CN115244716B - 用于太赫兹信号或皮秒电脉冲的三维光电导变换器 - Google Patents
用于太赫兹信号或皮秒电脉冲的三维光电导变换器 Download PDFInfo
- Publication number
- CN115244716B CN115244716B CN202080086302.9A CN202080086302A CN115244716B CN 115244716 B CN115244716 B CN 115244716B CN 202080086302 A CN202080086302 A CN 202080086302A CN 115244716 B CN115244716 B CN 115244716B
- Authority
- CN
- China
- Prior art keywords
- nanopillars
- electrode
- photoconductive
- resist
- terahertz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/10—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F55/00—Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto
- H10F55/18—Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto wherein the radiation-sensitive semiconductor devices and the electric light source share a common body having dual-functionality of light emission and light detection
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/147—Shapes of bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/162—Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/247—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising indium tin oxide [ITO]
Landscapes
- Light Receiving Elements (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
Abstract
本发明涉及一种光电导变换器,其旨在生成或检测太赫兹频域或皮秒脉冲域中的波。该变换器包括三维结构,该三维结构依次包括第一平面电极(E1)、嵌入在抗蚀剂(R)层中的纳米柱(C)的阵列、以及平行于第一平面电极的第二平面电极(E2)。该变换器的设计通过光子和等离子体共振的方式以及高同质电场的方式增大了光到太赫兹的转换效率。纳米柱的高度以及抗蚀剂的厚度的范围在100nm与400nm之间。纳米柱的宽度在100nm与400nm之间,两个相邻的纳米柱之间的距离在300nm与500nm之间,纳米柱由III‑V族半导体制成。
Description
本发明的领域是用于生成或检测在非常高的频率下的辐射和/或非常短的持续时间的电脉冲的源的领域,该电脉冲的持续时间的数量级为皮秒或比皮秒更短。本发明的优选应用之一是开发高效的太赫兹源(terahertz source)。
太赫兹辐射具有各种应用领域,尤其是与该太赫兹辐射对大多数材料的高穿透能力有关。例如,本发明的应用领域可以是安全、检测、质量控制、通信以及采用纳米技术的电子应用。在室温下或在极低温(cryogenic)下使用这些源是可能的。
开发这种高效的太赫兹源是遇到的困难之一。一种可能的生产技术包括将由连续波或脉冲激光生成的光辐射转换成太赫兹辐射和/或电脉冲。各种变换装置(transducingmean)是可能的。
最常见的方法之一是采用光电器件,称为光电导开关。后者可以经由以下机制生成连续波太赫兹辐射或皮秒电脉冲。
激光源发射连续波辐射或以超短脉冲形式的辐射。所谓超短是指持续时间小于100飞秒的脉冲。由激光源提供的辐射位于电磁光谱的可见光或近红外区域中。由激光源提供的光被诸如砷化镓(GaAs)或砷化铟镓(InGaAs)的半导体材料吸收。借助于光吸收,在半导体中生成电荷载流子,并且随后由本文中称为电极的金属接触件收集该电荷载流子,从而创建电信号。在本文中,借助于光吸收生成电荷载流子的过程将被称为光生。
该信号的瞬时持续时间和频率取决于由激光源提供的光的频率和持续时间。光电器件的非常高的动态范围允许在千兆赫兹或太赫兹频段生成电信号。
现有技术的主要缺点是其转换效率低,这不适合需要一定太赫兹功率的应用或者不适合需要在极低温环境下运行的系统和应用。
该转换效率被定义为由激光源提供的光功率与由光电器件提供的太赫兹功率之间的比率。这种效率是两个因素的产物。第一个因素与半导体对激光的吸收效率有关。该吸收效率通常较低。
第二个因素与由光电器件的电极对光生电荷载流子的收集效率有关。这个效率也很低。已经提出了用于改进这两个因素的一些技术方案。
由Nezih T.Yardimci等人在IEEE太赫兹科学与技术汇刊(IEEE Transactions onTerahertz Science and Technology),2015年3月,第2期,第5卷,第223-229页上发表的题为“使用大面积等离子体光电导发射器生成高功率太赫兹(High-Power TerahertzGeneration Using Large-Area Plasmonic Photoconductive Emitters)”的出版物以及题为“具有等离子体电极的光电导器件(Photoconductive device with plasmonicelectrodes)”的专利申请WO2013/112608中,描述了包含以下部件的光电导器件。半导体衬底、天线组件以及由位于半导体衬底上的一个或更多个等离子体接触电极制成的光电导组件。制造该光电导组件,以通过等离子体共振增大半导体衬底的光吸收区域中的激光吸收效率来提高光电导体器件的整体效率。该器件仅提高了激光吸收效率。
由Shang-Hua Yang等人在IEEE太赫兹科学与技术汇刊(IEEE Transactions onTerahertz Science and Technology),2014年9月,第5期,第4卷,第575-581页上发表的题为“具有三维等离子体接触电极的光电导发射器提供7.5%的光到太赫兹转换效率”的出版物中,提出了一种类似的光电导器件,其包括由平行的等离子接触电极行组成的阵列。
由Nezih Tolga Yardimci等人在科学报告(Scientific Reports),7(1),第4166页中发表的题为“在等离子体纳米腔中通过三维光限制实现的高功率宽带太赫兹源(AHigh-Power Broadband Terahertz Source Enabled by Three-Dimensional LightConfinement in a Plasmonic Nanocavity)”的出版物中,描述了一种与上述器件类似的器件,但它包括额外的分布式布拉格反射器作为光吸收半导体的一部分,以有助于进一步增大激光吸收。
由Burford等人在美国光学学会杂志B(the Journal of the Optical Societyof America B),33(4),第748-759页上发表的题为“等离子薄膜太赫兹光电导天线的计算建模(Computational modeling of plasmonic thin-film terahertz photoconductiveantennas)”的出版物中,描述了一种光电导器件,其包括放置在接触电极上的纳米圆盘的薄等离子阵列。
由Peytavit等人在应用物理快车4(Applied Physics Express 4),(2011),104101中发表的题为“在毫米波范围内具有高动态响应度的低温生长GaAs光电导体(Low-Temperature-Grown GaAs Photoconductor with High Dynamic Responsivity in theMillimeter Wave Range)”的出版物中以及同一发明人的法国专利申请FR 2 949 905并且题为“Photodétecteur,photomélangeur et leur applicationàla génération derayonnement térahertz”(光检测器、光混合器及其用于产生太赫兹辐射的应用,Photodetector,photomixer and application thereof to generate terahertzradiation)的出版物中,描述了一种光检测器,该光检测器包括:能够吸收光学激光辐射的一层光电导材料。所谓薄层具有比光吸收材料内部对激光辐射的吸收长度小的厚度。光吸收材料定位于两个电极之间。一个电极被称为上电极,其至少部分地透明,而一个电极被称为下电极,其是反射的。所谓的下电极和上电极形成用于激光辐射的共振腔。该光检测器耦接到用于生成自由空间太赫兹辐射的天线。与上述器件不同,该器件允许通过增大金属电极对电荷载流子的收集效率来增大转换效率。
US2014/175283公开了一种太赫兹检测器,该太赫兹检测器包括由呈电介质矩阵(dielectric matrix)的极性半导体制成的一维或二维平板阵列。在平板的每个面上,具有电介质矩阵的界面支持界面声子极化子(interface phonon polariton)。每个平板具有上电接触件和下电接触件,并且形成光学天线,从而实现界面声子极化子和入射辐射的共振耦合。
这些出版物中没有一个允许同时实现高激光吸收效率和生成的载流子的令人满意的收集效率。本发明的一个目的是使用结合了平行电极器件和等离子体/光子结构的优点的单一且简单的结构来显著提高这两种效率。
更准确地说,根据权利要求1,本发明的一个主题是一种光电导变换器(photoconductive transducer),该光电导变换器旨在生成或检测太赫兹频域或皮秒脉冲域中的波和信号。
从属权利要求2至7对应于这种光电导变换器的特定实施例。
本发明还涉及根据权利要求8的太赫兹发射器,该太赫兹发射器包括这种光电导变换器。
本发明还涉及这种光电导变换器用于发射和/或检测太赫兹频域中的波的用途。
本发明还涉及根据权利要求11的用于产生这种光电导变换器的工艺方法(process)。
通过阅读参考附图给出的描述,本发明的其他特征、细节和优点将变得显而易见,这些附图以示例的方式给出,并且分别示出:
[图1]根据本发明的光电导变换器的结构的俯视图的图示;
[图2]包括根据本发明的光电导变换器的纳米柱的部分透视图的图示;
[图3]根据本发明的纳米柱的截面图的图示;
[图4]被采用为太赫兹辐射源的光电导变换器的第一实施例的图示;
[图5]被采用为太赫兹辐射源的光电导变换器的第二实施例的图示;
[图6]被采用为太赫兹辐射的接收器的光电导变换器的第三实施例的图示。
根据本发明,光电导变换器也可以作为太赫兹频域或皮秒脉冲域中的波的接收器或者发射器来操作。排除一些细节,这两个应用使用的结构是相同的。
根据本发明,光电导变换器还可以作为用于微电子电路或纳米电子电路的具有皮秒持续时间的电信号或者太赫兹频率波的源来操作。
变换器的核心包括如下结构,该结构依次包括以下三个元件:
-第一平面电极,
-抗蚀剂层(layer of resist),该抗蚀剂层包括嵌入的相同纳米柱的阵列,该纳米柱的阵列垂直于由第一电极限定的平面放置。两个相邻的柱之间的距离是恒定的,
-第二平面电极平行于第一平面电极。
该结构的面积介于1μm2与1000μm2之间,取决于变换器的用途。
图1示出了放置在第一电极E1的顶部的纳米柱阵列C的俯视图。图2示出了根据本发明的光电导变换器的纳米柱C的部分透视图。在图2的情况下,该柱的横截面为矩形。该柱的横截面也可以是圆形或多边形。
当变换器被用作发射器时,它与以限定的波长发射的激光源结合使用。该波长通常位于电磁光谱的可见光或近红外区域中。在这种情况下,该结构的某些特性取决于该波长。
第一电极由可以由导电沉积物形成,该导电沉积物可以由金或钛或银或铝制成。
第二电极E2在上述波长下必须是透明的,以便让入射的激光辐射穿透到该结构中。为此,可以通过沉积铟锡氧化物层来形成第二电极,该铟锡氧化物层对于大于300纳米的波长是透明的。
第二电极E2的厚度特定于上述波长并且必须使得其形成针对特定波长的抗反射涂层。
同样,抗蚀剂R在激光源的波长下也必须是透明的。例如,可以使用负性光致抗蚀剂,诸如被称为SU-8的抗蚀剂,该抗蚀剂通常用于制造这种类型的微系统,并且存在该抗蚀剂的各种变体。当然,其他类型的透明抗蚀剂也是可能的。抗蚀剂层通常具有包括在100纳米与400纳米之间的厚度。
纳米柱的高度等于抗蚀剂层的高度。该柱的宽度和将两个相邻的柱分开的距离与激光的波长和抗蚀剂的折射率(refractive index)相适应。
通过相对于激光波长的空间尺寸来优化纳米柱的空间尺寸,使激光的吸收最大化,这是期望的目标。每个纳米柱的长度和宽度使得:激光通过在结构的上表面和下表面处的等离子体共振激发而被吸收。此外,也将激发通过由聚合物抗蚀剂和纳米柱的阵列组成的异质层传播的引导光学光子模式。此外,还将在纳米柱内部和两个电极之间的竖向方向上激发共振腔模式。通常,柱的宽度在100纳米与400纳米之间的范围内。
纳米柱的阵列的间距(该间距对应于两个连续柱之间的距离)负责激发上述集体光子共振(collective photonic resonance)。这是由于纳米柱的周期性布置,这些纳米柱将激光有效地衍射到异质层的内部中。两个柱之间的距离在300纳米与500纳米之间。通过结合等离子体和光子效应,可以获得高于95%的吸收。
必须优化柱的材料以获得最佳的皮秒脉冲。因此,必须使用载流子响应时间非常快的材料,即,载流子动力非常快的材料。为了给出数量级,这个时间优选地短于10皮秒。例如,纳米柱可以由经过特殊处理的III-V族半导体(诸如砷化镓或砷化镓铟或磷化铟)制成。
每个柱C在顶端部上承载接触件,该接触件由与第一电极的导电材料相同的导电材料制成,并且确保与透明的第二电极的电连续性。
图3示出了根据本发明的纳米柱C的截面图。它被抗蚀剂R包围。它包括电接触件CE。抗蚀剂R位于两个电极E1和E2之间。
图4示出了根据本发明的作为太赫兹辐射源操作的光电导变换器。它包括激光器L,该激光器以限定的波长发射,已经由实线箭头象征性地表示,第二电极E2在上述波长下是透明的。该激光器被布置成:通过第二电极E2照射被嵌入在抗蚀剂R中的纳米柱C的阵列,上述阵列在图4中由R+C表示。
具有转换介质的结构的布置允许通过使两个电极E1和E2经受几伏特的电势差V来创建均匀的电场,所述结构由抗蚀剂层和放置在两个平面的且平行的电极之间的纳米柱的阵列组成。
由于将两个电极分开的距离非常小,这种电势差能够创建非常强的电场。这些场的数量级为100kV/cm。根据该应用,所施加的电压是DC或AC。
所创建的电场均匀地加速由吸收激光辐射生成的电荷载流子。均匀的电场允许使由电极收集的载流子数量最大化,并且因此使所生成的信号增大。因此,柱状物的高度必须很小,使得这些载流子行进的距离被最小化。最小的行进距离确保载流子不会因复合机制(recombination mechanism)而丢失。
变换器生成太赫兹辐射或皮秒电信号RT。上述RT可以通过天线元件的帮助转换为自由空间太赫兹辐射,或通过波导元件引导至微电子电路和纳米电子电路,如图5所示。图5的附图标记与图4的附图标记相同。所生成的持续时间、强度和频率带宽取决于激光源的持续时间、激光源的功率、激光源的波长、以及施加在电极E1和E2之间的电势差V。
图6示出了根据本发明的作为太赫兹辐射的检测器操作的光电导变换器。太赫兹辐射使在两个电极E1和E2之间流动的电子加速。
例如,根据本发明的用于产生变换器结构的工艺方法包括下述步骤。
步骤1:在由诸如砷化镓或砷化铟镓或磷化铟的III-V族半导体制成的衬底中刻蚀柱的阵列;
步骤2:在柱的上表面上和承载柱的衬底的下表面上沉积金属层。该金属层将构成金属接触件。该操作可以在低压下进行,即在低于10-6毫巴的压力下并以缓慢的蒸发速率进行,蒸发速率的数量级为0.5nm/s。所沉积的金属可以由金或银或铝或钛制成。在此操作中,重要的是,用作第一电极的底部金属层与连接到第二电极的纳米柱的上表面上的金属层之间没有接触;
步骤3:旋涂一层负性环氧树脂光致抗蚀剂(layer of negative epoxyphotoresist),诸如SU-8,并且完全覆盖纳米柱的阵列。为了均匀性,所沉积的厚度可以是纳米柱的高度的三倍;
步骤4:用电子束或紫外光刻法使抗蚀剂层暴露;
步骤5:对抗蚀剂层进行抛光或刻蚀,直到纳米柱的顶部处的金属接触件出现;
步骤6:在抗蚀剂层上沉积透明金属层,以便连接各种金属接触件。该层可以由铟锡氧化物制成。后一层的厚度在100纳米与300纳米之间,取决于激光源的波长。
以下是根据本发明的光电导变换器的主要优点:
它的三维结构允许获得高效率,远高于使用现有技术器件所获得的效率。因此,与当前变换器相比,获得了10倍的效率提高。
此外,由夹在两个电极之间的纳米柱的阵列组成的“竖向”结构允许进一步优化这种效率。
另一个优点是,相同的结构可以被用作太赫兹辐射源和相同辐射的接收器。
该变换器可以被用于微电子电路和纳米电子电路的芯片上。
该变换器可以被用于广泛的应用中,这些应用涵盖安全、生物或化学检测、质量控制、电信、电子学和量子电子学的领域。
它的架构允许它在室温和极低温下操作,用于超快速电子开关应用。因此,可以在量子技术中使用它。可以将该变换器用作用于检查、触发或驱动量子计算机的量子比特的超快速源。
Claims (12)
1.一种光电导变换器,所述光电导变换器旨在生成或检测太赫兹频域或皮秒脉冲域中的波,其特征在于,光电导变换器包括三维结构,所述三维结构包括:第一平面电极(E1);第二平面电极(E2),所述第二平面电极平行于所述第一平面电极;以及相同纳米柱(C)的阵列被嵌入在位于所述第一平面电极与所述第二平面电极之间的抗蚀剂(R)层中,所述抗蚀剂和所述第二平面电极在电磁光谱的可见光或近红外区域的给定波长下是透明的,所述纳米柱的高度以及所述抗蚀剂的厚度的范围在100纳米与400纳米之间,所述纳米柱的宽度在100纳米与400纳米之间,两个连续的纳米柱之间的距离在300纳米与500纳米之间,所述纳米柱由III-V族半导体制成并且每个纳米柱的顶部分包括电连接到第二电极的金属接触件(CE)。
2.根据权利要求1所述的光电导变换器,其中,柱的宽度、将两个相邻柱分开的距离、以及所述抗蚀剂的折射率以如下的方式选择:通过所述第二平面电极以所述给定波长照射所述光电导变换器激发如下模式:通过由聚合物抗蚀剂和所述纳米柱的阵列组成的异质层传播的引导光学光子模式;在所述结构的上表面和下表面处的等离子体共振;以及在所述纳米柱内部和在两个电极之间的竖向方向上的共振腔模式。
3.根据权利要求1或2所述的光电导变换器,其中,所述三维结构的面积在1μm2与1000μm2之间。
4.根据权利要求1所述的光电导变换器,其中,所述第二电极由铟锡氧化物制成。
5.根据权利要求1所述的光电导变换器,其中,所述纳米柱的横截面是矩形的或圆形的或多边形的。
6.根据权利要求1所述的光电导变换器,其中,所述纳米柱的材料是选自砷化镓或砷化铟镓或磷化铟的III-V族半导体。
7.根据权利要求1所述的光电导变换器,其中,所述抗蚀剂是负性环氧树脂光致抗蚀剂。
8.一种太赫兹发射器,所述太赫兹发射器包括根据前述权利要求中的一项所述的光电导变换器和以所述给定波长发射的激光器(L)、以及用于在第一电极与所述第二电极之间建立电势差的装置,所述激光器被布置成通过上述第二电极照射柱的阵列。
9.一种太赫兹接收器,所述太赫兹接收器包括根据权利要求1至7中的一项所述的光电导变换器、以所述给定波长发射的激光器(L)、以及伏特计(V),所述激光器被布置成通过上述第二电极照射柱的阵列,所述伏特计测量由光生电流和传入的太赫兹辐射(RT)产生的输出信号,所述光生电流由所述激光器照射产生。
10.一种根据权利要求1至7中的一项所述的光电导变换器的用途,所述光电导变换器用于发射所述太赫兹频域中的波。
11.一种根据权利要求1至7中的一项所述的光电导变换器的用途,所述光电导变换器用于检测所述太赫兹频域中的波。
12.一种用于产生根据权利要求1至7中的一项所述的光电导变换器的工艺方法,其特征在于,产生所述三维结构包括以下步骤:
-在由III-V族半导体制成的衬底中刻蚀所述纳米柱(C)的阵列;
-在所述纳米柱的上表面上和承载所述纳米柱的所述衬底的下表面上沉积金属层
(E1,CE),因此所述纳米柱的顶部包括金属接触件(CE);
-旋涂负性环氧树脂光致抗蚀剂(R)层以覆盖上述柱的阵列;
-用电子束或紫外光刻法使上述抗蚀剂层暴露;
-对上述抗蚀剂层进行抛光或刻蚀,直到在所述纳米柱的顶端部处的所述金属接触件(CE)出现;
-在所述抗蚀剂层上沉积透明金属层(E2)以连接各种金属接触件(CE)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19306646.1 | 2019-12-13 | ||
EP19306646.1A EP3836232B1 (en) | 2019-12-13 | 2019-12-13 | Three-dimensional photoconductive transducer for terahertz signals or picosecond electrical pulses |
PCT/EP2020/085625 WO2021116339A1 (en) | 2019-12-13 | 2020-12-10 | Three-dimensional photoconductive transducer for terahertz signals or picosecond electrical pulses |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115244716A CN115244716A (zh) | 2022-10-25 |
CN115244716B true CN115244716B (zh) | 2024-10-18 |
Family
ID=69411168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080086302.9A Active CN115244716B (zh) | 2019-12-13 | 2020-12-10 | 用于太赫兹信号或皮秒电脉冲的三维光电导变换器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12206039B2 (zh) |
EP (1) | EP3836232B1 (zh) |
JP (1) | JP7638994B2 (zh) |
CN (1) | CN115244716B (zh) |
ES (1) | ES2909787T3 (zh) |
LT (1) | LT3836232T (zh) |
WO (1) | WO2021116339A1 (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103733354A (zh) * | 2011-02-14 | 2014-04-16 | 国立科学研究中心 | 太赫兹探测单元 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7335908B2 (en) | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
JP5369366B2 (ja) * | 2006-02-16 | 2013-12-18 | ソニー株式会社 | 光電変換素子、半導体装置および電子機器 |
JP2009088292A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 光電変換素子、撮像素子及び光センサー |
JP2010045157A (ja) | 2008-08-12 | 2010-02-25 | Kansai Electric Power Co Inc:The | テラヘルツ電磁波放射素子およびテラヘルツ電磁波発生方法 |
FR2949905B1 (fr) | 2009-09-09 | 2012-01-27 | Centre Nat Rech Scient | Photodetecteur, photomelangeur et leur application a la generation de rayonnement terahertz. |
JP5398773B2 (ja) * | 2011-04-07 | 2014-01-29 | 富士フイルム株式会社 | 放射線検出装置 |
JP6169614B2 (ja) | 2012-01-23 | 2017-07-26 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan | プラズモン電極を有する光伝導装置 |
US20140175546A1 (en) | 2012-11-06 | 2014-06-26 | The Regents Of The University Of California | Plasmonically enhanced electro-optic devices and methods of production |
DE102014100350B4 (de) * | 2013-01-15 | 2021-12-02 | Electronics And Telecommunications Research Institute | Photomischer mit photonischem Kristall vom Typ mit großflächiger Anordnung zum Erzeugen und Detektieren von Breitband-Terahertz-Wellen |
WO2017083840A1 (en) * | 2015-11-13 | 2017-05-18 | Uvic Industry Partnerships Inc. | Plasmon-enhanced below bandgap photoconductive terahertz generation and detection |
CN108417976B (zh) * | 2018-02-05 | 2020-05-26 | 天津大学 | 砷化镓纳米柱阵列太赫兹波发射装置及制造方法 |
US11749694B1 (en) * | 2019-09-03 | 2023-09-05 | National Technology & Engineering Solutions Of Sandia, Llc | Photoconductive metasurface-based ultrafast device |
-
2019
- 2019-12-13 ES ES19306646T patent/ES2909787T3/es active Active
- 2019-12-13 LT LTEP19306646.1T patent/LT3836232T/lt unknown
- 2019-12-13 EP EP19306646.1A patent/EP3836232B1/en active Active
-
2020
- 2020-12-10 CN CN202080086302.9A patent/CN115244716B/zh active Active
- 2020-12-10 US US17/782,987 patent/US12206039B2/en active Active
- 2020-12-10 WO PCT/EP2020/085625 patent/WO2021116339A1/en active Application Filing
- 2020-12-10 JP JP2022535967A patent/JP7638994B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103733354A (zh) * | 2011-02-14 | 2014-04-16 | 国立科学研究中心 | 太赫兹探测单元 |
Also Published As
Publication number | Publication date |
---|---|
EP3836232A1 (en) | 2021-06-16 |
WO2021116339A1 (en) | 2021-06-17 |
US12206039B2 (en) | 2025-01-21 |
ES2909787T3 (es) | 2022-05-10 |
JP2023505716A (ja) | 2023-02-10 |
LT3836232T (lt) | 2022-07-11 |
CN115244716A (zh) | 2022-10-25 |
EP3836232B1 (en) | 2022-01-12 |
JP7638994B2 (ja) | 2025-03-04 |
US20230026900A1 (en) | 2023-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yardimci et al. | Nanostructure‐enhanced photoconductive terahertz emission and detection | |
US11231318B2 (en) | Photoconductive detector device with plasmonic electrodes | |
Lepeshov et al. | Enhancement of terahertz photoconductive antenna operation by optical nanoantennas | |
Yardimci et al. | High-power terahertz generation using large-area plasmonic photoconductive emitters | |
Mitrofanov et al. | Efficient photoconductive terahertz detector with all-dielectric optical metasurface | |
US7608814B2 (en) | Optical structure for localising an electromagnetic field and detector or emitter device including such a structure | |
Bashirpour et al. | Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure | |
Nissiyah et al. | Graphene-based photoconductive antenna structures for directional terahertz emission | |
Georgiou et al. | Efficient three-dimensional photonic–plasmonic photoconductive switches for picosecond THz pulses | |
Singh et al. | Improved electrode design for interdigitated large-area photoconductive terahertz emitters | |
Fu et al. | Optical coupling in quantum well infrared photodetector by diffraction grating | |
Dong et al. | CMOS-compatible broad-band hot carrier photodetection with Cu–silicon nanojunctions | |
Lu et al. | Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths | |
CN115244716B (zh) | 用于太赫兹信号或皮秒电脉冲的三维光电导变换器 | |
CN109557042B (zh) | 基于半导体镀纳米介孔金属薄膜结构及太赫兹波增强系统 | |
Gong et al. | Fano resonance-enhanced Si/MoS2 photodetector | |
Lu et al. | Plasmonics‐enhanced photoconductive terahertz devices | |
Mitrofanov et al. | Terahertz detectors based on all-dielectric photoconductive metasurfaces | |
Li et al. | Application of sub-wavelength grating electrodes in photo conductive antennas | |
Lee et al. | High Efficiency Interdigitated Terahertz Photoconductive Antenna Integrated With Cylindrical Lens Array | |
Mitrofanov et al. | Nanostructured photoconductive terahertz detector for near-field microscopy | |
Hale | Photoconductive Metasurfaces for Terahertz Applications | |
Mohammad-Zamani | Design and analysis of improved configuration for antenna-less unbiased THz photomixer emitters | |
Mitrofanov et al. | Perfectly-absorbing photoconductive metasurfaces for THz applications | |
Yardimci et al. | 1550 nm Large-area plasmonic photoconductive terahertz sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |