[go: up one dir, main page]

CN115249890A - A terahertz signal detection device and preparation method thereof - Google Patents

A terahertz signal detection device and preparation method thereof Download PDF

Info

Publication number
CN115249890A
CN115249890A CN202110468598.7A CN202110468598A CN115249890A CN 115249890 A CN115249890 A CN 115249890A CN 202110468598 A CN202110468598 A CN 202110468598A CN 115249890 A CN115249890 A CN 115249890A
Authority
CN
China
Prior art keywords
electrode
substrate
insulating layer
detection device
signal detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110468598.7A
Other languages
Chinese (zh)
Other versions
CN115249890B (en
Inventor
赖伟恩
刘根
袁浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110468598.7A priority Critical patent/CN115249890B/en
Priority claimed from CN202110468598.7A external-priority patent/CN115249890B/en
Publication of CN115249890A publication Critical patent/CN115249890A/en
Application granted granted Critical
Publication of CN115249890B publication Critical patent/CN115249890B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The invention provides a terahertz signal detection device and a preparation method thereof, wherein the terahertz signal detection device comprises the following steps: a substrate; the first electrode is formed on the substrate and is located on one side of the substrate. The second electrode is formed on the substrate and is disposed symmetrically with the first electrode about a center of the substrate. The first semiconductor layer is formed between the first electrode and the second electrode, and connects the first electrode and the second electrode. The insulating layer is formed on the first semiconductor layer. The third electrode is formed on the insulating layer and is located on one side of the insulating layer. The fourth electrode is formed on the insulating layer and is arranged symmetrically with the third electrode with respect to the center of the substrate. The second semiconductor layer is formed between the third electrode and the fourth electrode, and connects the third electrode and the fourth electrode. And the central connecting line of the first electrode and the second electrode is vertical to the central connecting line of the third electrode and the fourth electrode. The terahertz signal detection device and the preparation method thereof provided by the invention are novel in structure, simple in preparation and have production and application values.

Description

一种太赫兹信号探测装置及其制备方法A terahertz signal detection device and preparation method thereof

技术领域technical field

本发明涉及探测技术领域,特别是涉及一种太赫兹信号探测装置及其制备方法。The invention relates to the technical field of detection, in particular to a terahertz signal detection device and a preparation method thereof.

背景技术Background technique

太赫兹波是一种频率在0.1~10THz范围内的电磁波,能够覆盖半导体、有机体和生物大 分子等物质的特征谱。受限于太赫兹辐射源的低输出功率和太赫兹频率范围内较高的热辐射 背景噪声等因素,在不同适用环境和工作范围内需要各种太赫兹探测装置的相互补充。Terahertz waves are electromagnetic waves with frequencies in the range of 0.1 to 10 THz, which can cover the characteristic spectrum of substances such as semiconductors, organisms, and biological macromolecules. Limited by factors such as the low output power of the terahertz radiation source and the high background noise of thermal radiation in the terahertz frequency range, various terahertz detection devices are required to complement each other in different applicable environments and working ranges.

太赫兹信号探测技术分为相干脉冲时域连续波探测技术和非相干直接能量探测技术。基 于非相干技术的太赫兹信号探测技术吸收热辐射能量进行检测,一般只能测出太赫兹辐射强 度,而不能提供其相位信息。Terahertz signal detection technology is divided into coherent pulse time domain continuous wave detection technology and incoherent direct energy detection technology. The terahertz signal detection technology based on incoherent technology absorbs thermal radiation energy for detection, and generally can only measure the terahertz radiation intensity, but cannot provide its phase information.

发明内容SUMMARY OF THE INVENTION

鉴于上述现有技术的缺陷,本发明提出一种太赫兹信号探测装置及其制备方法,提高探测 装置对红外及太赫兹辐射的吸收率,从而实现极化不敏感、快速响应、高灵敏度、宽带宽、 低信噪比和室温工作环境等优点,提高工作效率。In view of the above-mentioned defects of the prior art, the present invention proposes a terahertz signal detection device and a preparation method thereof, which improves the absorption rate of the detection device to infrared and terahertz radiation, thereby achieving polarization insensitivity, fast response, high sensitivity, and wide bandwidth. Wide, low signal-to-noise ratio and room temperature working environment and other advantages, improve work efficiency.

为实现上述目的及其他目的,本发明提出一种太赫兹信号探测装置,包括:In order to achieve the above purpose and other purposes, the present invention proposes a terahertz signal detection device, comprising:

衬底;substrate;

第一电极,形成于所述衬底上,且位于所述衬底的一侧;a first electrode, formed on the substrate, and located on one side of the substrate;

第二电极,形成于所述衬底上,且与所述第一电极关于所述衬底的中心对称设置;a second electrode, formed on the substrate, and arranged symmetrically with the first electrode about the center of the substrate;

第一半导体层,形成于所述第一电极和所述第二电极之间,且连接所述第一电极和所述 第二电极;a first semiconductor layer formed between the first electrode and the second electrode and connecting the first electrode and the second electrode;

绝缘层,形成于所述第一半导体层上;an insulating layer formed on the first semiconductor layer;

第三电极,形成于所述绝缘层上,且位于所述绝缘层的一侧;a third electrode, formed on the insulating layer, and located on one side of the insulating layer;

第四电极,形成于所述绝缘层上,且与所述第三电极关于所述衬底的中心对称设置;a fourth electrode, formed on the insulating layer, and arranged symmetrically with the third electrode about the center of the substrate;

第二半导体层,形成于所述第三电极和所述第四电极之间,且连接所述第三电极和所述 第四电极;a second semiconductor layer formed between the third electrode and the fourth electrode and connecting the third electrode and the fourth electrode;

其中,所述第一电极和所述第二电极的中心连线,垂直于所述第三电极和所述第四电极 的中心连线。Wherein, the center line connecting the first electrode and the second electrode is perpendicular to the center line connecting the third electrode and the fourth electrode.

在本发明一个实施例中,所述衬底包括硅基底座和底座覆盖层,所述底座覆盖层覆盖所 述硅基底座上表面。In one embodiment of the present invention, the substrate includes a silicon-based base and a base covering layer, and the base covering layer covers the upper surface of the silicon-based base.

在本发明一个实施例中,所述第一电极、所述第二电极、所述第三电极以及所述第四电 极呈扇形设置。In an embodiment of the present invention, the first electrode, the second electrode, the third electrode and the fourth electrode are arranged in a fan shape.

在本发明一个实施例中,所述第一电极、所述第二电极、所述第三电极以及所述第四电 极的结构和尺寸相同。In an embodiment of the present invention, the structures and dimensions of the first electrode, the second electrode, the third electrode and the fourth electrode are the same.

在本发明一个实施例中,所述第一电极半径的范围为80μm-120μm。In an embodiment of the present invention, the radius of the first electrode ranges from 80 μm to 120 μm.

在本发明一个实施例中,所述第一电极开口角度的范围为60°-90°。In an embodiment of the present invention, the opening angle of the first electrode ranges from 60° to 90°.

在本发明一个实施例中,所述第一电极厚度的范围为20nm-300nm。In an embodiment of the present invention, the thickness of the first electrode ranges from 20 nm to 300 nm.

在本发明一个实施例中,所述第一电极、所述第二电极、所述第三电极以及所述第四电 极在衬底上的正投影不重合。In an embodiment of the present invention, the orthographic projections of the first electrode, the second electrode, the third electrode and the fourth electrode on the substrate do not overlap.

在本发明一个实施例中,所述绝缘层覆盖所述第一半导体层。In one embodiment of the present invention, the insulating layer covers the first semiconductor layer.

本发明还提出一种太赫兹信号探测装置的制备方法,包括:The present invention also provides a preparation method of a terahertz signal detection device, comprising:

提供衬底;provide a substrate;

在所述衬底上形成第一电极,位于所述衬底的一侧;forming a first electrode on the substrate, located on one side of the substrate;

在所述衬底上形成第二电极,与所述第一电极关于所述衬底的中心对称设置;forming a second electrode on the substrate, symmetrically arranged with the first electrode about the center of the substrate;

在所述第一电极和所述第二电极之间形成第一半导体层,连接所述第一电极和所述第二 电极;forming a first semiconductor layer between the first electrode and the second electrode, connecting the first electrode and the second electrode;

在所述第一半导体层上形成绝缘层;forming an insulating layer on the first semiconductor layer;

在所述绝缘层上形成第三电极,位于所述绝缘层的一侧;forming a third electrode on the insulating layer, located on one side of the insulating layer;

在所述绝缘层上形成第四电极,与所述第三电极关于所述衬底的中心对称设置;forming a fourth electrode on the insulating layer, which is symmetrically arranged with the third electrode about the center of the substrate;

在所述第三电极和所述第四电极之间形成第二半导体层,连接所述第三电极和所述第四 电极;forming a second semiconductor layer between the third electrode and the fourth electrode, connecting the third electrode and the fourth electrode;

其中,所述第一电极和所述第二电极的中心连线垂直于所述第三电极和所述第四电极的 中心连线。Wherein, the center connection line between the first electrode and the second electrode is perpendicular to the center connection line between the third electrode and the fourth electrode.

综上所述,本发明提出一种太赫兹信号探测装置及其制备方法,具有以下有益效果:将 天线设计成垂直交叉状的特殊结构,提高了响应时间,实现了探测装置的高灵敏度、宽带宽 以及低信噪比。相比传统的场效应结构,本发明提供的一种太赫兹信号探测装置结构新颖, 性能优异,制备简单,可工作于红外及太赫兹波段。In summary, the present invention proposes a terahertz signal detection device and a preparation method thereof, which have the following beneficial effects: the antenna is designed into a special vertical cross-shaped structure, the response time is improved, and the high sensitivity and wide bandwidth of the detection device are realized. wide and low signal-to-noise ratio. Compared with the traditional field effect structure, the terahertz signal detection device provided by the present invention has novel structure, excellent performance, simple preparation, and can work in the infrared and terahertz bands.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一 些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些 附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.

图1为对数周期天线示意图。Figure 1 is a schematic diagram of a log-periodic antenna.

图2为对数周期天线纵向剖面图。FIG. 2 is a longitudinal sectional view of a log-periodic antenna.

图3为对数周期天线俯视图。FIG. 3 is a plan view of a log-periodic antenna.

图4为对数周期天线角度示意图。FIG. 4 is a schematic diagram of a log-periodic antenna angle.

图5为对数周期天线沟道中心局部放大图。FIG. 5 is a partial enlarged view of the center of the log-periodic antenna channel.

图6为蝶形天线俯视图。FIG. 6 is a top view of the butterfly antenna.

图7为条形天线俯视图。FIG. 7 is a top view of the strip antenna.

图8为制备工艺流程图。Figure 8 is a flow chart of the preparation process.

图9为电磁仿真得到的对数周期天线沟道局部电场增强图。FIG. 9 is a graph of the local electric field enhancement of the log-periodic antenna channel obtained by electromagnetic simulation.

图10为电磁仿真得到的蝶形天线沟道局部电场增强图。FIG. 10 is the local electric field enhancement diagram of the butterfly antenna channel obtained by electromagnetic simulation.

图11为电磁仿真得到的条形天线沟道局部电场增强图。FIG. 11 is the local electric field enhancement diagram of the strip antenna channel obtained by the electromagnetic simulation.

标号说明:Label description:

1探测装置;2衬底;21硅基底座;22二氧化硅层;3第一电极;4第二电极;5第一半导体层;6绝缘层;7第三电极;8第四电极;9第二半导体层。1 detection device; 2 substrate; 21 silicon base; 22 silicon dioxide layer; 3 first electrode; 4 second electrode; 5 first semiconductor layer; 6 insulating layer; 7 third electrode; 8 fourth electrode; 9 the second semiconductor layer.

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加 以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精 神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.

需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式 中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际 实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.

本发明提出一种太赫兹信号探测装置及其制备方法,将天线设计成垂直交叉状的特殊结 构,提高了响应时间,实现了探测装置的高灵敏度、宽带宽以及低信噪比。相比传统的场效 应结构,性能优异,制备简单,可工作于红外及太赫兹波段。The invention provides a terahertz signal detection device and a preparation method thereof. The antenna is designed into a special vertical cross-shaped structure, which improves the response time and realizes the high sensitivity, wide bandwidth and low signal-to-noise ratio of the detection device. Compared with the traditional field effect structure, it has excellent performance, simple preparation, and can work in the infrared and terahertz bands.

请参阅图1,在本发明一实施例中,所述太赫兹信号探测装置包括衬底2,衬底2包括例 如硅基底座21和底座覆盖层22。所述硅基底座21可以为长方体结构,设置在底部作为支撑 件。所述底座覆盖层22的底面与所述硅基底座21的上表面接触。所述底座覆盖层22可以完 全覆盖在所述硅基底座21上表面。所述衬底2的厚度范围例如为50μm-500μm。衬底2材料 可以是高阻硅、碳化硅、石英、玻璃树脂、蓝宝石、聚酰亚胺等,底座覆盖层可以设置为厚度范围为100nm-300nm的二氧化硅层。Referring to Fig. 1 , in an embodiment of the present invention, the terahertz signal detection device includes a substrate 2, and the substrate 2 includes, for example, a silicon-based base 21 and a base covering layer 22. The silicon-based base 21 may have a rectangular parallelepiped structure, and is arranged at the bottom as a support. The bottom surface of the base covering layer 22 is in contact with the upper surface of the silicon-based base 21 . The base covering layer 22 may completely cover the upper surface of the silicon-based base 21 . The thickness of the substrate 2 ranges from 50 μm to 500 μm, for example. The material of the substrate 2 can be high-resistance silicon, silicon carbide, quartz, glass resin, sapphire, polyimide, etc., and the base cover layer can be set as a silicon dioxide layer with a thickness ranging from 100nm to 300nm.

请参阅图1-图5,在本发明一实施例中,第一电极3形成于所述衬底2上。第一电极3设置在所述衬底2的上表面,与所述底座覆盖层22接触。所述第一电极3作为信号天线设置在所述衬底2上表面的一侧。所述第一电极可以为对数周期天线,其形状可以为扇形。所述扇形关于扇形中心平均分为三等分,外侧两个扇形沿不同半径长度位置交错设置有缺口。所 述第二电极4形成于所述衬底2上,且与所述第一电极3关于所述衬底2的中心对称设置。所述第一电极3与所述第二电极4组成的天线可以垂直于所述衬底2上表面的侧边,或者与所述衬底2上表面的侧边形成一定的角度。通过光刻技术和薄膜制作技术制作第一电极3、第二电极4,所述第二电极4的结构、尺寸以及材料可以与所述第一电极3相同。所述第二 电极4的材料可以是钛(Ti)和金(Au)相互组合或者其中的一种。所述第一电极3厚度的 范围例如为20nm-300nm,半径范围例如为80μm-120μm,开口角度θ1的范围例如为60°- 90°,比例因子τ的范围例如为0.707-0.8。Referring to FIGS. 1-5 , in an embodiment of the present invention, the first electrode 3 is formed on the substrate 2 . The first electrode 3 is disposed on the upper surface of the substrate 2 and is in contact with the base cover layer 22 . The first electrode 3 is disposed on one side of the upper surface of the substrate 2 as a signal antenna. The first electrode may be a log-periodic antenna, and its shape may be a sector. The fan shape is evenly divided into three equal parts about the center of the fan shape, and the two outer fan shapes are alternately provided with notches along different radius lengths. The second electrode 4 is formed on the substrate 2 and is symmetrically arranged with the first electrode 3 about the center of the substrate 2 . The antenna formed by the first electrode 3 and the second electrode 4 may be perpendicular to the side of the upper surface of the substrate 2 or form a certain angle with the side of the upper surface of the substrate 2 . The first electrode 3 and the second electrode 4 are fabricated by photolithography technology and thin film fabrication technology. The structure, size and material of the second electrode 4 can be the same as those of the first electrode 3 . The material of the second electrode 4 may be a combination of titanium (Ti) and gold (Au) or one of them. The thickness of the first electrode 3 is in the range of 20nm-300nm, the radius is in the range of 80m-120m, the opening angle θ1 is in the range of 60°-90°, and the scale factor τ is in the range of 0.707-0.8.

请参阅图6,在本发明一实施例中,所述第一电极3还可以为蝶形天线结构。所述第一 电极3可以为扇形,第二电极4形成于所述衬底2上,且与所述第一电极3关于所述衬底2的中心对称设置。所述第一电极4与所述第二电极4所组成的天线水平方向上最长尺寸小于所述衬底2的各条边的长度。所述第一电极3与所述第二电极4组成的天线可以垂直于所述衬底2上表面的侧边,或者与所述衬底2上表面的侧边形成一定的角度。通过光刻技术和薄膜制作技术制作第一电极3、第二电极4,所述第二电极4的结构、尺寸以及材料可以与所述第一电极3相同。所述第二电极4的材料可以是钛(Ti)和金(Au)相互组合或者其中的一 种。所述第一电极3厚度的范围例如为20nm-300nm,半径范围例如为80μm-120μm,开口 角度θ2的范围例如为30°-90°。Referring to FIG. 6 , in an embodiment of the present invention, the first electrode 3 may also be a butterfly antenna structure. The first electrode 3 may be fan-shaped, and the second electrode 4 is formed on the substrate 2 and is symmetrically arranged with the first electrode 3 with respect to the center of the substrate 2 . The longest dimension in the horizontal direction of the antenna formed by the first electrode 4 and the second electrode 4 is smaller than the length of each side of the substrate 2 . The antenna formed by the first electrode 3 and the second electrode 4 may be perpendicular to the side of the upper surface of the substrate 2 or form a certain angle with the side of the upper surface of the substrate 2 . The first electrode 3 and the second electrode 4 are fabricated by photolithography technology and thin film fabrication technology. The structure, size and material of the second electrode 4 can be the same as those of the first electrode 3 . The material of the second electrode 4 may be a combination of titanium (Ti) and gold (Au) or one of them. The thickness of the first electrode 3 ranges from 20nm to 300nm, for example, the radius ranges from 80µm to 120µm, and the opening angle θ2 ranges from 30° to 90°.

请参阅图7,在本发明一实施例中,所述第一电极3还可以为条形天线结构,所述第一 电极3可以为长条形。在靠近所述衬底2中心的位置形成漏斗状收缩结构。所述第一电极3 的长度小于所述衬底2各条边长的一半。所述第二电极4形成于所述衬底2上,且与所述第一电极3关于所述衬底2的中心对称设置。所述第一电极3与所述第二电极4组成的天线可以垂直于所述衬底2上表面的侧边,或者与所述衬底2上表面的侧边形成一定的角度。通过光刻技术和薄膜制作技术制作第一电极3、第二电极4,所述第二电极4的结构、尺寸以及材料可以与所述第一电极3相同。所述第二电极4的材料可以是钛(Ti)和金(Au)相互组合 或者其中的一种。所述第一电极3厚度的范围例如为20nm-300nm。Referring to FIG. 7 , in an embodiment of the present invention, the first electrode 3 may also be a strip antenna structure, and the first electrode 3 may be a long strip. A funnel-shaped constriction structure is formed near the center of the substrate 2 . The length of the first electrode 3 is less than half of the length of each side of the substrate 2 . The second electrode 4 is formed on the substrate 2 and is symmetrically arranged with the first electrode 3 about the center of the substrate 2 . The antenna formed by the first electrode 3 and the second electrode 4 may be perpendicular to the side of the upper surface of the substrate 2 or form a certain angle with the side of the upper surface of the substrate 2 . The first electrode 3 and the second electrode 4 are fabricated by photolithography technology and thin film fabrication technology. The structure, size and material of the second electrode 4 can be the same as those of the first electrode 3 . The material of the second electrode 4 may be a combination of titanium (Ti) and gold (Au) or one of them. The thickness of the first electrode 3 ranges from 20 nm to 300 nm, for example.

请参阅图1-图5,在本发明一实施例中,第一半导体层5形成于所述第一电极3和所述 第二电极4之间,且连接所述第一电极3和所述第二电极4。所述第一半导体层5由不同的通道结构分别连接所述第一电极3和所述第二电极4,如图5所示。使用二维材料转移平台通过薄膜转移技术将所述第一半导体层5二维材料转移到所述第一电极3和所述第二电极4上。所述第一半导体层5的材料可以是二硫化钼/石墨烯、二硫化钨/石墨烯、二硒化钼/石墨烯等材料。Referring to FIGS. 1-5 , in an embodiment of the present invention, a first semiconductor layer 5 is formed between the first electrode 3 and the second electrode 4 and connects the first electrode 3 and the The second electrode 4 . The first semiconductor layer 5 is respectively connected to the first electrode 3 and the second electrode 4 by different channel structures, as shown in FIG. 5 . The two-dimensional material of the first semiconductor layer 5 is transferred onto the first electrode 3 and the second electrode 4 by thin film transfer technology using a two-dimensional material transfer platform. The material of the first semiconductor layer 5 may be molybdenum disulfide/graphene, tungsten disulfide/graphene, molybdenum diselenide/graphene and other materials.

请参阅图1-图5,在本发明一实施例中,绝缘层6形成于所述第一半导体层5上。绝缘 层6覆盖所述第一半导体层5。通过电子束光刻对所述第一半导体层5的沟道区域进行图案 化处理,形成图案化的绝缘层6区域。将图案化后的所述衬底2浸泡于去离子水中,洗去残 余的显影液,烘干固膜。在图案区域生长出所述绝缘层6。本实施例中如采用薄膜制造技术中 的原子层沉积法和磁控溅射方法。例如可以使用ALD设备在150℃下成膜,从而形成所述绝 缘层6。所述绝缘层6可以是二氧化硅、二氧化铪、氧化铝、氮化硼等材料。所述绝缘层6厚 度的范围例如为20nm-300nm。Referring to FIGS. 1-5 , in an embodiment of the present invention, an insulating layer 6 is formed on the first semiconductor layer 5 . The insulating layer 6 covers the first semiconductor layer 5 . The channel region of the first semiconductor layer 5 is patterned by electron beam lithography to form a patterned insulating layer 6 region. The patterned substrate 2 is soaked in deionized water, the residual developer is washed away, and the solid film is dried. The insulating layer 6 is grown in the pattern area. In this embodiment, the atomic layer deposition method and the magnetron sputtering method in the thin film manufacturing technology are used. The insulating layer 6 can be formed, for example, by film formation at 150°C using an ALD apparatus. The insulating layer 6 can be made of silicon dioxide, hafnium dioxide, aluminum oxide, boron nitride and other materials. The thickness of the insulating layer 6 is in the range of, for example, 20nm-300nm.

请参阅图1-图5,在本发明一实施例中,第三电极7形成于所述绝缘层6上,且位于所 述绝缘层6的一侧。第四电极8形成于所述绝缘层6上,且与所述第三电极7关于所述衬底2的中心对称设置。所述第三电极7、所述第四电极8的结构、尺寸以及材料可以和所述第一电极3、所述第二电极4相同。通过光刻技术和薄膜制作技术制作第三电极7、第四电极8, 所述第一电极3和所述第二电极4的中心连线垂直于所述第三电极7和所述第四电极8的中 心连线。所述第三电极7、所述第四电极8可以为对数周期天线,也可以为蝶形天线结构,还 可以为条形天线结构。Referring to FIGS. 1-5 , in an embodiment of the present invention, the third electrode 7 is formed on the insulating layer 6 and is located on one side of the insulating layer 6 . The fourth electrode 8 is formed on the insulating layer 6 and is symmetrically arranged with the third electrode 7 with respect to the center of the substrate 2 . The structures, dimensions and materials of the third electrode 7 and the fourth electrode 8 may be the same as those of the first electrode 3 and the second electrode 4 . The third electrode 7 and the fourth electrode 8 are fabricated by photolithography technology and thin film fabrication technology, and the center connection line between the first electrode 3 and the second electrode 4 is perpendicular to the third electrode 7 and the fourth electrode 8's center line. The third electrode 7 and the fourth electrode 8 can be logarithmic periodic antennas, also can be butterfly antenna structures, and can also be strip antenna structures.

请参阅图1-图5,在本发明一实施例中,第二半导体层9形成于所述第三电极7和所述 第四电极8之间,且连接所述第三电极7和所述第四电极8。第二半导体层9由不同的通道结构分别连接所述第三电极7和所述第四电极8,如图5所示。使用二维材料转移平台通过薄膜转移技术将所述第二半导体层9二维材料转移到所述第三电极7和所述第四电极8上。所述第二半导体层9的材料可以是二硫化钼/石墨烯、二硫化钨/石墨烯、二硒化钼/石墨烯等 材料。Referring to FIGS. 1-5 , in an embodiment of the present invention, a second semiconductor layer 9 is formed between the third electrode 7 and the fourth electrode 8 and connects the third electrode 7 and the Fourth electrode 8 . The second semiconductor layer 9 is respectively connected to the third electrode 7 and the fourth electrode 8 by different channel structures, as shown in FIG. 5 . The two-dimensional material of the second semiconductor layer 9 is transferred onto the third electrode 7 and the fourth electrode 8 by thin film transfer technology using a two-dimensional material transfer platform. The material of the second semiconductor layer 9 can be molybdenum disulfide/graphene, tungsten disulfide/graphene, molybdenum diselenide/graphene and other materials.

请参阅图9-图11,在本发明一实施例中,在本实施例中设计出垂直交叉状的不同天线结 构,通过电磁仿真的方向图的结果既可以判断设计是否满足需要,还可以借助超半球透镜来 聚集红外及太赫兹波,红外及太赫兹波尽可能地被耦合到探测区域,如图9-图11所示,不同 天线结构仿真结果显示,设计的不同天线结构可以满足技术需要。Please refer to FIG. 9-FIG. 11. In an embodiment of the present invention, different antenna structures in the shape of a vertical cross are designed in this embodiment, and the result of the electromagnetic simulation pattern can not only determine whether the design meets the needs, but also can use the A hyperhemispheric lens is used to gather infrared and terahertz waves, and the infrared and terahertz waves are coupled to the detection area as much as possible, as shown in Figure 9-Figure 11. The simulation results of different antenna structures show that the different antenna structures designed can meet the technical requirements. .

本发明还提出一种太赫兹信号探测装置的制备方法,包括以下步骤:The present invention also provides a preparation method of a terahertz signal detection device, comprising the following steps:

S1、提供衬底;S1. Provide substrate;

S2、在所述衬底上形成第一电极,位于所述衬底的一侧;S2, forming a first electrode on the substrate, located on one side of the substrate;

S3、在所述衬底上形成第二电极,与所述第一电极关于所述衬底的中心对称设置;S3, forming a second electrode on the substrate, which is symmetrically arranged with the first electrode about the center of the substrate;

S4、在所述第一电极和所述第二电极之间形成第一半导体层,连接所述第一电极和所述 第二电极;S4, forming a first semiconductor layer between the first electrode and the second electrode, and connecting the first electrode and the second electrode;

S5、在所述第一半导体层上形成绝缘层;S5, forming an insulating layer on the first semiconductor layer;

S6、在所述绝缘层上形成第三电极,位于所述绝缘层的一侧;在所述绝缘层上形成第四 电极,与所述第三电极关于所述衬底的中心对称设置;S6, a third electrode is formed on the insulating layer, located on one side of the insulating layer; a fourth electrode is formed on the insulating layer, and the third electrode is symmetrically arranged with respect to the center of the substrate;

S7、在所述第三电极和所述第四电极之间形成第二半导体层,连接所述第三电极和所述 第四电极;其中,所述第一电极和所述第二电极的中心连线垂直于所述第三电极和所述第四 电极的中心连线。S7, forming a second semiconductor layer between the third electrode and the fourth electrode, and connecting the third electrode and the fourth electrode; wherein, the center of the first electrode and the second electrode The connecting line is perpendicular to the center connecting line of the third electrode and the fourth electrode.

请参阅图8,在本发明一实施例中,以二硒化锡/石墨烯异质结作为第一半导体层5材料, 以对数周期天线为第一电极3。本实施例的步骤S1中,提供一衬底2,例如采用脱膜清洗设 备和超声设备对衬底2进行清洗。可以采用丙酮、乙醇、去离子水多次超声清洗衬底2,每次 超声时间的范围例如为10-15分钟。Referring to FIG. 8 , in an embodiment of the present invention, a tin diselenide/graphene heterojunction is used as the material of the first semiconductor layer 5 , and a log-periodic antenna is used as the first electrode 3 . In step S1 of this embodiment, a substrate 2 is provided, and the substrate 2 is cleaned by, for example, a stripping cleaning device and an ultrasonic device. The substrate 2 can be ultrasonically cleaned by using acetone, ethanol, and deionized water for many times, and the range of each ultrasonic time is, for example, 10-15 minutes.

请参阅图8,在本发明一实施例中,在步骤S2中,使用氮气去除衬底2上的水分并烘干, 利用旋涂仪将正性光刻胶旋涂在衬底2上。为保证所制成的光刻胶膜平整无气泡,旋涂过程 采用的转速例如为3000转。涂覆好后在例如100℃高温热台上加热10-15分钟,蒸发光刻胶 的挥发性部分,以在衬底2上形成固化的光刻胶膜。使用对应的掩模版覆盖在涂覆有光刻胶 的衬底2上,光刻蚀过程例如可以利用紫外曝光机实现。采用的工作波长范围例如为350- 450nm,图形分辨率例如为0.2μm。紫外光透过预设掩膜版中的图案区域照射在置于掩膜版正 下方的衬底2上,与暴露在紫外线中的正性光刻胶反应。用对应显影液冲洗掉曝光的光刻胶 区域,形成图案化的第一电极3区域。最后将图案化后的衬底2浸泡于去离子水中,洗去残 余的显影液,烘干固膜。烘干固膜之后,对图案区域进行镀膜,本实施例中例如采用薄膜制 造技术中的磁控溅射方法,例如可以使用磁控溅射仪器,利用低压惰性气体辉光发电来产生 入射离子。阴极靶由镀膜材料制成,基片作为阳极。真空室中通入压力范围例如为0.1-10Pa 的氩气或其他惰性气体,在阴极(靶)添加电压范围例如为1-3kV直流负高压或频率例如为 13.56MHz的射频电压作用下产生辉光放电。电离出的氩离子轰击靶表面,使得靶原子溅出并 沉积在基片上形成薄膜,获取第一电极3。Referring to FIG. 8 , in an embodiment of the present invention, in step S2 , nitrogen gas is used to remove moisture on the substrate 2 and dried, and a spin coater is used to spin-coat the positive photoresist on the substrate 2 . In order to ensure that the prepared photoresist film is flat and free of bubbles, the rotational speed used in the spin coating process is, for example, 3000 rpm. After coating, the volatile part of the photoresist is evaporated by heating on a high temperature hot stage, e.g., 100°C for 10-15 minutes to form a cured photoresist film on the substrate 2 . The photoresist-coated substrate 2 is covered with a corresponding reticle, and the photolithography process can be realized, for example, using an ultraviolet exposure machine. The operating wavelength range employed is, for example, 350-450 nm, and the pattern resolution is, for example, 0.2 μm. Ultraviolet light is irradiated on the substrate 2 placed directly under the reticle through the patterned areas in the preset reticle, and reacts with the positive photoresist exposed to the uv light. The exposed photoresist area is washed away with the corresponding developing solution to form a patterned first electrode 3 area. Finally, the patterned substrate 2 is soaked in deionized water, the residual developer is washed away, and the solid film is dried. After drying the solid film, the pattern area is coated. In this embodiment, for example, the magnetron sputtering method in the thin film manufacturing technology is used. The cathode target is made of coating material, and the substrate is used as the anode. Argon gas or other inert gas with a pressure range of 0.1-10Pa is passed into the vacuum chamber, and a glow is generated under the action of a cathode (target) adding a voltage range such as 1-3kV DC negative high voltage or a radio frequency voltage with a frequency such as 13.56MHz discharge. The ionized argon ions bombard the target surface, so that the target atoms are sputtered and deposited on the substrate to form a thin film, and the first electrode 3 is obtained.

请参阅图8,在本发明一实施例中,在步骤S3中,获得第二电极4,进行第二电极4的图案化处理。本实施例中采用的图案化处理可以包括有普通紫外光刻、电子束光刻中的一种, 原子层沉积法、热蒸发法、磁控溅射法中的一种。本实施中例如采用电子束光刻对电极进行 图案化处理。利用旋涂仪将正性光刻胶旋涂在衬底2上。为保证所制成的光刻胶膜平整无气 泡,旋涂过程采用的转速例如为3000转。涂覆好后在例如100℃高温热台上加热10-15分钟, 蒸发光刻胶的挥发性部分,以在衬底2上形成固化的光刻胶膜。使用对应的掩模版覆盖在涂 覆有光刻胶的衬底2上,光刻蚀过程例如可以利用紫外曝光机实现。采用的工作波长范围例 如为350-450nm,图形分辨率例如为0.2μm。紫外光透过预设掩膜版中的图案区域照射在置于 掩膜版正下方的衬底2上,与暴露在紫外线中的正性光刻胶反应。用对应显影液冲洗掉曝光 的光刻胶区域,形成图案化的第二电极4区域。最后将图案化后的衬底2浸泡于去离子水中, 洗去残余的显影液,烘干固膜。烘干固膜之后,对图案区域进行镀膜,本实施例中例如采用 薄膜制造技术中的磁控溅射方法,例如可以使用磁控溅射仪器,利用低压惰性气体辉光发电 来产生入射离子。阴极靶由镀膜材料制成,基片作为阳极。真空室中通入压力范围例如为0.1- 10Pa的氩气或其他惰性气体,在阴极(靶)添加电压范围例如为1-3kV直流负高压或频率例 如为13.56MHz的射频电压作用下产生辉光放电。电离出的氩离子轰击靶表面,使得靶原子 溅出并沉积在基片上形成薄膜,获取第二电极4。Referring to FIG. 8 , in an embodiment of the present invention, in step S3 , the second electrode 4 is obtained, and the patterning process of the second electrode 4 is performed. The patterning process used in this embodiment may include one of ordinary ultraviolet lithography and electron beam lithography, and one of atomic layer deposition, thermal evaporation, and magnetron sputtering. In this embodiment, the electrodes are patterned by electron beam lithography, for example. The positive photoresist was spin-coated on the substrate 2 using a spin coater. In order to ensure that the prepared photoresist film is flat and free of air bubbles, the rotational speed used in the spin coating process is, for example, 3000 rpm. After coating, it is heated on a high temperature hot stage such as 100° C. for 10-15 minutes to evaporate the volatile part of the photoresist to form a cured photoresist film on the substrate 2 . The photoresist-coated substrate 2 is covered with a corresponding reticle, and the photolithography process can be realized by, for example, an ultraviolet exposure machine. The operating wavelength range employed is, for example, 350-450 nm, and the pattern resolution is, for example, 0.2 [mu]m. The UV light is irradiated on the substrate 2 placed directly under the reticle through the patterned areas in the preset reticle, and reacts with the positive photoresist exposed to the uv light. The exposed photoresist area is rinsed off with the corresponding developing solution to form a patterned second electrode 4 area. Finally, the patterned substrate 2 is soaked in deionized water, the residual developer is washed away, and the solid film is dried. After drying the solid film, the pattern area is coated. In this embodiment, for example, the magnetron sputtering method in the thin film manufacturing technology is used. The cathode target is made of coating material, and the substrate is used as the anode. Argon gas or other inert gas whose pressure range is 0.1-10Pa is passed into the vacuum chamber, and glow is generated under the action of cathode (target) adding voltage range such as 1-3kV DC negative high voltage or frequency such as 13.56MHz radio frequency voltage. discharge. The ionized argon ions bombard the target surface, so that the target atoms are sputtered and deposited on the substrate to form a thin film, and the second electrode 4 is obtained.

请参阅图8,在本发明一实施例中,在步骤S4中,使用二维材料转移平台形成第一半导 体层5,并将第一半导体层5的材料转移到第一电极3和第二电极4上。Referring to FIG. 8, in an embodiment of the present invention, in step S4, a two-dimensional material transfer platform is used to form the first semiconductor layer 5, and the material of the first semiconductor layer 5 is transferred to the first electrode 3 and the second electrode 4 on.

请参阅图8,在本发明一实施例中,在步骤S5中,在步骤S4的基础上获取绝缘层6,进 行绝缘层6的图案化处理。实施中例如采用电子束光刻对第一半导体层5的沟道区域图案化 处理。例如采用步骤S2中的相同步骤,形成图案化的绝缘层6区域。将图案化后的衬底2浸 泡于去离子水中,洗去残余的显影液,烘干固膜。烘干固膜之后,还需要对图案区域进行绝 缘层6生长。从而形成绝缘层6。Referring to FIG. 8, in an embodiment of the present invention, in step S5, the insulating layer 6 is obtained on the basis of step S4, and the patterning process of the insulating layer 6 is performed. In practice, the channel region of the first semiconductor layer 5 is patterned by, for example, electron beam lithography. For example, using the same steps in step S2, the patterned insulating layer 6 region is formed. The patterned substrate 2 was immersed in deionized water, the residual developer was washed away, and the solid film was dried. After drying the solid film, the insulating layer 6 needs to be grown on the pattern area. Thus, the insulating layer 6 is formed.

请参阅图8,在本发明一实施例中,在步骤S6中,在绝缘层6上形成第三电极7和第四 电极8,具体的烘干固膜之后,还需要对图案区域进行绝缘层6生长。本实施中例如采用薄 膜制造技术中的原子层沉积法和磁控溅射方法,例如可以使用ALD设备在150℃下成膜。以 及在步骤S7中,在所述第三电极7和所述第四电极8之间形成第二半导体层9,连接所述第 三电极7和所述第四电极8获得一种太赫兹信号探测装置1。Referring to FIG. 8, in an embodiment of the present invention, in step S6, the third electrode 7 and the fourth electrode 8 are formed on the insulating layer 6. After drying the solid film, an insulating layer needs to be applied to the pattern area. 6 Growth. In this embodiment, for example, atomic layer deposition and magnetron sputtering in thin-film manufacturing techniques are used, for example, ALD equipment can be used to form a film at 150°C. And in step S7, a second semiconductor layer 9 is formed between the third electrode 7 and the fourth electrode 8, and a terahertz signal detection is obtained by connecting the third electrode 7 and the fourth electrode 8 device 1.

综上所述,本发明具有以下有益效果:将天线设计成垂直交叉状的特殊结构,使用了电 学特性优异的石墨烯或氮化硼和一些二维材料形成的异质结,如二硒化锡/石墨烯异质结等, 提高了响应时间,实现了探测装置的高灵敏度、宽带宽以及低信噪比。相比传统的场效应结 构,本器件结构新颖,性能优异,制备简单,可工作于红外及太赫兹波段,并且容易大规模 生产。To sum up, the present invention has the following beneficial effects: the antenna is designed into a special vertical cross-shaped structure, and a heterojunction formed by graphene or boron nitride with excellent electrical properties and some two-dimensional materials, such as diselenide The tin/graphene heterojunction, etc., improves the response time and realizes the high sensitivity, wide bandwidth and low signal-to-noise ratio of the detection device. Compared with the traditional field effect structure, the device has novel structure, excellent performance, simple preparation, can work in the infrared and terahertz bands, and is easy to mass-produce.

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明,本领域技术人员应当 理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同 时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而 形成的其它技术方案,例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征 进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the application and an illustration of the applied technical principle. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above technical features , and shall also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the inventive concept, for example, the above features are similar to those disclosed in this application (but not limited to) A technical solution formed by replacing the technical features of the functions with each other.

除说明书所述的技术特征外,其余技术特征为本领域技术人员的已知技术,为突出本发 明的创新特点,其余技术特征在此不再赘述。Except for the technical features described in the specification, the remaining technical features are the known technologies of those skilled in the art, and in order to highlight the innovative features of the present invention, the remaining technical features are not repeated here.

Claims (10)

1.一种太赫兹信号探测装置,其特征在于,包括:1. A terahertz signal detection device, characterized in that, comprising: 衬底;substrate; 第一电极,形成于所述衬底上,且位于所述衬底的一侧;a first electrode, formed on the substrate, and located on one side of the substrate; 第二电极,形成于所述衬底上,且与所述第一电极关于所述衬底的中心对称设置;a second electrode, formed on the substrate, and arranged symmetrically with the first electrode about the center of the substrate; 第一半导体层,形成于所述第一电极和所述第二电极之间,且连接所述第一电极和所述第二电极;a first semiconductor layer formed between the first electrode and the second electrode and connecting the first electrode and the second electrode; 绝缘层,形成于所述第一半导体层上;an insulating layer formed on the first semiconductor layer; 第三电极,形成于所述绝缘层上,且位于所述绝缘层的一侧;a third electrode, formed on the insulating layer, and located on one side of the insulating layer; 第四电极,形成于所述绝缘层上,且与所述第三电极关于所述衬底的中心对称设置;a fourth electrode, formed on the insulating layer, and arranged symmetrically with the third electrode about the center of the substrate; 第二半导体层,形成于所述第三电极和所述第四电极之间,且连接所述第三电极和所述第四电极;a second semiconductor layer formed between the third electrode and the fourth electrode and connecting the third electrode and the fourth electrode; 其中,所述第一电极和所述第二电极的中心连线,垂直于所述第三电极和所述第四电极的中心连线。Wherein, the center line connecting the first electrode and the second electrode is perpendicular to the center line connecting the third electrode and the fourth electrode. 2.根据权利要求1所述的太赫兹信号探测装置,其特征在于:所述衬底包括硅基底座和底座覆盖层,所述底座覆盖层覆盖所述硅基底座上表面。2 . The terahertz signal detection device according to claim 1 , wherein the substrate comprises a silicon-based base and a base covering layer, and the base covering layer covers the upper surface of the silicon-based base. 3 . 3.根据权利要求1所述的太赫兹信号探测装置,其特征在于:所述第一电极、所述第二电极、所述第三电极以及所述第四电极呈扇形设置。3 . The terahertz signal detection device according to claim 1 , wherein the first electrode, the second electrode, the third electrode and the fourth electrode are arranged in a fan shape. 4 . 4.根据权利要求1所述的太赫兹信号探测装置,其特征在于:所述第一电极、所述第二电极、所述第三电极以及所述第四电极的结构和尺寸相同。4 . The terahertz signal detection device according to claim 1 , wherein the structures and dimensions of the first electrode, the second electrode, the third electrode and the fourth electrode are the same. 5 . 5.根据权利要求4所述的太赫兹信号探测装置,其特征在于:所述第一电极半径的范围为80μm-120μm。5 . The terahertz signal detection device according to claim 4 , wherein the radius of the first electrode ranges from 80 μm to 120 μm. 6 . 6.根据权利要求4所述的太赫兹信号探测装置,其特征在于:所述第一电极开口角度的范围为60°-90°。6 . The terahertz signal detection device according to claim 4 , wherein the opening angle of the first electrode ranges from 60° to 90°. 7 . 7.根据权利要求4所述的太赫兹信号探测装置,其特征在于:所述第一电极厚度的范围为20nm-300nm。7 . The terahertz signal detection device according to claim 4 , wherein the thickness of the first electrode ranges from 20 nm to 300 nm. 8 . 8.根据权利要求1所述的太赫兹信号探测装置,其特征在于:所述第一电极、所述第二电极、所述第三电极以及所述第四电极在衬底上的正投影不重合。8 . The terahertz signal detection device according to claim 1 , wherein the orthographic projections of the first electrode, the second electrode, the third electrode and the fourth electrode on the substrate are different. 9 . coincide. 9.根据权利要求1所述的太赫兹信号探测装置,其特征在于:所述绝缘层覆盖所述第一半导体层。9 . The terahertz signal detection device according to claim 1 , wherein the insulating layer covers the first semiconductor layer. 10 . 10.一种太赫兹信号探测装置的制备方法,其特征在于,包括:10. A preparation method of a terahertz signal detection device, characterized in that, comprising: 提供衬底;provide a substrate; 在所述衬底上形成第一电极,位于所述衬底的一侧;forming a first electrode on the substrate, located on one side of the substrate; 在所述衬底上形成第二电极,与所述第一电极关于所述衬底的中心对称设置;forming a second electrode on the substrate, symmetrically arranged with the first electrode about the center of the substrate; 在所述第一电极和所述第二电极之间形成第一半导体层,连接所述第一电极和所述第二电极;forming a first semiconductor layer between the first electrode and the second electrode, connecting the first electrode and the second electrode; 在所述第一半导体层上形成绝缘层;forming an insulating layer on the first semiconductor layer; 在所述绝缘层上形成第三电极,位于所述绝缘层的一侧;forming a third electrode on the insulating layer, located on one side of the insulating layer; 在所述绝缘层上形成第四电极,与所述第三电极关于所述衬底的中心对称设置;forming a fourth electrode on the insulating layer, which is symmetrically arranged with the third electrode about the center of the substrate; 在所述第三电极和所述第四电极之间形成第二半导体层,连接所述第三电极和所述第四电极;forming a second semiconductor layer between the third electrode and the fourth electrode, and connecting the third electrode and the fourth electrode; 其中,所述第一电极和所述第二电极的中心连线垂直于所述第三电极和所述第四电极的中心连线。Wherein, the center connection line between the first electrode and the second electrode is perpendicular to the center connection line between the third electrode and the fourth electrode.
CN202110468598.7A 2021-04-28 A terahertz signal detection device and a method for preparing the same Active CN115249890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110468598.7A CN115249890B (en) 2021-04-28 A terahertz signal detection device and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110468598.7A CN115249890B (en) 2021-04-28 A terahertz signal detection device and a method for preparing the same

Publications (2)

Publication Number Publication Date
CN115249890A true CN115249890A (en) 2022-10-28
CN115249890B CN115249890B (en) 2025-04-01

Family

ID=

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026401A1 (en) * 2008-07-29 2010-02-04 Rohm Co., Ltd. Terahertz oscillation device
US20100276597A1 (en) * 2009-04-30 2010-11-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bolometric detector for detecting electromagnetic radiation in the region extending from infrared to terahertz frequencies and an array detection device comprising such detectors
EP2602598A1 (en) * 2011-12-09 2013-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bolometric detector for electromagnetic radiation in the terahertz spectral band and detector matrix comprising such detectors
CN103178150A (en) * 2013-03-13 2013-06-26 上海交通大学 Antenna coupling terahertz detector
CN103855228A (en) * 2014-02-21 2014-06-11 上海大学 Terahertz detector based on optical antenna
CN104813486A (en) * 2012-09-14 2015-07-29 布尔诺科技大学 A solar element comprising resonator for application in energetics
US20150241005A1 (en) * 2014-02-24 2015-08-27 Seiko Epson Corporation Photoconductive antenna, camera, imaging device, and measurement device
CN105514128A (en) * 2015-12-01 2016-04-20 中国科学院上海技术物理研究所 Graphene room temperature terahertz wave detector and preparation method
CN106067592A (en) * 2016-08-04 2016-11-02 中国科学院福建物质结构研究所 System measured by the Terahertz antenna of a kind of transceiver and manufacture method and Terahertz thereof
CN106450794A (en) * 2016-10-26 2017-02-22 电子科技大学 Chiral super-surface terahertz reflective 90-degree polarizer
CN108493622A (en) * 2018-03-27 2018-09-04 电子科技大学 A kind of dual dielectric layer absorbing material
CN109490219A (en) * 2018-12-27 2019-03-19 中国电子科技集团公司第四十研究所 A kind of terahertz wave band polarization characteristic parameter test device
CN110095185A (en) * 2019-04-29 2019-08-06 电子科技大学 A kind of THz wave detection micro-bridge structure of integrated sub-wavelength metal ring absorbing structure and preparation method thereof
US20200111929A1 (en) * 2018-10-04 2020-04-09 Canon Kabushiki Kaisha Semiconductor element for oscillating or detecting terahertz wave and manufacturing method of semiconductor element
CN112216760A (en) * 2020-10-21 2021-01-12 合肥工业大学 Detector in infrared and terahertz broadband and preparation method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026401A1 (en) * 2008-07-29 2010-02-04 Rohm Co., Ltd. Terahertz oscillation device
US20100276597A1 (en) * 2009-04-30 2010-11-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bolometric detector for detecting electromagnetic radiation in the region extending from infrared to terahertz frequencies and an array detection device comprising such detectors
EP2602598A1 (en) * 2011-12-09 2013-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bolometric detector for electromagnetic radiation in the terahertz spectral band and detector matrix comprising such detectors
CN104813486A (en) * 2012-09-14 2015-07-29 布尔诺科技大学 A solar element comprising resonator for application in energetics
CN103178150A (en) * 2013-03-13 2013-06-26 上海交通大学 Antenna coupling terahertz detector
CN103855228A (en) * 2014-02-21 2014-06-11 上海大学 Terahertz detector based on optical antenna
US20150241005A1 (en) * 2014-02-24 2015-08-27 Seiko Epson Corporation Photoconductive antenna, camera, imaging device, and measurement device
CN105514128A (en) * 2015-12-01 2016-04-20 中国科学院上海技术物理研究所 Graphene room temperature terahertz wave detector and preparation method
CN106067592A (en) * 2016-08-04 2016-11-02 中国科学院福建物质结构研究所 System measured by the Terahertz antenna of a kind of transceiver and manufacture method and Terahertz thereof
CN106450794A (en) * 2016-10-26 2017-02-22 电子科技大学 Chiral super-surface terahertz reflective 90-degree polarizer
CN108493622A (en) * 2018-03-27 2018-09-04 电子科技大学 A kind of dual dielectric layer absorbing material
US20200111929A1 (en) * 2018-10-04 2020-04-09 Canon Kabushiki Kaisha Semiconductor element for oscillating or detecting terahertz wave and manufacturing method of semiconductor element
CN109490219A (en) * 2018-12-27 2019-03-19 中国电子科技集团公司第四十研究所 A kind of terahertz wave band polarization characteristic parameter test device
CN110095185A (en) * 2019-04-29 2019-08-06 电子科技大学 A kind of THz wave detection micro-bridge structure of integrated sub-wavelength metal ring absorbing structure and preparation method thereof
CN112216760A (en) * 2020-10-21 2021-01-12 合肥工业大学 Detector in infrared and terahertz broadband and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IVAN RYGER, PETER LOBOTKA,: "Uncooled Antenna-Coupled Microbolometer for Detection of Terahertz Radiation", JOURNAL OF INFRARED, MILLIMETER, AND TERAHERTZ WAVES, 10 March 2021 (2021-03-10) *
李金伦;崔少辉;张振伟;倪海桥;牛智川;: "蝶形天线增强的共振隧穿二极管太赫兹探测器研究", 中国激光, no. 08, 27 April 2018 (2018-04-27) *
王晓东;颜伟;李兆峰;张博文;黄镇;杨富华;: "平面天线在场效应晶体管太赫兹探测器中的应用", 中国光学, no. 01, 15 February 2020 (2020-02-15) *

Similar Documents

Publication Publication Date Title
Zare Bidoky et al. Sub‐3 V ZnO electrolyte‐gated transistors and circuits with screen‐printed and photo‐crosslinked ion gel gate dielectrics: new routes to improved performance
JP4944989B2 (en) Method for synthesizing ITO electron beam resist and method for forming ITO pattern using the same
Hsieh et al. Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application
Luo et al. Massively Parallel Arrays of Size‐Controlled Metallic Nanogaps with Gap‐Widths Down to the Sub‐3‐nm Level
CN101237009A (en) Preparation method of ultraviolet photodetector with coplanar gate structure
CN110160659A (en) A kind of the uncooled ir narrowband detector and preparation method of sensitive first etching type
CN111653648A (en) Photodetector based on surface plasmon electrical modulation of transition metal sulfide exciton binding energy, preparation method and application
CN108649916B (en) A thin-film bulk acoustic wave resonator and a method for extracting its back electrode
JP2004193202A (en) Active electronic element and electronic apparatus
CN111192937B (en) A kind of method of making ultra-thin transparent graphene gate electrode
Sinha et al. Fabrication, characterization, and modeling of an aluminum oxide-gate ion-sensitive field-effect transistor-based pH sensor
CN107359217A (en) A kind of quick response ultraviolet light detector and preparation method
CN108831988A (en) An uncooled terahertz detector with adjustable working frequency
CN115249890A (en) A terahertz signal detection device and preparation method thereof
CN115249890B (en) A terahertz signal detection device and a method for preparing the same
CN103594772A (en) Method for patterning oxide dielectric film
TW396408B (en) Method of manufacturing ion sensor device and the device thereof
CN106129134B (en) A kind of method for improving flexible nano silver wire transparency electrode electric conductivity using solar irradiation
CN113410647A (en) Terahertz dual-band narrow-band absorber based on metamaterial structure and manufacturing method thereof
Iriarte et al. Fabrication of sub-100 nm IDT SAW devices on insulating, semiconducting and conductive substrates
CN108376711B (en) Method for preparing two-dimensional semiconductor transistor with top gate structure and polymer electrolyte dielectric layer
CN114899275B (en) A photoelectric detector with a composite structure of noble metal nanowires and two-dimensional molybdenum disulfide and a preparation method thereof
CN106299123A (en) A kind of method being patterned with machine electrode PEDOT:PSS
CN116666498A (en) Simply prepared plasmon-modified MoS 2 Wide-spectrum photosensitive field effect transistor and preparation method thereof
WO2023109600A1 (en) Micro-nano device and preparation method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant