[go: up one dir, main page]

CN115243170A - Micro electro mechanical system sensor and electronic equipment - Google Patents

Micro electro mechanical system sensor and electronic equipment Download PDF

Info

Publication number
CN115243170A
CN115243170A CN202210590065.0A CN202210590065A CN115243170A CN 115243170 A CN115243170 A CN 115243170A CN 202210590065 A CN202210590065 A CN 202210590065A CN 115243170 A CN115243170 A CN 115243170A
Authority
CN
China
Prior art keywords
layer
electrode layer
mass
mems sensor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210590065.0A
Other languages
Chinese (zh)
Inventor
朱恩成
陈磊
张强
王栋杰
丁凯文
胡洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Goertek Intelligent Sensor Co Ltd
Original Assignee
Qingdao Goertek Intelligent Sensor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Goertek Intelligent Sensor Co Ltd filed Critical Qingdao Goertek Intelligent Sensor Co Ltd
Priority to CN202210590065.0A priority Critical patent/CN115243170A/en
Publication of CN115243170A publication Critical patent/CN115243170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Pressure Sensors (AREA)

Abstract

本公开实施例公开了一种微机电系统传感器及电子设备。所述微机电系统传感器包括衬底层、第一电极层和支撑层,所述支撑层设置于所述第一电极层和所述衬底层之间,以使所述第一电极层与所述衬底层之间形成悬空间隙。本公开实施例的一个技术效果在于,通过设置所述支撑层于所述第一电极层和所述衬底层之间,以形成悬空间隙。在提高所述第一电极层和所述衬底层之间的距离的同时,也使减小了介质介电常数ε,从而增加了整个传感器有效电容的输出。

Figure 202210590065

The embodiments of the present disclosure disclose a MEMS sensor and an electronic device. The MEMS sensor includes a substrate layer, a first electrode layer and a support layer, and the support layer is arranged between the first electrode layer and the substrate layer, so that the first electrode layer and the substrate A suspended gap is formed between the bottom layers. A technical effect of the embodiments of the present disclosure is that, by arranging the support layer between the first electrode layer and the substrate layer, a suspension gap is formed. While increasing the distance between the first electrode layer and the substrate layer, the dielectric constant ε is also reduced, thereby increasing the output of the effective capacitance of the entire sensor.

Figure 202210590065

Description

一种微机电系统传感器及电子设备A MEMS sensor and electronic equipment

技术领域technical field

本发明涉及微机电系统(MEMS)技术领域,更具体地,本发明涉及一种微机电系统传感器及电子设备。The present invention relates to the technical field of micro-electromechanical systems (MEMS), and more particularly, the present invention relates to a MEMS sensor and an electronic device.

背景技术Background technique

现有的语音加速度传感器通常会存在过大的CP(耦合电容)值,有效信号受到过大CP的影响而准确度较低,极大的干扰了信号处理,无法实现耳机在嘈杂环境中的高清拾音与降噪处理。The existing voice acceleration sensor usually has an excessive CP (coupling capacitance) value, and the effective signal is affected by the excessive CP and the accuracy is low, which greatly interferes with signal processing and cannot achieve high-definition headphones in a noisy environment. Pickup and noise reduction.

发明内容SUMMARY OF THE INVENTION

鉴于上述现有技术的缺点,本发明的目的在于提供一种新型的微机电系统传感器及电子设备,旨在解决现有技术中的至少一个问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a novel MEMS sensor and electronic device, aiming to solve at least one problem in the prior art.

根据本发明的一个方面,提供了一种微机电系统传感器。该微机电系统传感器包括:According to one aspect of the present invention, a microelectromechanical system sensor is provided. The MEMS sensor includes:

衬底层和第一电极层;a substrate layer and a first electrode layer;

支撑层,所述支撑层设置于所述第一电极层和所述衬底层之间,以使所述第一电极层与所述衬底层之间形成悬空间隙;a support layer, the support layer is disposed between the first electrode layer and the substrate layer, so that a suspension gap is formed between the first electrode layer and the substrate layer;

第二电极层,所述第二电极层设置于所述第一电极层远离所述衬底层的一侧并与所述第一电极层相对。A second electrode layer, the second electrode layer is disposed on the side of the first electrode layer away from the substrate layer and is opposite to the first electrode layer.

可选地,所述支撑层的厚度范围为1至20微米。Optionally, the thickness of the support layer ranges from 1 to 20 microns.

可选地,所述支撑层的厚度范围为5至10微米。Optionally, the thickness of the support layer ranges from 5 to 10 microns.

可选地,所述支撑层为氧化硅层或者氮化硅层。Optionally, the support layer is a silicon oxide layer or a silicon nitride layer.

可选地,所述第二电极层开设有通气孔,所述通气孔和所述悬空间隙相对。Optionally, the second electrode layer is provided with a ventilation hole, and the ventilation hole is opposite to the suspension gap.

可选地,所述第二电极层包括第一质量块、第二质量块和支撑部,所述支撑部与所述第一电极层相抵,所述第一质量块和所述第二质量块连接于所述支撑部的两侧,所述第一质量块的质量大于所述第二质量块的质量。Optionally, the second electrode layer includes a first mass block, a second mass mass and a support part, the support part is in contact with the first electrode layer, the first mass block and the second mass block Connected to both sides of the support portion, the mass of the first mass is greater than the mass of the second mass.

可选地,该微机电系统传感器还包括盖板,所述盖板设置于所述第二电极层远离所述衬底层的一侧,所述盖板与所述第二电极层形成真空腔室。Optionally, the MEMS sensor further includes a cover plate, the cover plate is disposed on the side of the second electrode layer away from the substrate layer, and the cover plate and the second electrode layer form a vacuum chamber .

可选地,所述微机电系统传感器为加速度传感器和麦克风。Optionally, the MEMS sensor is an acceleration sensor and a microphone.

可选地,所述微机电系统传感器为麦克风,所述第一电极层为背极板,所述第二电极层为振膜。Optionally, the MEMS sensor is a microphone, the first electrode layer is a back plate, and the second electrode layer is a diaphragm.

根据本发明的另一个方面,提供了一种电子设备。该电子设备包括上述任意一项所述的一种微机电系统传感器。According to another aspect of the present invention, an electronic device is provided. The electronic device includes the MEMS sensor described in any one of the above.

本公开实施例的一个技术效果在于,通过设置所述支撑层于所述第一电极层和所述衬底层之间,以使所述第一电极层与所述衬底层之间形成悬空间隙。在提高所述第一电极层和所述衬底层之间的距离的同时,也使减小了所述第一电极层和所述衬底层之间的介电常数ε,从而提高了微机电系统传感器的测试精度。A technical effect of the embodiments of the present disclosure is that, by arranging the support layer between the first electrode layer and the substrate layer, a suspension gap is formed between the first electrode layer and the substrate layer. While increasing the distance between the first electrode layer and the substrate layer, the dielectric constant ε between the first electrode layer and the substrate layer is also reduced, thereby improving the MEMS The test accuracy of the sensor.

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features and advantages of the present invention will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.

附图说明Description of drawings

构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。The accompanying drawings, which form a part of the specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

图1是本公开实施例的一种微机电系统传感器的结构示意图;FIG. 1 is a schematic structural diagram of a MEMS sensor according to an embodiment of the present disclosure;

图2是本公开实施例的一种微机电系统麦克风的结构示意图。FIG. 2 is a schematic structural diagram of a MEMS microphone according to an embodiment of the present disclosure.

附图标记说明:Description of reference numbers:

1、衬底层;2、第一电极层;3、支撑层;4、悬空间隙;5、第二电极层;51、通气孔;52、第一质量块;53、第二质量块;54、支撑部;6、盖板。1. Substrate layer; 2. First electrode layer; 3. Support layer; 4. Suspended gap; 5. Second electrode layer; Support part; 6. Cover plate.

具体实施方式Detailed ways

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of components and steps, the numerical expressions and numerical values set forth in these embodiments do not limit the scope of the invention unless specifically stated otherwise.

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.

对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。Techniques and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques and devices should be considered part of the specification.

在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as illustrative only and not limiting. Accordingly, other instances of the exemplary embodiment may have different values.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further discussion in subsequent figures.

本发明提供了一种微机电系统传感器。微机电系统传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的等特点。微机电系统传感器常用于医疗、汽车、电子产品等领域。The invention provides a micro-electromechanical system sensor. MEMS sensor is a new type of sensor manufactured by using microelectronics and micromachining technology. Compared with traditional sensors, it has the characteristics of small size, light weight, low cost, low power consumption, high reliability, suitable for mass production, easy integration and intelligent realization. MEMS sensors are commonly used in medical, automotive, electronic products and other fields.

如图1所示,本发明提供的这种微机电系统传感器包括衬底层1、第一电极层2、第二电极层5和支撑层3。所述支撑层3设置于所述第一电极层2和所述衬底层1之间,以使所述第一电极层2与所述衬底层1之间形成悬空间隙4。所述第二电极层5设置于所述第一电极层2远离所述衬底层1的一侧并与所述第一电极层2相对,所述第一电极层2和所述第二电极层5之间形成间隙。As shown in FIG. 1 , the MEMS sensor provided by the present invention includes a substrate layer 1 , a first electrode layer 2 , a second electrode layer 5 and a support layer 3 . The support layer 3 is disposed between the first electrode layer 2 and the substrate layer 1 , so that a suspension gap 4 is formed between the first electrode layer 2 and the substrate layer 1 . The second electrode layer 5 is disposed on the side of the first electrode layer 2 away from the substrate layer 1 and is opposite to the first electrode layer 2. The first electrode layer 2 and the second electrode layer 5 to form a gap.

本发明提供的这种微机电系统传感器为电容式传感器,所述第二电极层5设置于所述第一电极层2远离所述衬底层1的一侧并与所述第一电极层2相对,所述第一电极层2和所述第二电极层5形成电容器。The MEMS sensor provided by the present invention is a capacitive sensor, and the second electrode layer 5 is disposed on the side of the first electrode layer 2 away from the substrate layer 1 and is opposite to the first electrode layer 2 , the first electrode layer 2 and the second electrode layer 5 form a capacitor.

电容式传感器是以各种类型的电容器作为传感元件,将被测物理量或机械量转换成为电容变化量变化的一种转换装置,实际上就是一个具有可变参数的电容器。电容式传感器广泛用于位移、角度、振动、速度、压力、成分分析、介质特性等方面的测量。Capacitive sensors use various types of capacitors as sensing elements to convert the measured physical or mechanical quantities into a conversion device for changes in capacitance. In fact, it is a capacitor with variable parameters. Capacitive sensors are widely used in the measurement of displacement, angle, vibration, speed, pressure, composition analysis, medium properties, etc.

电容式传感器在工作中会产生CP(耦合电容),CP主要是由于下电极与基板之间形成电容器效应产生,该耦合电容会严重干扰有效电容的输出,极大的降低和干扰传感器的整体声学性能。CP值越大,传感器的有效信号越弱。由于电容式传感器结构的限制,CP无法从根本上消除,只能通过结构设计,减小CP值,从而相对提高有效信号,以提高传感器的整体声学性能。根据平板电容器原理,电容C=ε*ε0*S/d,即电容C与介质介电常数ε成正比,与两个极板之间的距离d成反比。故,可通过减小介质介电常数ε或者增大两个极板之间的距离d以减小电容C,从而减小CP值,相对提高有效信号,提高传感器的精度。Capacitive sensors will generate CP (coupling capacitance) during operation. CP is mainly caused by the capacitor effect formed between the lower electrode and the substrate. The coupling capacitance will seriously interfere with the output of the effective capacitance, greatly reducing and interfering with the overall acoustics of the sensor. performance. The larger the CP value, the weaker the effective signal of the sensor. Due to the limitation of the capacitive sensor structure, CP cannot be fundamentally eliminated, and the CP value can only be reduced through structural design, thereby relatively increasing the effective signal and improving the overall acoustic performance of the sensor. According to the principle of plate capacitor, the capacitance C=ε*ε 0 *S/d, that is, the capacitance C is proportional to the dielectric constant ε of the medium and inversely proportional to the distance d between the two plates. Therefore, the capacitance C can be reduced by reducing the dielectric constant ε or increasing the distance d between the two polar plates, thereby reducing the CP value, relatively improving the effective signal, and improving the accuracy of the sensor.

如图1所示,本公开实施例将所述支撑层3设置于所述第一电极层2和所述衬底层1之间。避免了在所述衬底层1上面直接形成所述第一电极层2,而是先在衬底层1上形成一层所述支撑层3,再于所述支撑层3上面形成所述第一电极层2,使得所述第一电极层2与所述衬底层1之间夹设有一层所述支撑层3。所述支撑层3的存在使得所述第一电极层2与所述衬底层1之间存在一定的距离,该距离取决于所述支撑层3的厚度。As shown in FIG. 1 , in this embodiment of the present disclosure, the support layer 3 is disposed between the first electrode layer 2 and the substrate layer 1 . Instead of directly forming the first electrode layer 2 on the substrate layer 1 , a layer of the support layer 3 is first formed on the substrate layer 1 , and then the first electrode is formed on the support layer 3 layer 2 , so that a layer of the support layer 3 is sandwiched between the first electrode layer 2 and the substrate layer 1 . The existence of the support layer 3 causes a certain distance between the first electrode layer 2 and the substrate layer 1 , and the distance depends on the thickness of the support layer 3 .

本发明通过于所述第一电极层2与所述衬底层1之间夹设所述支撑层3,使得所述第一电极层2与所述衬底层1之间不直接接触,而是存在一定的距离,该距离即为所述支撑层3的厚度。所述支撑层3的设置使得所述第一电极层2与所述衬底层1之间的距离从无到有。而根据电容器原理可知,当所述第一电极层2与所述衬底层1之间的距离从无到有时,所述第一电极层2与所述衬底层1之间的电容会减小,进而能够有效降低所述第一电极层2与所述衬底层1之间的CP值,保证所述微机电系统传感器有效电容的输出,提高所述微机电系统传感器的传感精度。In the present invention, the support layer 3 is sandwiched between the first electrode layer 2 and the substrate layer 1 , so that there is no direct contact between the first electrode layer 2 and the substrate layer 1 , but there is A certain distance, the distance is the thickness of the support layer 3 . The arrangement of the support layer 3 makes the distance between the first electrode layer 2 and the substrate layer 1 from nothing to exist. According to the principle of capacitors, when the distance between the first electrode layer 2 and the substrate layer 1 increases from zero, the capacitance between the first electrode layer 2 and the substrate layer 1 will decrease. Furthermore, the CP value between the first electrode layer 2 and the substrate layer 1 can be effectively reduced, the output of the effective capacitance of the MEMS sensor can be ensured, and the sensing accuracy of the MEMS sensor can be improved.

并且,所述支撑层3设置于所述第一电极层2和所述衬底层1之间,以使所述第一电极层2与所述衬底层1之间形成悬空间隙4。如图1所示,所述第一电极层2和所述衬底层1之间并非全部填充有所述支撑层3,而仅仅是利用所述支撑层3使得所述第一电极层2与所述衬底层1之间存在一定距离,所述第一电极层2与所述衬底层1之间存在有悬空间隙4,悬空间隙4可以是支撑层3内形成的一个大的间隙,也可以是支撑层3内形成的多个独立的小间隙。该悬空间隙4的存在,使得所述第一电极层2与所述衬底层1之间存在空气,利用空气较小的介质介电常数ε,使得所述第一电极层2与所述衬底层1之间的电容减小,进而能够有效降低所述第一电极层2与所述衬底层1之间的CP值,保证所述微机电系统传感器有效电容的输出,提高所述微机电系统传感器的传感精度。In addition, the support layer 3 is disposed between the first electrode layer 2 and the substrate layer 1 , so that a suspension gap 4 is formed between the first electrode layer 2 and the substrate layer 1 . As shown in FIG. 1 , the supporting layer 3 is not completely filled between the first electrode layer 2 and the substrate layer 1 , but only the supporting layer 3 is used to make the first electrode layer 2 and the There is a certain distance between the substrate layers 1, and a suspended gap 4 exists between the first electrode layer 2 and the substrate layer 1. The suspended gap 4 may be a large gap formed in the support layer 3, or it may be A plurality of independent small gaps formed in the support layer 3 . The existence of the dangling gap 4 causes air to exist between the first electrode layer 2 and the substrate layer 1 , and the first electrode layer 2 and the substrate layer are formed by utilizing the relatively small dielectric constant ε of air. The capacitance between 1 is reduced, which can effectively reduce the CP value between the first electrode layer 2 and the substrate layer 1, ensure the output of the effective capacitance of the MEMS sensor, and improve the MEMS sensor. sensing accuracy.

本发明通过设置所述支撑层3于所述第一电极层2和所述衬底层1之间,以使所述第一电极层2与所述衬底层1之间形成悬空间隙4。在提高所述第一电极层2和所述衬底层1之间的距离的同时,也使所述第一电极层2和所述衬底层1之间存在空气,空气具有较小的介质介电常数ε。从而减小了所述第一电极层2和所述衬底层1之间的电容,有效降低了所述第一电极层2与所述衬底层1之间的CP值,保证所述微机电系统传感器有效电容的输出,提高所述微机电系统传感器的传感精度。In the present invention, the support layer 3 is disposed between the first electrode layer 2 and the substrate layer 1 , so that a suspension gap 4 is formed between the first electrode layer 2 and the substrate layer 1 . While increasing the distance between the first electrode layer 2 and the substrate layer 1, there is also air between the first electrode layer 2 and the substrate layer 1, and the air has a smaller dielectric dielectric constant ε. Therefore, the capacitance between the first electrode layer 2 and the substrate layer 1 is reduced, the CP value between the first electrode layer 2 and the substrate layer 1 is effectively reduced, and the MEMS is ensured. The output of the effective capacitance of the sensor improves the sensing accuracy of the MEMS sensor.

可选地,所述支撑层3的厚度范围为1至20微米。Optionally, the thickness of the support layer 3 ranges from 1 to 20 microns.

如图1所示,所述支撑层3的厚度即为所述第一电极层2和所述衬底层1之间的距离,在加工过程中需要去除部分所述支撑层3以形成悬空间隙4。在本实施例中,可选所述支撑层3的厚度范围为1至20微米。在该厚度范围下,能够使得所述第一电极层2和所述衬底层1之间存在一定的距离,减小了所述第一电极层2和所述衬底层1之间的电容,进而有效降低了CP值,增加了所述微机电系统传感器有效电容的输出;同时,应避免所述支撑层3的厚度过大,避免应力变形。As shown in FIG. 1 , the thickness of the support layer 3 is the distance between the first electrode layer 2 and the substrate layer 1 , and a part of the support layer 3 needs to be removed during processing to form a suspended gap 4 . In this embodiment, the thickness of the support layer 3 can be selected in the range of 1 to 20 microns. Within this thickness range, a certain distance can exist between the first electrode layer 2 and the substrate layer 1 , thereby reducing the capacitance between the first electrode layer 2 and the substrate layer 1 , thereby reducing the capacitance between the first electrode layer 2 and the substrate layer 1 . The CP value is effectively reduced, and the output of the effective capacitance of the MEMS sensor is increased; at the same time, excessive thickness of the support layer 3 should be avoided to avoid stress deformation.

其中,优选所述支撑层3的厚度范围为5至10微米。5至10微米的支撑层3的厚度,能够使得所述第一电极层2和所述衬底层1之间存在足够的距离,明显减小所述第一电极层2和所述衬底层1之间的电容。此外,也避免了支撑层3过厚带来的所述微机电系统传感器的尺寸增大。Wherein, preferably, the thickness of the support layer 3 ranges from 5 to 10 microns. The thickness of the support layer 3 of 5 to 10 microns can make a sufficient distance between the first electrode layer 2 and the substrate layer 1, and significantly reduce the gap between the first electrode layer 2 and the substrate layer 1. capacitance between. In addition, the increase in the size of the MEMS sensor caused by the excessively thick support layer 3 is also avoided.

可选地,所述支撑层3为氧化硅层或者氮化硅层。Optionally, the support layer 3 is a silicon oxide layer or a silicon nitride layer.

在本实施例中,所述支撑层3为氧化硅层或者氮化硅层。即,所述支撑层3的材料可为氧化硅材料、氮化硅材料或者其他本领域技术人员常用的材料。比如支撑层3的材料可为氧化硅,氧化硅具有绝缘性,采用氧化硅制作支撑层3能够隔离所述第一电极层2和所述衬底层1,避免所述第一电极层2和所述衬底层1。同时,氧化硅成本较低,便于去除,提高了所述微机电系统传感器加工的简易性。In this embodiment, the support layer 3 is a silicon oxide layer or a silicon nitride layer. That is, the material of the support layer 3 may be silicon oxide material, silicon nitride material or other materials commonly used by those skilled in the art. For example, the material of the support layer 3 can be silicon oxide, which has insulating properties. Using silicon oxide to make the support layer 3 can isolate the first electrode layer 2 and the substrate layer 1, and avoid the first electrode layer 2 and all The substrate layer 1 is described. At the same time, the cost of silicon oxide is low, and it is easy to remove, which improves the simplicity of processing the MEMS sensor.

可选地,所述第二电极层5开设有通气孔51,所述通气孔51和所述悬空间隙4相对。Optionally, the second electrode layer 5 is provided with a ventilation hole 51 , and the ventilation hole 51 is opposite to the suspension gap 4 .

如图1所示,所述第二电极层5上有通气孔51,该通气孔51能够联通外界空气和所述第二电极层5下方的间隙,使得所述第二电极层5和所述第一电极层2之间为空气间隙。而设置所述通气孔51和所述悬空间隙4相对,使得外界空气能够通过所述通气孔51进入所述悬空间隙4中,即所述悬空间隙4中也填充空气。由于空气的介电常数ε较小,能够减小所述第一电极层2和所述衬底层1之间的电容,进而有效降低了所述第一电极层2与所述衬底层1之间的CP值,从而增加了整个传感器有效电容的输出,提高了微机电系统传感器的传感精度。As shown in FIG. 1 , the second electrode layer 5 has a ventilation hole 51 , and the ventilation hole 51 can communicate with the outside air and the gap under the second electrode layer 5 , so that the second electrode layer 5 and the Air gaps are formed between the first electrode layers 2 . The ventilation holes 51 are arranged opposite to the suspension gap 4 , so that outside air can enter the suspension gap 4 through the ventilation holes 51 , that is, the suspension gap 4 is also filled with air. Since the dielectric constant ε of air is small, the capacitance between the first electrode layer 2 and the substrate layer 1 can be reduced, thereby effectively reducing the gap between the first electrode layer 2 and the substrate layer 1 Therefore, the output of the effective capacitance of the entire sensor is increased, and the sensing accuracy of the MEMS sensor is improved.

在一个实施例中,通气孔可以是多个,与多个悬空间隙4相对。所述第二电极层5上有多个独立的通气孔51,所述支撑层3内有多个独立的悬空间隙4,多个通气孔51与多个悬空间隙4相对。使得外界空气能够通过多个所述通气孔51均匀进入多个所述悬空间隙4中,能够减小所述第一电极层2和所述衬底层1之间的介电常数ε,有效降低所述第一电极层2与所述衬底层1之间的CP值,增加微机电系统传感器有效电容的输出。In one embodiment, there may be a plurality of ventilation holes opposite to the plurality of air gaps 4 . The second electrode layer 5 has a plurality of independent air holes 51 , the support layer 3 has a plurality of independent air gaps 4 , and the air holes 51 are opposite to the plurality of air gaps 4 . The outside air can evenly enter the plurality of the suspension gaps 4 through the plurality of the ventilation holes 51, the dielectric constant ε between the first electrode layer 2 and the substrate layer 1 can be reduced, and the The CP value between the first electrode layer 2 and the substrate layer 1 increases the output of the effective capacitance of the MEMS sensor.

可选地,所述第二电极层5包括第一质量块52、第二质量块53和支撑部54,所述支撑部54与所述第一电极层2相抵,所述第一质量块52和所述第二质量块53连接于所述支撑部54的两侧,所述第一质量块52的质量大于所述第二质量块53的质量。Optionally, the second electrode layer 5 includes a first mass 52 , a second mass 53 and a supporting portion 54 , the supporting portion 54 is in contact with the first electrode layer 2 , and the first mass 52 The second mass 53 is connected to both sides of the support portion 54 , and the mass of the first mass 52 is greater than that of the second mass 53 .

如图1所示,所述第二电极层5包括第一质量块52、第二质量块53和位于所述第一质量块52和所述第二质量块53之间的支撑部54。所述支撑部54与所述第一电极层2相抵,即所述支撑部54下方与所述第一电极层2上方相接触。As shown in FIG. 1 , the second electrode layer 5 includes a first mass 52 , a second mass 53 and a support portion 54 located between the first mass 52 and the second mass 53 . The support portion 54 is in contact with the first electrode layer 2 , that is, the lower portion of the support portion 54 is in contact with the upper portion of the first electrode layer 2 .

所述第一质量块52和所述第二质量块53连接于所述支撑部54的两侧,所述第一质量块52的质量大于所述第二质量块53的质量。当然也可以所述第一质量块52的质量小于所述第二质量块53的质量,只需满足所述第一质量块52和所述第二质量块53质量不等即可,以使所述第一质量块52、所述第二质量块53和中间的所述支撑部54形成“跷跷板”结构。其中,可设计所述第一质量块52和所述第二质量块53在采用同种材料而体积不相同以使得两者质量不同,也可设计所述第一质量块52和所述第二质量块53在体积相同时分别采用不同材料形成以使得两者质量不同。The first mass 52 and the second mass 53 are connected to two sides of the support portion 54 , and the mass of the first mass 52 is greater than that of the second mass 53 . Of course, the mass of the first mass block 52 can also be smaller than the mass of the second mass block 53, as long as the mass of the first mass block 52 and the second mass block 53 are not equal, so that all the The first mass block 52, the second mass block 53 and the middle support portion 54 form a "teeter-totter" structure. Wherein, the first mass block 52 and the second mass block 53 can be designed to use the same material but have different volumes so that the quality of the two is different, and the first mass block 52 and the second mass block 53 can also be designed When the mass blocks 53 are the same in volume, they are respectively formed of different materials so that the two have different masses.

在本实施例中,参见图1,所述第一质量块52的质量大于所述第二质量块53的质量。当所述微机电系统传感器向上移动时,由于惯性力的存在,使得所述第一质量块52向下运动,所述第二质量块53向上运动,也就分别改变了所述第一质量块52和所述第二质量块53与所述第一电极层2的间距。当所述微机电系统传感器向下移动时,由于惯性力的存在,使得所述第一质量块52向上运动,所述第二质量块53向下运动,同样分别改变了所述第一质量块52和所述第二质量块53与所述第一电极层2的间距。In this embodiment, referring to FIG. 1 , the mass of the first mass 52 is greater than the mass of the second mass 53 . When the MEMS sensor moves upward, due to the existence of inertial force, the first mass block 52 moves downward and the second mass block 53 moves upward, which changes the first mass respectively. 52 and the distance between the second mass 53 and the first electrode layer 2 . When the MEMS sensor moves downward, due to the existence of inertial force, the first mass 52 moves upward and the second mass 53 moves downward, which also changes the first mass respectively. 52 and the distance between the second mass 53 and the first electrode layer 2 .

本实施例通过设置所述第一质量块52和所述第二质量块53的质量不同,使得所述微机电系统传感器在产生竖直方向的移动时,由于惯性力的存在,所述第一质量块52和所述第二质量块53能够向相反方向运动。进而所述第一质量块52和所述第一电极层2形成一套电容结构,所述第二质量块53和所述第一电极层2形成另一套电容结构,两套电容结构构成差分电容结构,提高了微机电系统传感器的测试精度。In this embodiment, by setting the masses of the first mass block 52 and the second mass block 53 to be different, when the MEMS sensor generates vertical movement, due to the existence of inertial force, the first mass The mass 52 and the second mass 53 can move in opposite directions. Further, the first mass block 52 and the first electrode layer 2 form a set of capacitance structures, the second mass block 53 and the first electrode layer 2 form another set of capacitance structures, and the two sets of capacitance structures constitute a differential The capacitive structure improves the test accuracy of the MEMS sensor.

第二电极层5包括第一质量块52、第二质量块53和位于所述第一质量块52和所述第二质量块53之间的支撑部54。其中,第一质量块52、第二质量块53和支撑部54可以设计为一个整体,三者共同形成整体质量块。此时,第一质量块52可以为整体质量块的左部,第二质量块53可以为整体质量块的右部,设置左部和右部质量不同以形成“跷跷板”结构。The second electrode layer 5 includes a first mass 52 , a second mass 53 , and a support portion 54 located between the first mass 52 and the second mass 53 . Wherein, the first mass block 52, the second mass block 53 and the support portion 54 may be designed as a whole, and the three together form an integral mass block. At this time, the first mass 52 can be the left part of the whole mass, and the second mass 53 can be the right part of the whole mass, and the left part and the right part have different masses to form a "teeter-totter" structure.

可选地,该微机电系统传感器还包括盖板6,所述盖板6设置于所述第二电极层5远离所述衬底层1的一侧,所述盖板6与所述第二电极层5形成真空腔室。Optionally, the MEMS sensor further includes a cover plate 6 , the cover plate 6 is disposed on the side of the second electrode layer 5 away from the substrate layer 1 , and the cover plate 6 is connected to the second electrode layer 1 . Layer 5 forms a vacuum chamber.

如图1所示,所述盖板6位于所述第二电极层5远离所述衬底层1的一侧,即所述盖板6位于所述第二电极层5的上方。所述盖板6通过键合工艺制成且与所述第二电极层5形成真空腔室。一方面,所述盖板6能够保护所述微机电系统传感器内部的电极层,避免外界冲击对内部电极层的影响;另一方面,真空腔室的形成,也给所述第一质量块52和所述第二质量块53能够在惯性力的作用下反向运动提供了运动空间。As shown in FIG. 1 , the cover plate 6 is located on the side of the second electrode layer 5 away from the substrate layer 1 , that is, the cover plate 6 is located above the second electrode layer 5 . The cover plate 6 is made by a bonding process and forms a vacuum chamber with the second electrode layer 5 . On the one hand, the cover plate 6 can protect the electrode layer inside the MEMS sensor and avoid the impact of external impact on the internal electrode layer; on the other hand, the formation of the vacuum chamber also provides the first mass 52 And the second mass 53 can reversely move under the action of inertial force to provide a movement space.

可选地,所述微机电系统传感器为加速度传感器和麦克风。Optionally, the MEMS sensor is an acceleration sensor and a microphone.

在本实施例中,微机电系统传感器可以为加速度传感器,比如语音加速度传感器。语音加速度传感器通常采用电容式加速度传感器,属于惯性式传感器范围。语音加速度传感器可采集人体在发声时的骨骼振动信号,通过芯片内的所述第一质量块52和所述第二质量块53分别对应所述第一电极层2之间的距离变化来收集振动信号,以改变语音加速度传感器电容值,再结合其他传感器信号,经过处理后能够提高语音通话等功能效果。并且,语音加速度传感器的振动频率远低于其固有频率,使得其输入与输出之间具有良好的线性关系,不容易损坏,使用寿命也较长。语音加速度传感器多应用于耳机、AR、VR等领域。In this embodiment, the MEMS sensor may be an acceleration sensor, such as a voice acceleration sensor. Voice acceleration sensors usually use capacitive acceleration sensors, which belong to the range of inertial sensors. The voice acceleration sensor can collect the bone vibration signal of the human body when the sound is produced, and the vibration is collected by the first mass 52 and the second mass 53 in the chip corresponding to the distance changes between the first electrode layers 2 respectively. Signals to change the capacitance value of the voice acceleration sensor, combined with other sensor signals, can improve the effect of functions such as voice calls after processing. In addition, the vibration frequency of the voice acceleration sensor is much lower than its natural frequency, so that there is a good linear relationship between its input and output, and it is not easy to be damaged and has a long service life. Voice accelerometers are mostly used in headsets, AR, VR and other fields.

并且,该语音加速度传感器可用于Z轴单轴检测,可提高加速度传感器的灵敏度,降低应用该语音加速度传感器的电子设备的装配难度。In addition, the voice acceleration sensor can be used for Z-axis single-axis detection, which can improve the sensitivity of the acceleration sensor and reduce the assembly difficulty of an electronic device applying the voice acceleration sensor.

可选地,本方案提供的微机电系统传感器可以采用半导体气相沉积方法制成。其制备方法主要包括:Optionally, the MEMS sensor provided by this solution can be fabricated by using a semiconductor vapor deposition method. Its preparation method mainly includes:

第一步,制作衬底层1;The first step is to make the substrate layer 1;

第二步,在衬底层1上沉积制作支撑层3;The second step is to deposit a support layer 3 on the substrate layer 1;

第三步,在支撑层3上沉积第一电极层2;The third step, depositing the first electrode layer 2 on the support layer 3;

第四步,沉积第二电极层5。The fourth step is to deposit the second electrode layer 5 .

下面详细介绍上述制备方法:The above-mentioned preparation method is described in detail below:

第一,以硅作为衬底层1,在衬底层1上沉积一层氧化硅或者氮化硅,并选择性地掩蔽和刻蚀得到支撑层3。First, using silicon as the substrate layer 1 , depositing a layer of silicon oxide or silicon nitride on the substrate layer 1 , and selectively masking and etching the supporting layer 3 .

第二,沉积多晶硅,掺杂并退火得到第一电极层2。Second, polysilicon is deposited, doped and annealed to obtain the first electrode layer 2 .

第三,在第一电极层2上沉积牺牲层,这些牺牲层可以是低温沉积的氧化硅、氮化硅等。并且,在牺牲层上刻蚀形成凹槽,以便进一步沉积材料。Third, a sacrificial layer is deposited on the first electrode layer 2, and these sacrificial layers may be silicon oxide, silicon nitride, etc. deposited at a low temperature. Also, grooves are etched on the sacrificial layer to further deposit materials.

第四,在牺牲层上沉积多晶硅层以形成第二电极层5,并通过掺杂实现有效电路连接。Fourth, a polysilicon layer is deposited on the sacrificial layer to form the second electrode layer 5, and effective circuit connection is achieved by doping.

第五,在第二电极层5上进一步刻蚀凹槽并沉积铬镍铝等材料作为焊接点。可选地,所述第二电极层5上方可以设置两个焊接点,两个焊接点分别用于与第一电极层2和第二电极层5形成电连接。在其它实施方式中,也可以沉积更多焊接点,用于连接至第一电极层2或第二电极层5的不同区域。Fifth, grooves are further etched on the second electrode layer 5 and materials such as CrNiAl are deposited as solder joints. Optionally, two welding points may be disposed above the second electrode layer 5 , and the two welding points are respectively used to form electrical connections with the first electrode layer 2 and the second electrode layer 5 . In other embodiments, more solder joints may also be deposited for connection to different regions of the first electrode layer 2 or the second electrode layer 5 .

第六,底部牺牲层释放,以使第二电极层5部分悬空。Sixth, the bottom sacrificial layer is released, so that the second electrode layer 5 is partially suspended.

第七,根据具体结构设计去除支撑层3的部分氧化硅或者氮化硅材料,以形成悬空间隙4。Seventh, according to the specific structural design, part of the silicon oxide or silicon nitride material of the support layer 3 is removed to form the suspended gap 4 .

第八,沉积得到盖板。Eighth, a cover plate is obtained by deposition.

其中,支撑层3的部分材料的去除,可根据具体的支撑层3的材料选择,选择对应的材料进行去除。Wherein, for the removal of part of the material of the support layer 3 , the corresponding material may be selected for removal according to the specific material selection of the support layer 3 .

在另一个实施例中,微机电系统传感器可以为麦克风或者其他针对降低基板与衬底之间的耦合电容需求的传感器。In another embodiment, the MEMS sensor may be a microphone or other sensor designed to reduce the coupling capacitance requirement between the substrate and the substrate.

微机电系统(MEMS)麦克风是基于MEMS技术制造的麦克风,简单的说,微机电系统麦克风利用半导体材料形成电容器,并将电容器集成在微硅晶片上。采用微机电工艺形成的微机电麦克风具有体积小、灵敏度高的特点,并且微机电麦克风具有良好的射频干扰(RFI)及电磁干扰(EMI)抑制能力。MEMS麦克风常用于中高端手机等电子设备中。Micro-Electro-Mechanical Systems (MEMS) microphones are microphones based on MEMS technology. Simply put, MEMS microphones use semiconductor materials to form capacitors and integrate the capacitors on micro-silicon wafers. The microelectromechanical microphone formed by the microelectromechanical process has the characteristics of small size and high sensitivity, and the microelectromechanical microphone has good radio frequency interference (RFI) and electromagnetic interference (EMI) suppression capability. MEMS microphones are often used in electronic devices such as mid-to-high-end mobile phones.

可选地,所述微机电系统传感器为麦克风,所述第一电极层2为背极板,所述第二电极层5为振膜。Optionally, the MEMS sensor is a microphone, the first electrode layer 2 is a back plate, and the second electrode layer 5 is a diaphragm.

如图2所示,当所述微机电系统传感器为麦克风时,所述第一电极层2为背极板,所述第二电极层5为振膜,所述支撑层3设置于所述第一电极层2和所述衬底层1之间,所述第一电极层2与所述衬底层1之间形成悬空间隙4。所述悬空间隙4与振膜上的通气孔51相对,以使所述悬空间隙4内填充空气。进而在抬高背极板与所述衬底层1之间的距离的同时,也减小了介电常数ε,使得电容减小,进而能够有效降低背极板与所述衬底层1之间的CP值,增加了麦克风有效电容的输出,提高了麦克风的测试精度和整体声学性能。As shown in FIG. 2 , when the MEMS sensor is a microphone, the first electrode layer 2 is a back plate, the second electrode layer 5 is a diaphragm, and the support layer 3 is disposed on the first electrode. A suspended gap 4 is formed between an electrode layer 2 and the substrate layer 1 , and between the first electrode layer 2 and the substrate layer 1 . The suspension gap 4 is opposite to the ventilation hole 51 on the diaphragm, so that the suspension gap 4 is filled with air. Further, while increasing the distance between the back plate and the substrate layer 1, the dielectric constant ε is also reduced, so that the capacitance is reduced, and the distance between the back plate and the substrate layer 1 can be effectively reduced. The CP value increases the output of the effective capacitance of the microphone, and improves the test accuracy and overall acoustic performance of the microphone.

在本实施例的麦克风中,当声压作用于振膜时,振膜会随之振动,以改变振膜与背极板之间的电容,进而改变电容器的输出电压,使得麦克风将声音信号转化为电信号。In the microphone of this embodiment, when the sound pressure acts on the diaphragm, the diaphragm will vibrate accordingly, so as to change the capacitance between the diaphragm and the back plate, thereby changing the output voltage of the capacitor, so that the microphone converts the sound signal into for electrical signals.

本发明还提供了一种电子设备。该电子设备包括上述任意一项所述的一种微机电系统传感器。应用上述微机电系统传感器的电子设备能够将声音信号转化为电信号。The present invention also provides an electronic device. The electronic device includes the MEMS sensor described in any one of the above. The electronic device applying the above-mentioned MEMS sensor can convert sound signals into electrical signals.

上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。The above embodiments focus on the differences between the various embodiments. As long as the different optimization features between the various embodiments are not contradictory, they can be combined to form a better embodiment. Repeat.

虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。While some specific embodiments of the present invention have been described in detail by way of example, those skilled in the art will appreciate that the above examples are provided for illustration only and not for the purpose of limiting the scope of the invention. Those skilled in the art will appreciate that modifications may be made to the above embodiments without departing from the scope and spirit of the present invention. The scope of the invention is defined by the appended claims.

Claims (10)

1.一种微机电系统传感器,其特征在于,包括:1. a microelectromechanical system sensor, is characterized in that, comprises: 衬底层(1)和第一电极层(2);a substrate layer (1) and a first electrode layer (2); 支撑层(3),所述支撑层(3)设置于所述第一电极层(2)和所述衬底层(1)之间,以使所述第一电极层(2)与所述衬底层(1)之间形成悬空间隙(4);a support layer (3), the support layer (3) being arranged between the first electrode layer (2) and the substrate layer (1), so that the first electrode layer (2) and the substrate A suspended gap (4) is formed between the bottom layers (1); 第二电极层(5),所述第二电极层(5)设置于所述第一电极层(2)远离所述衬底层(1)的一侧并与所述第一电极层(2)相对。A second electrode layer (5), the second electrode layer (5) is provided on the side of the first electrode layer (2) away from the substrate layer (1) and is connected to the first electrode layer (2) relatively. 2.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述支撑层(3)的厚度范围为1至20微米。2 . The MEMS sensor according to claim 1 , wherein the thickness of the support layer ( 3 ) ranges from 1 to 20 μm. 3 . 3.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述支撑层(3)的厚度范围为5至10微米。3 . The MEMS sensor according to claim 1 , wherein the thickness of the support layer ( 3 ) ranges from 5 to 10 μm. 4 . 4.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述支撑层(3)为氧化硅层或者氮化硅层。4 . The MEMS sensor according to claim 1 , wherein the support layer ( 3 ) is a silicon oxide layer or a silicon nitride layer. 5 . 5.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述第二电极层(5)开设有通气孔(51),所述通气孔(51)和所述悬空间隙(4)相对。5 . The MEMS sensor according to claim 1 , wherein the second electrode layer ( 5 ) is provided with a ventilation hole ( 51 ), the ventilation hole ( 51 ) and the suspended gap ( 5 . 4) Relative. 6.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述第二电极层(5)包括第一质量块(52)、第二质量块(53)和支撑部(54),所述支撑部54与所述第一电极层(2)相抵,所述第一质量块(52)和所述第二质量块(53)连接于所述支撑部(54)的两侧,所述第一质量块(52)的质量大于所述第二质量块(53)的质量。6. The MEMS sensor according to claim 1, wherein the second electrode layer (5) comprises a first mass (52), a second mass (53) and a support portion (54) ), the support portion 54 is in contact with the first electrode layer (2), and the first mass block (52) and the second mass block (53) are connected to both sides of the support portion (54). , the mass of the first mass block (52) is greater than the mass of the second mass block (53). 7.根据权利要求1所述的一种微机电系统传感器,其特征在于,还包括盖板(6),所述盖板(6)设置于所述第二电极层(5)远离所述衬底层(1)的一侧,所述盖板(6)与所述第二电极层(5)形成真空腔室。7 . The MEMS sensor according to claim 1 , further comprising a cover plate ( 6 ), and the cover plate ( 6 ) is disposed on the second electrode layer ( 5 ) away from the lining. 8 . On one side of the bottom layer (1), the cover plate (6) and the second electrode layer (5) form a vacuum chamber. 8.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述微机电系统传感器为加速度传感器和麦克风。8 . The MEMS sensor according to claim 1 , wherein the MEMS sensor is an acceleration sensor and a microphone. 9 . 9.根据权利要求1所述的一种微机电系统传感器,其特征在于,所述微机电系统传感器为麦克风,所述第一电极层(2)为背极板,所述第二电极层(5)为振膜。9. The MEMS sensor according to claim 1, wherein the MEMS sensor is a microphone, the first electrode layer (2) is a back plate, and the second electrode layer ( 5) is the diaphragm. 10.一种电子设备,其特征在于,包括权利要求1至9中任意一项所述的一种微机电系统传感器。10. An electronic device, characterized in that it comprises the MEMS sensor according to any one of claims 1 to 9.
CN202210590065.0A 2022-05-26 2022-05-26 Micro electro mechanical system sensor and electronic equipment Pending CN115243170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210590065.0A CN115243170A (en) 2022-05-26 2022-05-26 Micro electro mechanical system sensor and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210590065.0A CN115243170A (en) 2022-05-26 2022-05-26 Micro electro mechanical system sensor and electronic equipment

Publications (1)

Publication Number Publication Date
CN115243170A true CN115243170A (en) 2022-10-25

Family

ID=83668552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210590065.0A Pending CN115243170A (en) 2022-05-26 2022-05-26 Micro electro mechanical system sensor and electronic equipment

Country Status (1)

Country Link
CN (1) CN115243170A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035458A1 (en) * 2006-08-04 2008-02-14 Seiko Epson Corporation Mems switch and manufacturing method thereof
CN208190922U (en) * 2018-04-20 2018-12-04 杭州士兰集成电路有限公司 MEMS device
CN114506812A (en) * 2021-12-27 2022-05-17 杭州士兰微电子股份有限公司 Inertial sensor and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035458A1 (en) * 2006-08-04 2008-02-14 Seiko Epson Corporation Mems switch and manufacturing method thereof
CN208190922U (en) * 2018-04-20 2018-12-04 杭州士兰集成电路有限公司 MEMS device
CN114506812A (en) * 2021-12-27 2022-05-17 杭州士兰微电子股份有限公司 Inertial sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103563399B (en) Cmos compatible silicon differential condenser microphone and its manufacture method
US8705777B2 (en) MEMS microphone and method of manufacturing the same
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
WO2016192358A1 (en) Differential-capacitance type mems microphone
US8755541B2 (en) Microphone with parasitic capacitance cancelation
CN204652659U (en) A kind of differential capacitance type MEMS microphone
US20180041842A1 (en) Mems microphone element and manufacturing method thereof
CN114513731B (en) Microphone assembly and electronic equipment
CN114520947B (en) A microphone assembly and electronic equipment
CN105492373A (en) A silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
KR101980785B1 (en) Back Plate Structure for a MEMS Acoustic Sensor and a Method for fabricating the same
CN104891419A (en) MEMS inertia sensor and manufacturing method thereof
CN108702576A (en) Capacitive MEMS microphone and electronic device
CN104819730B (en) A kind of MEMS inertial sensor and its manufacture method
TWI747102B (en) Structure of micro-electro-mechanical-system microphone
CN115243170A (en) Micro electro mechanical system sensor and electronic equipment
CN216792269U (en) A Piezoelectric MEMS Accelerometer
CN214409044U (en) Piezoelectric type MEMS acceleration sensor
CN103974182B (en) The manufacture method of capacitance-type micro silicon microphone
CN114501266B (en) Single-fulcrum differential structure anti-vibration interference chip and microphone with same
CN115321475B (en) Fabrication method of acoustic wave sensing structure
CN115334434B (en) Microphone assembly and electronic equipment
CN115379374B (en) Bone conduction detection device, bone conduction device and manufacturing method
CN115334431B (en) Microphone component, packaging structure and electronic equipment
CN115334430B (en) Microphone component, packaging structure and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination