合。(2) Copper and graphite are diffused and connected with aluminum as the intermediate layer. In the first stage, interdiffusion of elements occurs at the copper/aluminum interface, so that the aluminum intermediate layer is transformed into a CuAl alloy layer; in the second stage, the CuAl alloy layer/graphite A reaction occurs at the interface to generate Al 4 C 3 compound. With the help of the aluminum interlayer, it is avoided that the connection interface between copper and graphite is only "mechanically occluded" due to the weak interaction, and each interface of the connection joint has achieved good metallurgical bonding.
附图说明Description of drawings
图1为实施例1含铝中间层的铜/石墨扩散连接接头组织扫描电镜图像。左侧为石墨,右侧为铜,连接界面组织中靠近石墨一侧为Al4C3化合物层,靠近铜一侧为CuAl合金层;连接接头各界面致密无缺陷,形成了良好的冶金结合。Fig. 1 is a scanning electron microscope image of the structure of the copper/graphite diffusion bonded joint with an aluminum interlayer in Example 1. Graphite on the left and copper on the right. The Al 4 C 3 compound layer is on the side close to the graphite in the connection interface structure, and the CuAl alloy layer is on the side close to the copper. The interfaces of the connection joints are dense and defect-free, forming a good metallurgical bond.
具体实施方式Detailed ways
实施例1Example 1
本实施例是一种铜与石墨的焊接方法。所涉及的铜为T1紫铜,机械加工成Φ15mm×3mm的圆柱;所涉及的石墨为Φ15mm×3mm的圆柱状石墨。This embodiment is a welding method of copper and graphite. The copper involved is T1 red copper, which is machined into a cylinder of Φ15mm×3mm; the graphite involved is cylindrical graphite of Φ15mm×3mm.
本实施例的具体过程包括以下步骤:The specific process of this embodiment includes the following steps:
步骤1,将铜、石墨和铝磁控溅射靶材的表面打磨、抛光后,依次用丙酮、酒精、去离子水进行超声波清洗15min,放入恒温为50℃的干燥箱中干燥处理25min,将干燥处理后的石墨和铝靶材分别放置于磁控溅射系统样品室和靶材台,将样品室抽真空至5×10-4Pa;Step 1. After grinding and polishing the surface of the copper, graphite and aluminum magnetron sputtering targets, ultrasonically clean them with acetone, alcohol, and deionized water for 15 minutes, and then dry them in a drying oven with a constant temperature of 50°C for 25 minutes. Place the dried graphite and aluminum targets in the sample chamber and target stage of the magnetron sputtering system respectively, and evacuate the sample chamber to 5×10 -4 Pa;
步骤2,向样品室通入高纯度氩气至样品室内压力为0.6Pa,并将样品室的温度稳定在24℃,打开磁控溅射开关,向石墨表面溅射Al涂层,溅射时间50min,溅射功率65W;Step 2: Infuse high-purity argon gas into the sample chamber until the pressure in the sample chamber is 0.6Pa, and stabilize the temperature of the sample chamber at 24°C, turn on the magnetron sputtering switch, and sputter Al coating on the graphite surface. 50min, sputtering power 65W;
步骤3,将经过磁控溅射Al涂层的石墨和铜表面进行打磨、抛光后依次用丙酮、酒精、去离子水进行超声波清洗15min,放入恒温为50℃的干燥箱中干燥处理25min。将经过磁控溅射Al涂层的石墨与铜的待连接面进行装配,将铜置于经过磁控溅射Al镀层的石墨上方并放置于真空扩散连接模具中;Step 3: Grinding and polishing the Al-coated graphite and copper surfaces by magnetron sputtering, followed by ultrasonic cleaning with acetone, alcohol, and deionized water for 15 minutes, and drying in a drying oven at a constant temperature of 50°C for 25 minutes. Assembling the graphite coated with magnetron sputtered Al and the copper surface to be connected, placing the copper above the graphite coated with magnetron sputtered Al and placing it in a vacuum diffusion connection mold;
步骤4,将装配好的预置焊接件放入高真空扩散焊炉的炉膛中并抽真空,当真空度达到1×10-4Pa时,开始加热加压,以4MPa/min的加压速率加载至40MPa并始终保持该压力,以10℃/min的升温速率升高至550℃并保温10min,而后再以8℃/min的升温速率升高至650℃,保温10min后随炉冷却,得到铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。Step 4, put the assembled pre-welded parts into the hearth of the high-vacuum diffusion welding furnace and evacuate it. When the vacuum degree reaches 1×10 -4 Pa, start heating and pressurizing at a pressurization rate of 4MPa/min Load to 40MPa and maintain the pressure all the time, raise the temperature to 550°C at a rate of 10°C/min and keep it for 10 minutes, then raise it to 650°C at a rate of 8°C/min, keep it for 10 minutes and then cool it with the furnace to get Connection joint of copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure.
步骤5,将步骤4得到的T1紫铜和石墨接头通过机械加工沿轴线截面切开,用砂纸对界面打磨后抛光,制备成金相试样,采用扫描电子显微镜观察接头微观组织结构,如图1所示,最终获得连接接头为铜/CuAl合金层/Al4C3化合物/石墨结构,接头各界面致密无缺陷,形成了良好的冶金结合。本方法铜与石墨的最高扩散连接温度为650℃,远低于现有铜/石墨扩散连接技术的连接温度870℃,有效降低焊接应力。Step 5: Cut the T1 red copper and graphite joint obtained in step 4 along the axial section by machining, polish the interface with sandpaper, prepare a metallographic sample, and observe the microstructure of the joint with a scanning electron microscope, as shown in Figure 1 As shown, the final connection joint is a copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure, and each interface of the joint is dense and defect-free, forming a good metallurgical bond. The highest diffusion connection temperature of copper and graphite in this method is 650°C, which is far lower than the connection temperature of 870°C in the existing copper/graphite diffusion connection technology, effectively reducing welding stress.
实施例2Example 2
本实施例是一种铜与石墨的焊接方法。所涉及的铜为T1紫铜,机械加工成Φ15mm×3mm的圆柱;所涉及的石墨为Φ15mm×3mm的圆柱状石墨。This embodiment is a welding method of copper and graphite. The copper involved is T1 red copper, which is machined into a cylinder of Φ15mm×3mm; the graphite involved is cylindrical graphite of Φ15mm×3mm.
本实施例的具体过程包括以下步骤:The specific process of this embodiment includes the following steps:
步骤1,将铜、石墨和铝磁控溅射靶材的表面打磨、抛光后,依次用丙酮、酒精、去离子水进行超声波清洗20min,放入恒温为50℃的干燥箱中干燥处理30min,将干燥处理后的石墨和铝靶材分别放置于磁控溅射系统样品室和靶材台,将样品室抽真空至5×10-4Pa;Step 1. After grinding and polishing the surface of the copper, graphite and aluminum magnetron sputtering targets, ultrasonically clean them with acetone, alcohol, and deionized water for 20 minutes, and then dry them in a drying oven with a constant temperature of 50°C for 30 minutes. Place the dried graphite and aluminum targets in the sample chamber and target stage of the magnetron sputtering system respectively, and evacuate the sample chamber to 5×10 -4 Pa;
步骤2,向样品室通入高纯度氩气至样品室内压力为0.7Pa,并将样品室的温度稳定在26℃,打开磁控溅射开关,向石墨表面溅射Al涂层,溅射时间55min,溅射功率75W;Step 2: Infuse high-purity argon gas into the sample chamber until the pressure in the sample chamber is 0.7 Pa, and stabilize the temperature of the sample chamber at 26°C, turn on the magnetron sputtering switch, and sputter Al coating on the graphite surface, the sputtering time is 55min, sputtering power 75W;
步骤3,将经过磁控溅射Al涂层的石墨和铜表面进行打磨、抛光后依次用丙酮、酒精、去离子水进行超声波清洗20min,放入恒温为50℃的干燥箱中干燥处理20min。将经过磁控溅射Al涂层的石墨与铜的待连接面进行装配,将铜置于经过磁控溅射Al镀层的石墨上方并放置于真空扩散连接模具中;Step 3: Grinding and polishing the Al-coated graphite and copper surfaces by magnetron sputtering, followed by ultrasonic cleaning with acetone, alcohol, and deionized water for 20 minutes, and drying in a drying oven at a constant temperature of 50°C for 20 minutes. Assembling the graphite coated with magnetron sputtered Al and the copper surface to be connected, placing the copper above the graphite coated with magnetron sputtered Al and placing it in a vacuum diffusion connection mold;
步骤4,将装配好的预置焊接件放入高真空扩散焊炉的炉膛中并抽真空,当真空度达到1×10-4Pa时,开始加热加压,以5MPa/min的加压速率加载至45MPa并始终保持该压力,以10℃/min的升温速率升高至520℃并保温15min,而后再以5℃/min的升温速率升高至680℃,保温15min后随炉冷却,得到铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。Step 4, put the assembled pre-welded parts into the hearth of the high-vacuum diffusion welding furnace and vacuumize it. When the vacuum degree reaches 1×10 -4 Pa, start heating and pressurizing at a pressurization rate of 5MPa/min Load to 45MPa and maintain the pressure all the time, raise the temperature to 520°C at a rate of 10°C/min and keep it for 15 minutes, then raise it to 680°C at a rate of 5°C/min, keep it for 15 minutes and then cool it with the furnace to get Connection joint of copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure.
步骤5,将步骤4得到的T1紫铜和石墨接头通过机械加工沿轴线截面切开,用砂纸对界面打磨后抛光,制备成金相试样,采用扫描电子显微镜观察接头微观组织结构。In step 5, the T1 red copper and graphite joint obtained in step 4 is cut along the axial section by machining, the interface is polished with sandpaper and then polished to prepare a metallographic sample, and the microstructure of the joint is observed with a scanning electron microscope.
实施例3Example 3
本实施例是一种铜与石墨的焊接方法。所涉及的铜为T1紫铜,机械加工成Φ15mm×3mm的圆柱;所涉及的石墨为Φ15mm×3mm的圆柱状石墨。This embodiment is a welding method of copper and graphite. The copper involved is T1 red copper, which is machined into a cylinder of Φ15mm×3mm; the graphite involved is cylindrical graphite of Φ15mm×3mm.
本实施例的具体过程包括以下步骤:The specific process of this embodiment includes the following steps:
步骤1,将铜、石墨和铝磁控溅射靶材的表面打磨、抛光后,依次用丙酮、酒精、去离子水进行超声波清洗20min,放入恒温为50℃的干燥箱中干燥处理20min,将干燥处理后的石墨和铝靶材分别放置于磁控溅射系统样品室和靶材台,将样品室抽真空至5×10-4Pa;Step 1. After grinding and polishing the surface of the copper, graphite and aluminum magnetron sputtering targets, ultrasonically clean them with acetone, alcohol, and deionized water for 20 minutes, and then dry them in a drying oven with a constant temperature of 50°C for 20 minutes. Place the dried graphite and aluminum targets in the sample chamber and target stage of the magnetron sputtering system respectively, and evacuate the sample chamber to 5×10 -4 Pa;
步骤2,向样品室通入高纯度氩气至样品室内压力为0.8Pa,并将样品室的温度稳定在28℃,打开磁控溅射开关,向石墨表面溅射Al涂层,溅射时间60min,溅射功率85W;Step 2: Infuse high-purity argon gas into the sample chamber until the pressure in the sample chamber is 0.8 Pa, and stabilize the temperature of the sample chamber at 28°C, turn on the magnetron sputtering switch, and sputter Al coating on the graphite surface, the sputtering time is 60min, sputtering power 85W;
步骤3,将经过磁控溅射Al涂层的石墨和铜表面进行打磨、抛光后依次用丙酮、酒精、去离子水进行超声波清洗15min,放入恒温为50℃的干燥箱中干燥处理30min。将经过磁控溅射Al涂层的石墨与铜的待连接面进行装配,将铜置于经过磁控溅射Al镀层的石墨上方并放置于真空扩散连接模具中;Step 3: Grinding and polishing the Al-coated graphite and copper surfaces by magnetron sputtering, followed by ultrasonic cleaning with acetone, alcohol, and deionized water for 15 minutes, and drying in a drying oven at a constant temperature of 50°C for 30 minutes. Assembling the graphite coated with magnetron sputtered Al and the copper surface to be connected, placing the copper above the graphite coated with magnetron sputtered Al and placing it in a vacuum diffusion connection mold;
步骤4,将装配好的预置焊接件放入高真空扩散焊炉的炉膛中并抽真空,当真空度达到1×10-4Pa时,开始加热加压,以5MPa/min的加压速率加载至50MPa并始终保持该压力,以10℃/min的升温速率升高至500℃并保温20min,而后再以5℃/min的升温速率升高至700℃,保温20min后随炉冷却,得到铜/CuAl合金层/Al4C3化合物/石墨结构的连接接头。Step 4, put the assembled pre-welded parts into the hearth of the high-vacuum diffusion welding furnace and vacuumize it. When the vacuum degree reaches 1×10 -4 Pa, start heating and pressurizing at a pressurization rate of 5MPa/min Load to 50MPa and maintain the pressure all the time, raise the temperature to 500°C at a rate of 10°C/min and keep it for 20 minutes, then raise it to 700°C at a rate of 5°C/min, keep it for 20 minutes and then cool with the furnace to get Connection joint of copper/CuAl alloy layer/Al 4 C 3 compound/graphite structure.
步骤5,将步骤4得到的T1紫铜和石墨接头通过机械加工沿轴线截面切开,用砂纸对界面打磨后抛光,制备成金相试样,采用扫描电子显微镜观察接头微观组织结构。In step 5, the T1 red copper and graphite joint obtained in step 4 is cut along the axial section by machining, the interface is polished with sandpaper and then polished to prepare a metallographic sample, and the microstructure of the joint is observed with a scanning electron microscope.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210706527.0A CN115255606B (en) | 2022-06-21 | 2022-06-21 | Diffusion connection method for copper and graphite of aluminum-containing intermediate layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210706527.0A CN115255606B (en) | 2022-06-21 | 2022-06-21 | Diffusion connection method for copper and graphite of aluminum-containing intermediate layer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115255606A true CN115255606A (en) | 2022-11-01 |
CN115255606B CN115255606B (en) | 2023-07-25 |
Family
ID=83761704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210706527.0A Active CN115255606B (en) | 2022-06-21 | 2022-06-21 | Diffusion connection method for copper and graphite of aluminum-containing intermediate layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115255606B (en) |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992007681A1 (en) * | 1990-10-24 | 1992-05-14 | Alcan International Limited | Bonding metals |
EP1297925A2 (en) * | 2001-10-01 | 2003-04-02 | Ngk Insulators, Ltd. | HIP bonded body of beryllium member and copper alloy member and method of producing the same |
US6579431B1 (en) * | 1998-01-14 | 2003-06-17 | Tosoh Smd, Inc. | Diffusion bonding of high purity metals and metal alloys to aluminum backing plates using nickel or nickel alloy interlayers |
CN1894435A (en) * | 2003-12-18 | 2007-01-10 | 岛根县 | Metal-based carbon fiber composite material and method for producing the same |
CN101857189A (en) * | 2010-05-31 | 2010-10-13 | 哈尔滨工业大学 | Method for connecting carbon nanotubes to metals |
CN102000896A (en) * | 2010-11-10 | 2011-04-06 | 中国电子科技集团公司第十四研究所 | Al-Cu transient liquid phase diffusion bonding method of Al alloy |
US8186565B1 (en) * | 2006-10-18 | 2012-05-29 | Dow Global Technologies Llc | Method of bonding aluminum-boron-carbon composites |
CN102861986A (en) * | 2012-10-12 | 2013-01-09 | 武汉理工大学 | Spreading welding method of magnesium alloy and aluminum alloy containing composite middle layer |
CN102873422A (en) * | 2012-10-18 | 2013-01-16 | 北京科技大学 | Aluminum and aluminum alloy and copper diffusion brazing process |
CN103302371A (en) * | 2013-06-26 | 2013-09-18 | 哈尔滨工业大学 | Diffusion bonding method of hard alloy and metal |
CN103612008A (en) * | 2013-11-30 | 2014-03-05 | 西安科技大学 | Magnesium alloy and copper composite panel manufacturing method based on transient liquid phase diffusion connection |
CN103753123A (en) * | 2013-12-18 | 2014-04-30 | 华中科技大学 | Method for manufacturing multilayer amorphous alloy and copper composite structure through intermediate layer diffusion |
CN104191085A (en) * | 2014-09-01 | 2014-12-10 | 山东大学 | Low-temperature diffusion bonding method for adding quasi-crystal interlayers to aluminum-steel-aluminum |
CN105252137A (en) * | 2015-11-13 | 2016-01-20 | 哈尔滨工业大学 | Aluminum or aluminium alloy and copper vacuum diffusion welding method |
EP3124644A1 (en) * | 2015-07-27 | 2017-02-01 | Cooper-Standard Automotive, Inc. | Tubing material, double wall steel tubes and method of manufacturing a double wall steel tube |
CN106392367A (en) * | 2016-11-22 | 2017-02-15 | 江苏阳明船舶装备制造技术有限公司 | Solder for brazing red copper and graphite and brazing method |
CN106475679A (en) * | 2016-11-30 | 2017-03-08 | 山东大学 | A kind of copper and the discontinuous pressure process diffusion connecting process of the unrepeatered transmission of aluminium alloy |
CN106825984A (en) * | 2017-03-13 | 2017-06-13 | 河南理工大学 | The method for welding and solder preparation method of a kind of high-volume fractional SiCp/Al composites |
CN108188523A (en) * | 2018-01-11 | 2018-06-22 | 太原理工大学 | The preparation method of magnesium/aluminum-based layered composite plate |
CN109014549A (en) * | 2018-07-13 | 2018-12-18 | 中国航发北京航空材料研究院 | A kind of diffusion welding connection method for making composite interlayer using Cu foil and Ti foil |
WO2019040753A1 (en) * | 2017-08-23 | 2019-02-28 | Georgia Tech Research Corporation | Low temperature direct bonding of aluminum nitride to alsic substrates |
CN112077423A (en) * | 2020-08-25 | 2020-12-15 | 合肥工业大学 | A kind of diffusion bonding method of aluminum-magnesium alloy |
CN112605551A (en) * | 2020-12-30 | 2021-04-06 | 重庆理工大学 | Connecting structure for welding titanium and copper by using multi-interlayer brazing filler metal and brazing method |
CN112620847A (en) * | 2020-12-09 | 2021-04-09 | 核工业西南物理研究院 | Method for enhancing brazing connection between carbon-based material and copper alloy |
CN112935512A (en) * | 2021-03-26 | 2021-06-11 | 宁波江丰电子材料股份有限公司 | Diffusion welding method for cobalt target and copper-chromium alloy back plate |
CN112935511A (en) * | 2021-03-26 | 2021-06-11 | 宁波江丰电子材料股份有限公司 | Diffusion welding method for cobalt target and copper-zinc alloy back plate |
CN113307647A (en) * | 2021-04-16 | 2021-08-27 | 长春工业大学 | Indirect brazing method of aluminum nitride ceramic copper-clad plate |
CN113500280A (en) * | 2021-07-07 | 2021-10-15 | 广西南宁市联力德材料科技有限公司 | Diffusion welding method for dissimilar metals |
CN113523471A (en) * | 2021-07-06 | 2021-10-22 | 北京科技大学 | A kind of diffusion welding method of tungsten-nickel-iron alloy and high-strength steel for preparing intermediate layer by material reduction |
CN113927117A (en) * | 2021-11-29 | 2022-01-14 | 宁波江丰电子材料股份有限公司 | Method for welding brittle target material assembly |
CN114367730A (en) * | 2021-12-16 | 2022-04-19 | 武汉大学 | Diamond/Bulk Copper Substrate Diffusion Bonding Process and Structure Based on Diamond Indirect Tensile Structure |
CN114425647A (en) * | 2020-10-29 | 2022-05-03 | 哈尔滨工业大学(威海) | Method for connecting graphite film and copper |
CN216576031U (en) * | 2021-12-22 | 2022-05-24 | 浙江最成半导体科技有限公司 | Sputtering target diffusion welding assembly |
-
2022
- 2022-06-21 CN CN202210706527.0A patent/CN115255606B/en active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992007681A1 (en) * | 1990-10-24 | 1992-05-14 | Alcan International Limited | Bonding metals |
US6579431B1 (en) * | 1998-01-14 | 2003-06-17 | Tosoh Smd, Inc. | Diffusion bonding of high purity metals and metal alloys to aluminum backing plates using nickel or nickel alloy interlayers |
EP1297925A2 (en) * | 2001-10-01 | 2003-04-02 | Ngk Insulators, Ltd. | HIP bonded body of beryllium member and copper alloy member and method of producing the same |
CN1894435A (en) * | 2003-12-18 | 2007-01-10 | 岛根县 | Metal-based carbon fiber composite material and method for producing the same |
US8186565B1 (en) * | 2006-10-18 | 2012-05-29 | Dow Global Technologies Llc | Method of bonding aluminum-boron-carbon composites |
CN101857189A (en) * | 2010-05-31 | 2010-10-13 | 哈尔滨工业大学 | Method for connecting carbon nanotubes to metals |
CN102000896A (en) * | 2010-11-10 | 2011-04-06 | 中国电子科技集团公司第十四研究所 | Al-Cu transient liquid phase diffusion bonding method of Al alloy |
CN102861986A (en) * | 2012-10-12 | 2013-01-09 | 武汉理工大学 | Spreading welding method of magnesium alloy and aluminum alloy containing composite middle layer |
CN102873422A (en) * | 2012-10-18 | 2013-01-16 | 北京科技大学 | Aluminum and aluminum alloy and copper diffusion brazing process |
CN103302371A (en) * | 2013-06-26 | 2013-09-18 | 哈尔滨工业大学 | Diffusion bonding method of hard alloy and metal |
CN103612008A (en) * | 2013-11-30 | 2014-03-05 | 西安科技大学 | Magnesium alloy and copper composite panel manufacturing method based on transient liquid phase diffusion connection |
CN103753123A (en) * | 2013-12-18 | 2014-04-30 | 华中科技大学 | Method for manufacturing multilayer amorphous alloy and copper composite structure through intermediate layer diffusion |
CN104191085A (en) * | 2014-09-01 | 2014-12-10 | 山东大学 | Low-temperature diffusion bonding method for adding quasi-crystal interlayers to aluminum-steel-aluminum |
EP3124644A1 (en) * | 2015-07-27 | 2017-02-01 | Cooper-Standard Automotive, Inc. | Tubing material, double wall steel tubes and method of manufacturing a double wall steel tube |
CN105252137A (en) * | 2015-11-13 | 2016-01-20 | 哈尔滨工业大学 | Aluminum or aluminium alloy and copper vacuum diffusion welding method |
CN106392367A (en) * | 2016-11-22 | 2017-02-15 | 江苏阳明船舶装备制造技术有限公司 | Solder for brazing red copper and graphite and brazing method |
CN106475679A (en) * | 2016-11-30 | 2017-03-08 | 山东大学 | A kind of copper and the discontinuous pressure process diffusion connecting process of the unrepeatered transmission of aluminium alloy |
CN106825984A (en) * | 2017-03-13 | 2017-06-13 | 河南理工大学 | The method for welding and solder preparation method of a kind of high-volume fractional SiCp/Al composites |
WO2019040753A1 (en) * | 2017-08-23 | 2019-02-28 | Georgia Tech Research Corporation | Low temperature direct bonding of aluminum nitride to alsic substrates |
CN108188523A (en) * | 2018-01-11 | 2018-06-22 | 太原理工大学 | The preparation method of magnesium/aluminum-based layered composite plate |
CN109014549A (en) * | 2018-07-13 | 2018-12-18 | 中国航发北京航空材料研究院 | A kind of diffusion welding connection method for making composite interlayer using Cu foil and Ti foil |
CN112077423A (en) * | 2020-08-25 | 2020-12-15 | 合肥工业大学 | A kind of diffusion bonding method of aluminum-magnesium alloy |
CN114425647A (en) * | 2020-10-29 | 2022-05-03 | 哈尔滨工业大学(威海) | Method for connecting graphite film and copper |
CN112620847A (en) * | 2020-12-09 | 2021-04-09 | 核工业西南物理研究院 | Method for enhancing brazing connection between carbon-based material and copper alloy |
CN112605551A (en) * | 2020-12-30 | 2021-04-06 | 重庆理工大学 | Connecting structure for welding titanium and copper by using multi-interlayer brazing filler metal and brazing method |
CN112935511A (en) * | 2021-03-26 | 2021-06-11 | 宁波江丰电子材料股份有限公司 | Diffusion welding method for cobalt target and copper-zinc alloy back plate |
CN112935512A (en) * | 2021-03-26 | 2021-06-11 | 宁波江丰电子材料股份有限公司 | Diffusion welding method for cobalt target and copper-chromium alloy back plate |
CN113307647A (en) * | 2021-04-16 | 2021-08-27 | 长春工业大学 | Indirect brazing method of aluminum nitride ceramic copper-clad plate |
CN113523471A (en) * | 2021-07-06 | 2021-10-22 | 北京科技大学 | A kind of diffusion welding method of tungsten-nickel-iron alloy and high-strength steel for preparing intermediate layer by material reduction |
CN113500280A (en) * | 2021-07-07 | 2021-10-15 | 广西南宁市联力德材料科技有限公司 | Diffusion welding method for dissimilar metals |
CN113927117A (en) * | 2021-11-29 | 2022-01-14 | 宁波江丰电子材料股份有限公司 | Method for welding brittle target material assembly |
CN114367730A (en) * | 2021-12-16 | 2022-04-19 | 武汉大学 | Diamond/Bulk Copper Substrate Diffusion Bonding Process and Structure Based on Diamond Indirect Tensile Structure |
CN216576031U (en) * | 2021-12-22 | 2022-05-24 | 浙江最成半导体科技有限公司 | Sputtering target diffusion welding assembly |
Non-Patent Citations (9)
Title |
---|
兰天;杜双明;胡结;: "保温时间对AZ31B镁合金/铝/铜扩散钎焊接头组织与力学性能的影响", 机械工程材料, no. 02 * |
安俊杰等: "泡沫铜表面改性对化学气相沉积高质量泡沫金刚石的影响", 表面技术, no. 3 * |
崔冰等: "TiC增强Cf/SiC复合材料与钛合金钎焊接头工艺分析", 焊接学报, no. 3 * |
彭胜;初铭强;张书彦;张鹏;: "铝铜接头的扩散焊连接研究现状", 金属世界, no. 02 * |
李启寿;程亮;杨勇;朱益军;蔡永军;李强;: "石墨-铜扩散连接的界面行为", 粉末冶金材料科学与工程, no. 05 * |
林国标,黄继华,张建纲,刘慧渊,毛建英,李海刚: "Ag-Cu-Ti-(Ti+C)反应-复合钎焊SiC陶瓷和Ti合金的接头组织", 中国有色金属学报, no. 9 * |
王世宇;李卓然;张招;侯兆滨;: "Mg/Cu/Al接触反应钎焊工艺及元素扩散行为分析", 焊接学报, no. 01 * |
王鹏;李强;高增;程东锋;牛济泰;: "高体积比SiC_p/6063Al复合材料表面预置钛膜及真空钎焊分析", 焊接学报, no. 04 * |
罗伟洪;雷建国;程蓉;伍晓宇;: "双工位阻焊式金属叠层实体制造工艺研究", 组合机床与自动化加工技术, no. 07 * |
Also Published As
Publication number | Publication date |
---|---|
CN115255606B (en) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101920393A (en) | Low Temperature Diffusion Welding Method of Magnesium Alloy and Aluminum Alloy | |
CN105346161A (en) | Tungsten/transition layer/steel composite material and low-temperature and low-pressure active diffusion connection preparation method thereof | |
CN111347146B (en) | Tungsten and heat sink material connector and preparation method thereof | |
CN112496518B (en) | A kind of diffusion joining method of tungsten and low activation steel | |
CN108637447A (en) | A kind of dissimilar metal electron beam soldering method of titanium alloy and kovar alloy | |
CN1413792A (en) | Active compound gradient separation diffusion welding method for titanium aluminium base alloy and steel | |
CN105149769B (en) | The design of lamination composite interlayer, which introduces, makes the method that magnesium alloy is connected with aluminium alloy | |
CN113492296A (en) | Preparation method of aluminum bronze/titanium alloy bimetal | |
CN113478062B (en) | Reaction diffusion connection method for titanium-zirconium-molybdenum alloy high-temperature-resistant joint | |
CN1903795A (en) | Method of low temperature active vacuum diffusion connecting ceramic | |
CN113385893A (en) | Preparation method of niobium-copper composite part | |
CN113523471B (en) | Diffusion welding method for tungsten-nickel-iron alloy and high-strength steel for preparing intermediate layer by reducing material | |
CN115255606B (en) | Diffusion connection method for copper and graphite of aluminum-containing intermediate layer | |
CN112975032B (en) | Brazing method of silicon carbide ceramic | |
JPH11285859A (en) | Manufacture of hip joined body between beryllium and copper alloy and hip joined body | |
CN1052674C (en) | Tin-base active flux for soldering ceramic under coarse vacuum condition | |
CN114425647B (en) | Method for connecting graphite film and copper | |
CN109161865B (en) | A kind of raising Si3N4The surface treatment method of ceramics and gamma-TiAl alloy welding performance | |
CN114749746B (en) | A reaction brazing process for Ti/Zr foil to connect graphite and molybdenum alloy | |
CN111151863B (en) | Compounding method for instantaneous liquid state diffusion connection of steel and copper of large rotor | |
CN114799475B (en) | A method for direct brazing of non-metal and metal using commercial inactive brazing filler metal at low temperature | |
CN112427644B (en) | A kind of preparation method of self-generated ceramic particle reinforced copper-based gradient spot welding electrode cap | |
CN115007988A (en) | Copper alloy-steel composite cylindrical part and preparation method thereof | |
CN109396634B (en) | Ultrasonic-assisted welding method of magnesium alloy with pure Pb as intermediate reaction material layer | |
CN114932283B (en) | A kind of eutectic reaction brazing process of graphite and TZM alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |