CN115241131A - Optimal integration method for edge stress in multi-layer gate analog CMOS process and low voltage coefficient polycrystalline capacitor - Google Patents
Optimal integration method for edge stress in multi-layer gate analog CMOS process and low voltage coefficient polycrystalline capacitor Download PDFInfo
- Publication number
- CN115241131A CN115241131A CN202210935982.8A CN202210935982A CN115241131A CN 115241131 A CN115241131 A CN 115241131A CN 202210935982 A CN202210935982 A CN 202210935982A CN 115241131 A CN115241131 A CN 115241131A
- Authority
- CN
- China
- Prior art keywords
- layer
- polycrystalline
- capacitor
- film layer
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0186—Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
- H01L23/5223—Capacitor integral with wiring layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/856—Complementary IGFETs, e.g. CMOS the complementary IGFETs having different architectures than each other, e.g. high-voltage and low-voltage CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开多层栅模拟CMOS工艺边缘应力优化集成方法和低电压系数多晶电容器,方法步骤包括:1)形成低电压系数集成双多晶电容器区的N型阱,在N型阱以外区域形成自对准P型阱;2)淀积低电压系数集成双多晶电容器下电极多晶膜层;3)淀积双多晶电容器第一层介质,并实现双多晶电容器下电极边缘保护层制作;4)淀积电容器介质层,并完成电容器介质层结构制作;低电压系数多晶电容器包括P型衬底、P型外延层、N型阱、自对准P型阱、场氧化层、牺牲氧化层、栅氧化层、多晶膜层、二氧化硅介质层、电容介质层、低介电系数填充膜层、金属互连膜层、顶层金属键合区外保护介质钝化层;本专利改善了双多晶电容器的边缘效应,降低了可集成双多晶电容器的机械应力。
The invention discloses a multi-layer gate analog CMOS process edge stress optimization integration method and a low voltage coefficient polycrystalline capacitor. The method steps include: 1) forming an N-type well in the low-voltage coefficient integrated double polycrystalline capacitor region, and forming an N-type well in the area outside the N-type well Self-aligned P-type well; 2) depositing the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor; 3) depositing the first dielectric layer of the double polycrystalline capacitor, and realizing the edge protection layer of the lower electrode of the double polycrystalline capacitor production; 4) depositing the capacitor dielectric layer, and completing the production of the capacitor dielectric layer structure; the low voltage coefficient polycrystalline capacitor includes a P-type substrate, a P-type epitaxial layer, an N-type well, a self-aligned P-type well, a field oxide layer, Sacrificial oxide layer, gate oxide layer, polycrystalline film layer, silicon dioxide dielectric layer, capacitor dielectric layer, low dielectric constant filling film layer, metal interconnection film layer, protective dielectric passivation layer outside the top metal bonding area; The patent improves the edge effect of dual poly capacitors and reduces the mechanical stress of integrated dual poly capacitors.
Description
技术领域technical field
本发明涉及半导体集成电路领域,具体是多层栅模拟CMOS工艺边缘应力优化集成方法和低电压系数多晶电容器。The invention relates to the field of semiconductor integrated circuits, in particular to a method for optimizing and integrating edge stress of a multi-layer gate analog CMOS process and a low-voltage coefficient polycrystalline capacitor.
背景技术Background technique
在半导体器件制造领域中,模拟CMOS集成电路逐步向高速高精度方向发展,将双多晶硅电容直接集成到电路内部是设备轻量化、微型化发展趋势。In the field of semiconductor device manufacturing, analog CMOS integrated circuits are gradually developing towards high-speed and high-precision. The direct integration of dual polysilicon capacitors into the circuit is the development trend of equipment lightweight and miniaturization.
尤其是用于气象预报、远洋探测、极地科考等高精密探测并且工作环境复杂的模拟CMOS集成电路,要求它向着高低压兼容电源电压、高速度,高精度,低漂移,低失调等电路性能极致方向发展。这些要求对电路设计和工艺制造艺术性和科学性的有机结合提出了更高的要求。低电压系数集成双多晶电容器以其优越的工艺兼容性,被广泛应用于对电压调制效应有着苛刻要求,工作在不同电压的电荷重分配模数转化器ADC和数模转换器DAC的精确匹配电容中。In particular, analog CMOS integrated circuits that are used for high-precision detection such as weather forecasting, ocean exploration, and polar scientific research and have complex working environments are required to be compatible with high and low voltage power supply voltage, high speed, high precision, low drift, low offset and other circuit performance. Development in the ultimate direction. These requirements put forward higher requirements for the organic combination of circuit design and process manufacturing art and science. Low voltage coefficient integrated double polycrystalline capacitors are widely used in the precise matching of charge redistribution ADCs and DACs that have strict requirements on voltage modulation effects due to their superior process compatibility. in the capacitor.
另一方面,在包含低电压系数双多晶电容器的模拟CMOS集成电路中,集成多晶电容器边缘效应导致的应力失配和电场集中显著影响着多晶薄层中晶粒再生长,晶粒中杂质再分布,晶粒耗尽以及晶界尺寸和形状,这些效应对于低电压系数集成双多晶电容器的电性能稳定性和长期可靠性产生了重要的影响。On the other hand, in analog CMOS integrated circuits containing low-voltage coefficient dual polycapacitors, the stress mismatch and electric field concentration caused by the fringing effect of the integrated polycapacitor significantly affect the grain regrowth in the polycrystalline thin layer, and the Impurity redistribution, grain depletion, and grain boundary size and shape have important effects on the electrical stability and long-term reliability of low-voltage coefficient integrated dual-poly capacitors.
因此,采用有效的工艺技术优化可集成低电压系数双多晶电容器边缘效应导致的高机械应力,局部电场集中是提高模拟集成电路高精度、高线性稳定性和长期可靠性,满足模拟集成电路逐步向高速、高精度、微型化方向发展的重要工作。Therefore, the use of effective process technology optimization can integrate the high mechanical stress caused by the edge effect of the low voltage coefficient double polycrystalline capacitor, and the local electric field concentration is to improve the high precision, high linear stability and long-term reliability of the analog integrated circuit. Important work in the direction of high speed, high precision and miniaturization.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:The object of the present invention is to provide a multi-layer gate simulation CMOS process edge stress optimization integration method, comprising the following steps:
1)在P型衬底形成低电压系数集成双多晶电容器区的N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well of the low-voltage coefficient integrated double polycrystalline capacitor region on the P-type substrate, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在可集成低电压系数双多晶电容器区N型阱上方的场氧化层之上淀积P1埃米厚的低电压系数集成双多晶电容器下电极多晶膜层,并完成N型光刻注入掺杂;其中,所述低电压系数集成双多晶电容器下电极多晶膜层作为低电压系数集成双多晶电容器的下极板;3) Deposit a P1 angstrom-thick lower electrode polycrystalline film of the low-voltage coefficient integrated double-polycrystalline capacitor on the field oxide layer above the N-type well in the integrated low-voltage-coefficient double-polycrystalline capacitor region, and complete the N-type optical film. engraving and doping; wherein, the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor is used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)淀积d1埃米厚的双多晶电容器第一层介质,并采用曝光刻蚀工艺实现双多晶电容器下电极边缘保护层制作;5) depositing the first layer of dielectric of the double polycrystalline capacitor with a thickness of d1 angstrom, and using the exposure etching process to realize the production of the edge protection layer of the lower electrode of the double polycrystalline capacitor;
6)淀积d2埃米厚的电容器介质层,并采用曝光刻蚀工艺完成电容器介质层结构制作;6) depositing a capacitor dielectric layer with a thickness of d2 angstroms, and using an exposure etching process to complete the fabrication of the capacitor dielectric layer structure;
7)完成模拟CMOS集成电路栅多晶淀积前的常规工艺;7) Complete the conventional process before simulating CMOS integrated circuit gate polycrystalline deposition;
8)淀积P2埃米厚的MOS晶体管栅多晶膜层,并完成MOS晶体管栅多晶掺杂;8) depositing a P2 angstrom-thick MOS transistor gate polycrystalline film layer, and completing the MOS transistor gate polycrystalline doping;
9)完成正常模拟CMOS集成电路后续常规工艺。9) The subsequent conventional process of the normal analog CMOS integrated circuit is completed.
进一步,淀积P1埃米多晶膜层、双多晶电容器第一层介质、MOS晶体管栅多晶膜层的方法包括低压化学汽相沉积法。Further, the method for depositing the P1 angstrom polycrystalline film layer, the first dielectric layer of the double polycrystalline capacitor, and the gate polycrystalline film layer of the MOS transistor includes a low pressure chemical vapor deposition method.
进一步,双多晶电容器第一层介质的介电系数记为ε1,电容器介质层的介电系数记为ε2。ε1、ε2为常数。Further, the dielectric coefficient of the first layer of the double polycrystalline capacitor is denoted as ε1, and the dielectric coefficient of the capacitor dielectric layer is denoted as ε2. ε1 and ε2 are constants.
进一步,步骤1)中,形成N型阱前,在P型衬底上生长一层P型外延,然后在P型外延上形成N型阱,并在N型阱以外区域形成自对准P型阱。Further, in step 1), before forming the N-type well, a layer of P-type epitaxy is grown on the P-type substrate, then the N-type well is formed on the P-type epitaxy, and the self-aligned P-type is formed in the area outside the N-type well trap.
进一步,正常模拟CMOS集成电路后续常规工艺包括源漏注入,退火激活,介质层淀积、回流填充平坦化,接触孔刻蚀,金属互连。Further, the subsequent conventional processes of the normal analog CMOS integrated circuit include source-drain implantation, annealing activation, dielectric layer deposition, reflow filling and planarization, contact hole etching, and metal interconnection.
进一步,模拟CMOS集成电路栅多晶淀积前的常规工艺包括牺牲氧化,调沟注入,曝光刻蚀,栅氧氧化。Further, conventional processes prior to gate polysilicon deposition of analog CMOS integrated circuits include sacrificial oxidation, channel implantation, exposure and etching, and gate oxide oxidation.
进一步,热氧工艺条件包括:热氧化工艺的主工艺温度≤850℃,主工艺时间≤30min。Further, the thermal oxidation process conditions include: the main process temperature of the thermal oxidation process is less than or equal to 850°C, and the main process time is less than or equal to 30 minutes.
进一步,步骤3)中,还淀积形成低电压系数集成双多晶电容器上极板多晶膜层和边缘保护膜层。Further, in step 3), a polycrystalline film layer and an edge protection film layer on the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor are also deposited.
进一步,低电压系数集成双多晶电容器上极板多晶膜层、边缘保护膜层采用与正常模拟CMOS集成电路工艺中MOS型晶体管栅多晶侧面保护结构。Further, the polycrystalline film layer and edge protection film layer on the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor adopt the same structure as the gate polycrystalline side protection structure of the MOS transistor in the normal analog CMOS integrated circuit process.
利用所述多层栅模拟CMOS工艺边缘应力优化集成方法制作的低电压系数多晶电容器,包括P型衬底或P型外延层,以及N型阱、自对准P型阱、场氧化层、牺牲氧化层、栅氧化层、多晶膜层、二氧化硅介质层、电容介质层、低介电系数填充膜层、金属互连膜层、顶层金属键合区外保护介质钝化层;A low-voltage coefficient polycrystalline capacitor fabricated by using the multi-layer gate analog CMOS process edge stress optimization integration method includes a P-type substrate or a P-type epitaxial layer, and an N-type well, a self-aligned P-type well, a field oxide layer, Sacrificial oxide layer, gate oxide layer, polycrystalline film layer, silicon dioxide dielectric layer, capacitor dielectric layer, low dielectric constant filling film layer, metal interconnection film layer, protective dielectric passivation layer outside the top metal bonding area;
所述P型衬底或P型外延层位于底部;the P-type substrate or the P-type epitaxial layer is located at the bottom;
阱区位于P型衬底或P型外延层表面;所述阱区包括N型阱、自对准P型阱;The well region is located on the surface of the P-type substrate or the P-type epitaxial layer; the well region includes an N-type well and a self-aligned P-type well;
所述场氧化层、牺牲氧化层、栅氧化层分别覆盖在阱的不同区域;The field oxide layer, the sacrificial oxide layer and the gate oxide layer cover different regions of the well respectively;
所述低电压系数多晶电容器多晶膜层位于N型阱之上的场氧化层上表面;The polycrystalline film layer of the low voltage coefficient polycrystalline capacitor is located on the upper surface of the field oxide layer above the N-type well;
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers and capacitor dielectric layers.
所述低介电系数填充膜层填充在金属互连膜层之间的区域;the low-k filling film layer fills the region between the metal interconnect film layers;
所述金属互连膜层包括硅-金属互连膜层、多晶硅-金属互连膜层、场氧-金属互连膜层、多层金属互连区域;The metal interconnection film layer includes a silicon-metal interconnection film layer, a polysilicon-metal interconnection film layer, a field oxygen-metal interconnection film layer, and a multi-layer metal interconnection region;
所述顶层金属键合区外保护介质钝化层覆盖多层金属互连区域中的顶层金属层区。The outer protective dielectric passivation layer in the top metal bonding region covers the top metal layer region in the multi-layer metal interconnection region.
进一步,还包括氮氧化硅介质层;Further, it also includes a silicon oxynitride dielectric layer;
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层和氮氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers, silicon oxynitride dielectric layers, and capacitor dielectric layers.
本发明的技术效果是毋庸置疑的,本发明通过与多层栅高低压兼容模拟CMOS工艺集成的模块化精确匹配低电压系数多晶电容器边缘效应高应力优化制造方法,显著改善了双多晶电容器的边缘效应,降低了可集成双多晶电容器的机械应力,缓解了双多晶电容器的边缘区域的电场集中,提高了高低压兼容模拟CMOS集成电路中双多晶电容器的电压调制的电性能稳定性和工艺一致性。The technical effect of the present invention is unquestionable. The present invention significantly improves the dual polycrystalline capacitors through a modular and precise matching low voltage coefficient polycrystalline capacitor edge effect and high stress optimized manufacturing method integrated with the multi-layer gate high and low voltage compatible analog CMOS process. The edge effect reduces the mechanical stress of the integrated dual polycrystalline capacitors, eases the electric field concentration in the edge region of the dual polycrystalline capacitors, and improves the high and low voltage compatible analog CMOS integrated circuits. The electrical performance of the voltage modulation of the dual polycrystalline capacitors is stable. performance and process consistency.
本发明采用与多层栅高低压兼容模拟CMOS工艺集成的模块化精确匹配低电压系数多晶电容器边缘效应高应力优化制造方法,改善了多晶薄层中晶粒再生长和晶粒中杂质再分布均匀性,有效提高了高低压兼容模拟CMOS集成电路中低电压系数集成双多晶电容器对于气象预报、远洋探测、极地科考等工作环境复杂、高精密探测工作能力。The invention adopts a modular and precise matching low-voltage coefficient polycrystalline capacitor edge effect and high stress optimized manufacturing method integrated with a multi-layer gate high and low voltage compatible analog CMOS process, and improves the regrowth of crystal grains in the polycrystalline thin layer and the regrowth of impurities in the crystal grains. The uniformity of distribution effectively improves the low-voltage coefficient integrated double polycrystalline capacitors in the high and low voltage compatible analog CMOS integrated circuits for complex and high-precision detection of weather forecasting, ocean exploration, polar scientific research and other working environments.
本发明采用与多层栅高低压兼容模拟CMOS工艺集成的模块化精确匹配低电压系数多晶电容器边缘效应高应力优化制造方法,改善了电应力作用下多晶电容器极板多晶薄层中晶粒耗尽以及晶界尺寸和形状,有效提高了模拟集成电路中低电压系数集成双多晶电容器产品长期可靠性。The invention adopts a modularized and precise matching low-voltage coefficient polycrystalline capacitor edge effect and high stress optimized manufacturing method integrated with a multi-layer gate high and low voltage compatible analog CMOS process, which improves the polycrystalline capacitor plate polycrystalline thin layer under the action of electrical stress. Grain depletion and grain boundary size and shape effectively improve the long-term reliability of low-voltage coefficient integrated dual polycrystalline capacitor products in analog integrated circuits.
通过本发明与多层栅高低压兼容模拟CMOS工艺集成的模块化精确匹配低电压系数多晶电容器边缘效应高应力优化制造方法,可将集成双多晶电容器的失配度从±0.1%的降低到精确匹配的±0.01%失配水平,可适用于14位分辨率以上高精度A/D和D/A转换器,提高了工艺兼容性和器件集成密度,增强了产品市场竞争力。Through the optimized manufacturing method of the invention and the multi-layer gate high and low voltage compatible analog CMOS process, the edge effect and high stress of the low-voltage coefficient polycrystalline capacitor are precisely matched, and the mismatch degree of the integrated double polycrystalline capacitor can be reduced from ±0.1% It can be applied to high-precision A/D and D/A converters with a resolution of more than 14 bits, improving process compatibility and device integration density, and enhancing product market competitiveness.
附图说明Description of drawings
图1是完成外延生长,阱注入,退火,场氧化等常规模拟CMOS集成电路工艺后生长屏蔽氧化层的剖面图;Figure 1 is a cross-sectional view of the growth shielding oxide layer after the completion of epitaxial growth, well implantation, annealing, field oxidation and other conventional analog CMOS integrated circuit processes;
图2是双多晶电容器下极板多晶膜层淀积和掺杂后的剖面图;2 is a cross-sectional view of the polycrystalline film layer of the lower plate of the double polycrystalline capacitor after deposition and doping;
图3是完成厚、薄双栅氧氧化工艺后多晶电容器下极板多晶膜层边缘保护膜层的剖面图;3 is a cross-sectional view of the edge protection film layer of the polycrystalline film layer of the lower electrode plate of the polycrystalline capacitor after the thick and thin double gate oxide oxidation process is completed;
图4是完成多晶电容器电容介质层淀积和曝光刻蚀结构剖面图;4 is a sectional view of the structure of the polycrystalline capacitor capacitor dielectric layer deposition and exposure etching structure completed;
图5是不采用边缘优化技术方案完成后续湿法刻蚀和氧化工艺后结构局部放大剖面图和SEM分析图;Fig. 5 is a partial enlarged cross-sectional view and SEM analysis diagram of the structure after the subsequent wet etching and oxidation processes are completed without using the edge optimization technical solution;
图6是采用边缘优化技术方案完成后续湿法刻蚀和氧化工艺后结构局部放大剖面图和SEM分析图;FIG. 6 is an enlarged cross-sectional view and a SEM analysis diagram of the structure after the subsequent wet etching and oxidation processes are completed by using the edge optimization technical solution;
图7是完成多晶电容器上极板多晶膜层淀积掺杂,曝光刻蚀后3D结构示意图;7 is a schematic diagram of the 3D structure after the polycrystalline film layer deposition and doping on the upper plate of the polycrystalline capacitor is completed, and after exposure and etching;
图8是完成两层金属互连工艺后低电压系数双多晶电容器结构示意图;FIG. 8 is a schematic structural diagram of a low voltage coefficient double polycrystalline capacitor after completing the two-layer metal interconnection process;
图9是实施例1的高低压兼容模拟CMOS集成电路工艺中低电压系数集成双多晶电容结构示意图;9 is a schematic structural diagram of a low-voltage coefficient integrated dual polycrystalline capacitor in the high-low-voltage compatible analog CMOS integrated circuit process of Embodiment 1;
图中:LOCOS场氧化层区11、P型MOS轻掺杂源漏注入区12、N型阱注入区13、低压MOS薄栅氧化层区14、栅多晶层区15、侧壁墙保护区16、P型MOS源漏注入区17、多晶层I18、氧氮介质层19、自对准P型阱区20、N型MOS源漏注入区21、高压MOS厚栅氧化层区22、栅多晶顶层氮氧介质保护层区23、100晶向P型衬底/外延层24、硅/多晶硅-金属1层间接触孔钨塞结构区101、硅/多晶硅/场氧-金属1层间ILD介质平坦化层102、多层金属层间IMD介质平坦化层103、第一层金属膜层区104、多层金属层间通孔钨塞结构区105、顶层金属层区106。In the figure: LOCOS field
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the above-mentioned subject matter of the present invention is limited to the following examples. Without departing from the above-mentioned technical idea of the present invention, various substitutions and changes can be made according to common technical knowledge and conventional means in the field, which shall be included in the protection scope of the present invention.
实施例1:Example 1:
参见图1至图9,多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:Referring to FIG. 1 to FIG. 9 , the integrated method for optimizing the edge stress of a multi-layer gate analog CMOS process includes the following steps:
1)在P型衬底或P型外延层形成低电压系数集成双多晶电容器区的N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well in the P-type substrate or P-type epitaxial layer with a low voltage coefficient integrated double polycrystalline capacitor region, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在低电压系数集成双多晶电容器区N型阱上方的场氧化层之上淀积P1埃米厚的低电压系数集成双多晶电容器下电极多晶膜层,并完成N型光刻注入掺杂;其中,所述低电压系数集成双多晶电容器下电极多晶膜层作为低电压系数集成双多晶电容器的下极板;3) Deposit a P1 angstrom-thick lower electrode polycrystalline film of the low-voltage coefficient integrated double-polysilicon capacitor on the field oxide layer above the N-type well in the low-voltage coefficient integrated double-polysilicon capacitor region, and complete the N-type lithography Injecting doping; wherein, the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor is used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)淀积d1埃米厚的双多晶电容器第一层介质,并采用曝光刻蚀工艺实现双多晶电容器下电极边缘保护层制作;5) depositing the first layer of dielectric of the double polycrystalline capacitor with a thickness of d1 angstrom, and using the exposure etching process to realize the production of the edge protection layer of the lower electrode of the double polycrystalline capacitor;
6)淀积d2埃米厚的电容器介质层,并采用曝光刻蚀工艺完成电容器介质层结构制作;6) depositing a capacitor dielectric layer with a thickness of d2 angstroms, and using an exposure etching process to complete the fabrication of the capacitor dielectric layer structure;
7)完成模拟CMOS集成电路栅多晶淀积前的常规工艺;7) Complete the conventional process before simulating CMOS integrated circuit gate polycrystalline deposition;
8)淀积P2埃米厚的MOS晶体管栅多晶膜层,并完成MOS晶体管栅多晶掺杂;8) depositing a P2 angstrom-thick MOS transistor gate polycrystalline film layer, and completing the MOS transistor gate polycrystalline doping;
9)完成正常模拟CMOS集成电路后续常规工艺。9) The subsequent conventional process of the normal analog CMOS integrated circuit is completed.
淀积P1埃米多晶膜层、双多晶电容器第一层介质、MOS晶体管栅多晶膜层的方法包括低压化学汽相沉积法。The method for depositing the P1 angstrom polycrystalline film layer, the first dielectric layer of the double polycrystalline capacitor, and the gate polycrystalline film layer of the MOS transistor includes a low pressure chemical vapor deposition method.
双多晶电容器第一层介质的介电系数记为ε1,电容器介质层的介电系数记为ε2。The dielectric constant of the first layer of the double polycrystalline capacitor is denoted as ε1, and the dielectric coefficient of the capacitor dielectric layer is denoted as ε2.
ε1、ε2为常数。ε1 and ε2 are constants.
正常模拟CMOS集成电路后续常规工艺包括源漏注入,退火激活,介质层淀积、回流填充平坦化,接触孔刻蚀,金属互连。The subsequent conventional processes of a normal analog CMOS integrated circuit include source-drain implantation, annealing activation, dielectric layer deposition, reflow filling and planarization, contact hole etching, and metal interconnection.
模拟CMOS集成电路栅多晶淀积前的常规工艺包括牺牲氧化,调沟注入,曝光刻蚀,栅氧氧化。Conventional processes prior to gate polysilicon deposition in analog CMOS integrated circuits include sacrificial oxidation, channel implantation, exposure and etching, and gate oxide oxidation.
热氧工艺条件包括:热氧化工艺的主工艺温度≤850℃,主工艺时间≤30min。The thermal oxidation process conditions include: the main process temperature of the thermal oxidation process is less than or equal to 850°C, and the main process time is less than or equal to 30min.
步骤3)中,还淀积形成低电压系数集成双多晶电容器上极板多晶膜层和边缘保护膜层。In step 3), a polycrystalline film layer and an edge protection film layer on the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor are also deposited.
低电压系数集成双多晶电容器上极板多晶膜层、边缘保护膜层采用与正常模拟CMOS集成电路工艺中MOS型晶体管栅多晶侧面保护结构。The polycrystalline film layer and edge protection film layer on the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor adopt the same structure as the gate polycrystalline side protection structure of the MOS transistor in the normal analog CMOS integrated circuit process.
利用所述多层栅模拟CMOS工艺边缘应力优化集成方法制作的低电压系数多晶电容器,包括P型衬底或P型外延层,以及N型阱13、自对准P型阱20、场氧化层11、牺牲氧化层、栅氧化层14、多晶膜层15、二氧化硅介质层、电容介质层、低介电系数填充膜层、金属互连膜层、顶层金属键合区外保护介质钝化层、氮氧化硅介质层19;The low-voltage coefficient polycrystalline capacitor fabricated by using the multi-layer gate simulation CMOS process edge stress optimization integration method includes a P-type substrate or a P-type epitaxial layer, as well as an N-
所述P型衬底或P型外延层位于底部;the P-type substrate or the P-type epitaxial layer is located at the bottom;
阱区位于P型衬底或P型外延层表面;所述阱区包括N型阱、自对准P型阱;The well region is located on the surface of the P-type substrate or the P-type epitaxial layer; the well region includes an N-type well and a self-aligned P-type well;
所述场氧化层、牺牲氧化层、栅氧化层分别覆盖在阱的不同区域;The field oxide layer, the sacrificial oxide layer and the gate oxide layer cover different regions of the well respectively;
所述低电压系数多晶电容器多晶膜层位于N型阱之上的场氧化层上表面;The polycrystalline film layer of the low voltage coefficient polycrystalline capacitor is located on the upper surface of the field oxide layer above the N-type well;
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers and capacitor dielectric layers.
所述低介电系数填充膜层填充在金属互连膜层之间的区域;the low-k filling film layer fills the region between the metal interconnect film layers;
所述金属互连膜层包括硅-金属互连膜层、多晶硅-金属互连膜层、场氧-金属互连膜层、多层金属互连区域;The metal interconnection film layer includes a silicon-metal interconnection film layer, a polysilicon-metal interconnection film layer, a field oxygen-metal interconnection film layer, and a multi-layer metal interconnection region;
所述顶层金属键合区外保护介质钝化层覆盖多层金属互连区域中的顶层金属层区。The outer protective dielectric passivation layer in the top metal bonding region covers the top metal layer region in the multi-layer metal interconnection region.
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层和氮氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers, silicon oxynitride dielectric layers, and capacitor dielectric layers.
实施例2:Example 2:
多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:An integrated method for optimizing the edge stress of a multi-layer gate analog CMOS process, including the following steps:
1)在P型衬底形成低电压系数集成双多晶电容器区的N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well of the low-voltage coefficient integrated double polycrystalline capacitor region on the P-type substrate, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在低电压系数集成双多晶电容器区N型阱上方的场氧化层之上淀积P1埃米厚的低电压系数集成双多晶电容器下电极多晶膜层,并完成N型光刻注入掺杂;其中,所述低电压系数集成双多晶电容器下电极多晶膜层作为低电压系数集成双多晶电容器的下极板;3) Deposit a P1 angstrom-thick lower electrode polycrystalline film of the low-voltage coefficient integrated double-polysilicon capacitor on the field oxide layer above the N-type well in the low-voltage coefficient integrated double-polysilicon capacitor region, and complete the N-type lithography Injecting doping; wherein, the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor is used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)淀积d1埃米厚的双多晶电容器第一层介质,并采用曝光刻蚀工艺实现双多晶电容器下电极边缘保护层制作;5) depositing the first layer of dielectric of the double polycrystalline capacitor with a thickness of d1 angstrom, and using the exposure etching process to realize the production of the edge protection layer of the lower electrode of the double polycrystalline capacitor;
6)淀积d2埃米厚的电容器介质层,并采用曝光刻蚀工艺完成电容器介质层结构制作;6) depositing a capacitor dielectric layer with a thickness of d2 angstroms, and using an exposure etching process to complete the fabrication of the capacitor dielectric layer structure;
7)完成模拟CMOS集成电路栅多晶淀积前的常规工艺;7) Complete the conventional process before simulating CMOS integrated circuit gate polycrystalline deposition;
8)淀积P2埃米厚的MOS晶体管栅多晶膜层,并完成MOS晶体管栅多晶掺杂;8) depositing a P2 angstrom-thick MOS transistor gate polycrystalline film layer, and completing the MOS transistor gate polycrystalline doping;
9)完成正常模拟CMOS集成电路后续常规工艺。9) The subsequent conventional process of the normal analog CMOS integrated circuit is completed.
实施例3:Example 3:
多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:An integrated method for optimizing the edge stress of a multi-layer gate analog CMOS process, including the following steps:
1)在P型外延层形成低电压系数集成双多晶电容器区的N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well in the P-type epitaxial layer with a low voltage coefficient integrated double polycrystalline capacitor region, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在低电压系数集成双多晶电容器区N型阱上方的场氧化层之上淀积P1埃米厚的低电压系数集成双多晶电容器下电极多晶膜层,并完成N型光刻注入掺杂;其中,所述低电压系数集成双多晶电容器下电极多晶膜层作为低电压系数集成双多晶电容器的下极板;3) Deposit a P1 angstrom-thick lower electrode polycrystalline film of the low-voltage coefficient integrated double-polysilicon capacitor on the field oxide layer above the N-type well in the low-voltage coefficient integrated double-polysilicon capacitor region, and complete the N-type lithography Injecting doping; wherein, the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor is used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)淀积d1埃米厚的双多晶电容器第一层介质,并采用曝光刻蚀工艺实现双多晶电容器下电极边缘保护层制作;5) depositing the first layer of dielectric of the double polycrystalline capacitor with a thickness of d1 angstrom, and using the exposure etching process to realize the production of the edge protection layer of the lower electrode of the double polycrystalline capacitor;
6)淀积d2埃米厚的电容器介质层,并采用曝光刻蚀工艺完成电容器介质层结构制作;6) depositing a capacitor dielectric layer with a thickness of d2 angstroms, and using an exposure etching process to complete the fabrication of the capacitor dielectric layer structure;
7)完成模拟CMOS集成电路栅多晶淀积前的常规工艺;7) Complete the conventional process before simulating CMOS integrated circuit gate polycrystalline deposition;
8)淀积P2埃米厚的MOS晶体管栅多晶膜层,并完成MOS晶体管栅多晶掺杂;8) depositing a P2 angstrom-thick MOS transistor gate polycrystalline film layer, and completing the MOS transistor gate polycrystalline doping;
9)完成正常模拟CMOS集成电路后续常规工艺。9) The subsequent conventional process of the normal analog CMOS integrated circuit is completed.
实施例4:Example 4:
多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:An integrated method for optimizing the edge stress of a multi-layer gate analog CMOS process, including the following steps:
1)在P型衬底或P型外延层形成低电压系数集成双多晶电容器区的N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well in the P-type substrate or P-type epitaxial layer with a low voltage coefficient integrated double polycrystalline capacitor region, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在低电压系数集成双多晶电容器区N型阱上方的场氧化层之上淀积P1埃米厚的低电压系数集成双多晶电容器下电极多晶膜层,并完成N型光刻注入掺杂;其中,所述低电压系数集成双多晶电容器下电极多晶膜层作为低电压系数集成双多晶电容器的下极板;3) Deposit a P1 angstrom-thick lower electrode polycrystalline film of the low-voltage coefficient integrated double-polysilicon capacitor on the field oxide layer above the N-type well in the low-voltage coefficient integrated double-polysilicon capacitor region, and complete the N-type lithography Injecting doping; wherein, the polycrystalline film layer of the lower electrode of the low voltage coefficient integrated double polycrystalline capacitor is used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)淀积d1埃米厚的双多晶电容器第一层介质,并采用曝光刻蚀工艺实现双多晶电容器下电极边缘保护层制作;5) depositing the first layer of dielectric of the double polycrystalline capacitor with a thickness of d1 angstrom, and using the exposure etching process to realize the production of the edge protection layer of the lower electrode of the double polycrystalline capacitor;
6)淀积d2埃米厚的电容器介质层,并采用曝光刻蚀工艺完成电容器介质层结构制作;6) depositing a capacitor dielectric layer with a thickness of d2 angstroms, and using an exposure etching process to complete the fabrication of the capacitor dielectric layer structure;
7)完成模拟CMOS集成电路栅多晶淀积前的常规工艺;7) Complete the conventional process before simulating CMOS integrated circuit gate polycrystalline deposition;
8)淀积P2埃米厚的MOS晶体管栅多晶膜层,并完成MOS晶体管栅多晶掺杂;8) depositing a P2 angstrom-thick MOS transistor gate polycrystalline film layer, and completing the MOS transistor gate polycrystalline doping;
9)完成正常模拟CMOS集成电路后续常规工艺。9) The subsequent conventional process of the normal analog CMOS integrated circuit is completed.
实施例5:Example 5:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,淀积P1埃米多晶膜层、双多晶电容器第一层介质、MOS晶体管栅多晶膜层的方法包括低压化学汽相沉积法。A method for optimizing and integrating edge stress in a multi-layer gate simulating CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein, a P1 angstrom polycrystalline film layer, a first dielectric layer of a double polycrystalline capacitor, and a MOS transistor gate polycrystalline film are deposited. The method of layering includes low pressure chemical vapor deposition.
实施例6:Example 6:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,双多晶电容器第一层介质的介电系数记为ε1,电容器介质层的介电系数记为ε2。The method for optimizing the integration of edge stress in a multi-layer gate analog CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein the dielectric coefficient of the first layer of the dual polycrystalline capacitor is recorded as ε1, and the dielectric coefficient of the capacitor dielectric layer is recorded as ε2.
实施例7:Example 7:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,正常模拟CMOS集成电路后续常规工艺包括源漏注入,退火激活,介质层淀积、回流填充平坦化,接触孔刻蚀,金属互连。A method for optimizing and integrating edge stress in a multi-layer gate analog CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein the subsequent conventional processes of a normal analog CMOS integrated circuit include source-drain implantation, annealing activation, dielectric layer deposition, reflow filling and planarization , contact hole etching, metal interconnection.
实施例8:Example 8:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,模拟CMOS集成电路栅多晶淀积前的常规工艺包括牺牲氧化,调沟注入,曝光刻蚀,栅氧氧化。A method for optimizing and integrating edge stress in a multi-layer gate analog CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein, the conventional process before the polycrystalline deposition of the analog CMOS integrated circuit gate includes sacrificial oxidation, channel adjustment implantation, exposure and etching, gate oxide oxidation.
实施例9:Example 9:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,热氧工艺条件包括:热氧化工艺的主工艺温度≤850℃,主工艺时间≤30min。A method for optimizing and integrating edge stress in a multi-layer gate analog CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein the thermal oxygen process conditions include: the main process temperature of the thermal oxidation process is ≤ 850°C, and the main process time is ≤ 30min.
实施例10:Example 10:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,步骤3中,还淀积形成低电压系数集成双多晶电容器上极板多晶膜层和边缘保护膜层。A method for optimizing and integrating edge stress in a multi-layer gate analog CMOS process, the main content is shown in Embodiment 2, 3 or 4, wherein, in step 3, the polycrystalline film layer and the edge of the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor are also deposited. protective film layer.
实施例11:Example 11:
多层栅模拟CMOS工艺边缘应力优化集成方法,主要内容见实施例2、3或4,其中,低电压系数集成双多晶电容器上极板多晶膜层、边缘保护膜层采用与正常模拟CMOS集成电路工艺中MOS型晶体管栅多晶侧面保护结构。A method for optimizing and integrating edge stress in a multi-layer gate analog CMOS process, see Embodiment 2, 3 or 4 for the main content. In the integrated circuit process, the gate polycrystalline side protection structure of the MOS type transistor is provided.
实施例12:Example 12:
利用实施例1-11所述多层栅模拟CMOS工艺边缘应力优化集成方法制作的低电压系数多晶电容器,包括P型衬底、N型阱13、自对准P型阱20、场氧化层11、牺牲氧化层、栅氧化层14、多晶膜层15、二氧化硅介质层、电容介质层、低介电系数填充膜层、金属互连膜层、顶层金属键合区外保护介质钝化层;A low-voltage coefficient polycrystalline capacitor fabricated by using the edge stress-optimized integration method of the multilayer gate analog CMOS process described in Embodiments 1-11, including a P-type substrate, an N-
所述P型衬底位于底部;the P-type substrate is located at the bottom;
阱区位于P型衬底表面;所述阱区包括N型阱、自对准P型阱;The well region is located on the surface of the P-type substrate; the well region includes an N-type well and a self-aligned P-type well;
所述场氧化层、牺牲氧化层、栅氧化层分别覆盖在阱的不同区域;The field oxide layer, the sacrificial oxide layer and the gate oxide layer cover different regions of the well respectively;
所述低电压系数多晶电容器多晶膜层位于N型阱之上的场氧化层上表面;The polycrystalline film layer of the low voltage coefficient polycrystalline capacitor is located on the upper surface of the field oxide layer above the N-type well;
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers and capacitor dielectric layers.
所述低介电系数填充膜层填充在金属互连膜层之间的区域;the low-k filling film layer fills the region between the metal interconnect film layers;
所述金属互连膜层包括硅-金属互连膜层、多晶硅-金属互连膜层、场氧-金属互连膜层、多层金属互连区域;The metal interconnection film layer includes a silicon-metal interconnection film layer, a polysilicon-metal interconnection film layer, a field oxygen-metal interconnection film layer, and a multi-layer metal interconnection region;
所述顶层金属键合区外保护介质钝化层覆盖多层金属互连区域中的顶层金属层区。The outer protective dielectric passivation layer in the top metal bonding region covers the top metal layer region in the multi-layer metal interconnection region.
实施例13:Example 13:
利用实施例1-11所述多层栅模拟CMOS工艺边缘应力优化集成方法制作的低电压系数多晶电容器,包括P型外延层、N型阱13、自对准P型阱20、场氧化层11、牺牲氧化层、栅氧化层14、多晶膜层15、二氧化硅介质层、电容介质层、低介电系数填充膜层、金属互连膜层、顶层金属键合区外保护介质钝化层;A low voltage coefficient polycrystalline capacitor fabricated by using the edge stress optimization integration method of the multi-layer gate analog CMOS process described in Embodiments 1-11, including a P-type epitaxial layer, an N-
所述P型外延层位于底部;the P-type epitaxial layer is located at the bottom;
阱区位于P型外延层表面;所述阱区包括N型阱、自对准P型阱;The well region is located on the surface of the P-type epitaxial layer; the well region includes an N-type well and a self-aligned P-type well;
所述场氧化层、牺牲氧化层、栅氧化层分别覆盖在阱的不同区域;The field oxide layer, the sacrificial oxide layer and the gate oxide layer cover different regions of the well respectively;
所述低电压系数多晶电容器多晶膜层位于N型阱之上的场氧化层上表面;The polycrystalline film layer of the low voltage coefficient polycrystalline capacitor is located on the upper surface of the field oxide layer above the N-type well;
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers and capacitor dielectric layers.
所述低介电系数填充膜层填充在金属互连膜层之间的区域;the low-k filling film layer fills the region between the metal interconnect film layers;
所述金属互连膜层包括硅-金属互连膜层、多晶硅-金属互连膜层、场氧-金属互连膜层、多层金属互连区域;The metal interconnection film layer includes a silicon-metal interconnection film layer, a polysilicon-metal interconnection film layer, a field oxygen-metal interconnection film layer, and a multi-layer metal interconnection region;
所述顶层金属键合区外保护介质钝化层覆盖多层金属互连区域中的顶层金属层区。The outer protective dielectric passivation layer in the top metal bonding region covers the top metal layer region in the multi-layer metal interconnection region.
实施例14:Example 14:
利用所述多层栅模拟CMOS工艺边缘应力优化集成方法制作的低电压系数多晶电容器,主要内容见实施例12或13,其中,该电容器还包括氮氧化硅介质层19;A low-voltage coefficient polycrystalline capacitor fabricated by using the multi-layer gate simulation CMOS process edge stress optimization integration method, the main content is shown in
所述多晶膜层顶面和侧壁覆盖有不同的二氧化硅介质层和氮氧化硅介质层、电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide dielectric layers, silicon oxynitride dielectric layers, and capacitor dielectric layers.
实施例15:Example 15:
与多层栅高低压兼容模拟CMOS工艺集成的精确匹配低电压系数双多晶电容器边缘效应高应力优化制造方法,主要包括以下步骤:An optimized manufacturing method for edge effect and high stress of a precisely matched low voltage coefficient dual polycrystalline capacitor integrated with a multi-layer gate high and low voltage compatible analog CMOS process, which mainly includes the following steps:
1)在衬底形成N型阱,并在N型阱以外区域形成自对准P型阱;1) An N-type well is formed on the substrate, and a self-aligned P-type well is formed outside the N-type well;
对于高性能高精度模拟CMOS工艺,依据电路性能要求在P型衬底上生长一层P型外延。在P型外延上形成N型阱,并在N型阱以外区域形成自对准P型阱。For the high-performance high-precision analog CMOS process, a layer of P-type epitaxy is grown on the P-type substrate according to the circuit performance requirements. An N-type well is formed on the P-type epitaxy, and a self-aligned P-type well is formed outside the N-type well.
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在场氧化层上方采用低压化学汽相沉积法淀积P1埃米多晶膜层,并根据电容器性能需要完成N型光刻注入掺杂。该多晶膜层可作为低电压系数集成双多晶电容器的下极板;3) A low-pressure chemical vapor deposition method is used to deposit a P1 angstrom polycrystalline film layer on the top of the field oxide layer, and N-type lithography implantation and doping are completed according to the performance of the capacitor. The polycrystalline film layer can be used as the lower plate of the low voltage coefficient integrated double polycrystalline capacitor;
在N型阱上方场氧化层上淀积双多晶电容下极板多晶膜层,利用掺杂氧化增强效应,可以降低寄生电容和衬底噪声的影响,提高多晶电容器器件性能。The polycrystalline film layer of the lower plate of the double polycrystalline capacitor is deposited on the field oxide layer above the N-type well, and the effect of doping oxidation enhancement can be used to reduce the influence of parasitic capacitance and substrate noise, and improve the performance of the polycrystalline capacitor device.
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
热氧主工艺温度≤850℃,主工艺时间≤30min,有利于工艺兼容,降低对于模拟CMOS集成电路主工艺器件的影响。The main process temperature of thermal oxygen is ≤850℃, and the main process time is ≤30min, which is conducive to process compatibility and reduces the impact on the main process devices of analog CMOS integrated circuits.
热氧氧化工艺时采用含氯氧化气氛,提高氧化层质量,降低界面缺陷和界面态陷阱。The chlorine-containing oxidizing atmosphere is used in the thermal oxygen oxidation process to improve the quality of the oxide layer and reduce the interface defects and interface state traps.
5)采用低压化学汽相沉积法淀积d1埃米双多晶电容器第一层介质(介电系数为ε1)和曝光刻蚀工艺,实现双多晶电容器下电极边缘保护结构制作。5) The first layer of dielectric (dielectric coefficient is ε1) of d1 angstrom double polycrystalline capacitor is deposited by low pressure chemical vapor deposition method, and the exposure and etching process is used to realize the fabrication of the lower electrode edge protection structure of the double polycrystalline capacitor.
6)依据低电压系数集成双多晶电容器参数性能淀积需要电容器介质层,介电系数为ε2,膜层厚度为d2埃米。并采用曝光刻蚀工艺完成电容介质层结构制作;6) According to the parameter performance of the low voltage coefficient integrated dual polycrystalline capacitor, the capacitor dielectric layer is required for deposition, the dielectric coefficient is ε2, and the film thickness is d2 angstroms. And use the exposure and etching process to complete the structure of the capacitor dielectric layer;
电容器介质层可以选择高介电系数膜层,提高双多晶电容器单位容值。The capacitor dielectric layer can choose a high dielectric constant film layer to improve the unit capacitance of the double polycrystalline capacitor.
在保证多晶电容器性能要求的前提下,所述电容器介质膜层可以与5)所述多晶电容器边缘保护结构介质膜层采用同一膜层,以精简工艺步骤。On the premise of ensuring the performance requirements of the polycrystalline capacitor, the capacitor dielectric film layer can be the same film layer as the dielectric film layer of the edge protection structure of the polycrystalline capacitor in 5), so as to simplify the process steps.
7)在所述阱表面未被场氧化层覆盖的区域形成m1埃米厚栅氧化层;在低压器件有源区域去除m1埃米厚栅氧化层,完成清洗后形成m2埃米薄栅氧化层;7) An m1 angstrom thick gate oxide layer is formed on the area of the well surface not covered by the field oxide layer; the m1 angstrom thick gate oxide layer is removed in the active region of the low-voltage device, and an m2 angstrom thin gate oxide layer is formed after cleaning is completed ;
在所述厚栅氧化层生成后,根据需要完成CMOS器件的阈值调整注入等工艺。然后在低压器件有源区域去除厚栅氧化层,完成清洗后生成需要的薄栅氧化层,有利于改善栅氧化层完整性。After the thick gate oxide layer is formed, processes such as threshold adjustment and implantation of the CMOS device are completed as required. Then, the thick gate oxide layer is removed in the active region of the low-voltage device, and the required thin gate oxide layer is generated after cleaning, which is beneficial to improve the integrity of the gate oxide layer.
尤其是对于集成双多晶电容器阵列电路布局,采用了边缘保护结构的多晶电容器下电极多晶膜层显著改善了图5所示的多晶膜层应力失配翘曲现象,提高了集成双多晶电容器匹配度和集成密度,优化后的结构如图6所示。Especially for the circuit layout of the integrated dual polycrystalline capacitor array, the polycrystalline film layer of the lower electrode of the polycrystalline capacitor with the edge protection structure significantly improves the stress mismatch and warpage of the polycrystalline film layer shown in Figure 5, and improves the integrated dual polycrystalline film. The matching degree and integration density of polycrystalline capacitors, and the optimized structure are shown in Figure 6.
8)采用低压化学汽相沉积法淀积P2埃米MOS晶体管栅多晶膜层,并根据MOS器件性能需要完成MOS晶体管栅多晶掺杂;8) Using low pressure chemical vapor deposition method to deposit P2 Angstrom MOS transistor gate polycrystalline film layer, and complete the MOS transistor gate polycrystalline doping according to the performance requirements of MOS devices;
9)接下来,完成正常模拟CMOS集成电路源漏注入,退火激活,介质层淀积、回流填充平坦化,接触孔刻蚀,金属互连等工艺;实施例16:9) Next, complete the normal simulation CMOS integrated circuit source and drain implantation, annealing activation, dielectric layer deposition, reflow filling and planarization, contact hole etching, metal interconnection and other processes; Embodiment 16:
与多层栅高低压兼容模拟CMOS工艺集成的精确匹配低电压系数双多晶电容器边缘效应高应力优化制造方法,主要内容见实施例13,其中,对于在完成了外延生长,N阱注入推结,P阱注入推结,场氧化层生长等工艺的基础上开展低电压系数集成双多晶电容器高应力边缘效应优化的集成制作,步骤包括:An optimized manufacturing method for edge effect and high stress of a precisely matched low voltage coefficient dual polycrystalline capacitor integrated with a multi-layer gate high and low voltage compatible analog CMOS process, the main content is shown in Example 13. , P-well injection push junction, field oxide layer growth and other processes to carry out low-voltage coefficient integrated dual polycrystalline capacitors high-stress edge effect optimization of integrated fabrication, the steps include:
1)采用MOS晶体管栅多晶膜层作为多晶电容器的下极板多晶膜层,并采用实施1所述的多晶极板边缘优化技术方案。1) The gate polycrystalline film layer of the MOS transistor is used as the polycrystalline film layer of the lower electrode plate of the polycrystalline capacitor, and the edge optimization technical scheme of the polycrystalline electrode plate described in Embodiment 1 is adopted.
若模拟CMOS集成电路工艺采用了栅多晶侧壁结构,可以优化栅多晶侧壁结构用于多晶电容器下极板多晶膜层边缘区域保护。If the analog CMOS integrated circuit process adopts the gate polycrystalline sidewall structure, the gate polycrystalline sidewall structure can be optimized for protecting the edge region of the polycrystalline film layer of the lower plate of the polycrystalline capacitor.
2)淀积双多晶电容器上极板多晶膜层,并完成掺杂、曝光、刻蚀形成多晶电容器上极板结构。2) depositing a polycrystalline film layer on the upper plate of the double polycrystalline capacitor, and completing doping, exposure and etching to form the upper plate structure of the polycrystalline capacitor.
后续步骤采用正常模拟CMOS集成电路工艺方案:The subsequent steps use the normal analog CMOS integrated circuit process scheme:
实施例17:Example 17:
与多层栅高低压兼容模拟CMOS工艺集成的精确匹配低电压系数双多晶电容器边缘效应高应力优化制造方法,主要内容见实施例13,其中,对于高性能高精度模拟CMOS工艺,依据电路性能要求在P型衬底上生长一层P型外延。在P型外延上形成N型阱,并在N型阱以外区域形成自对准P型阱。:An optimized manufacturing method for edge effect and high stress of an accurate matching low voltage coefficient dual polycrystalline capacitor integrated with a multi-layer gate high and low voltage compatible analog CMOS process, the main content is shown in
后续步骤采用正常模拟CMOS集成电路工艺方案:The subsequent steps use the normal analog CMOS integrated circuit process scheme:
实施例18:Example 18:
与多层栅高低压兼容模拟CMOS工艺集成的精确匹配低电压系数双多晶电容器边缘效应高应力优化制造方法,主要内容见实施例13,其中,采用硅化源\漏区以及硅化栅多晶工艺,可以获得更低的接触电阻和降低栅多晶耗尽效应,工艺中广泛使用硅化物。对于在完成了外延生长,N阱注入推结,P阱注入推结,场氧化层生长等工艺的基础上开展低电压系数集成双多晶电容器高应力边缘效应优化的集成制作。An optimized manufacturing method for edge effect and high stress of an accurate matching low voltage coefficient dual polycrystalline capacitor integrated with a multi-layer gate high and low voltage compatible analog CMOS process, the main content is shown in
前面工艺步骤与实施1相同,完成了栅多晶侧墙结构回刻和源\漏注入退火后,The previous process steps are the same as in implementation 1. After the gate poly sidewall structure etchback and source/drain implantation annealing are completed,
1)采用金属溅射工艺开展Ti/TiN溅射,然后通过退火工艺完成源\漏区和多晶硅金属化处理。1) Ti/TiN sputtering is carried out by metal sputtering process, and then source/drain regions and polysilicon metallization are completed by annealing process.
溅射合适的金属薄层,不但可以实现硅化处理,也可以在工艺中集成肖特基二极管;Sputtering suitable metal thin layers can not only achieve silicidation, but also integrate Schottky diodes in the process;
采用合适的硅化阻挡掩膜可以减低多晶电容的电压调制效应获得电压系数更低的多晶电容器。Using a suitable silicide blocking mask can reduce the voltage modulation effect of polycrystalline capacitors to obtain polycrystalline capacitors with lower voltage coefficients.
2)去除干净硅化区以外的溅射金属薄层。然后采用介质层淀积和接触孔曝光刻蚀和金属溅射实现金属互连。2) Remove the sputtered metal thin layer outside the clean silicide area. Then, the metal interconnection is realized by dielectric layer deposition, contact hole exposure etching and metal sputtering.
后续步骤采用正常模拟CMOS集成电路工艺方案:The subsequent steps use the normal analog CMOS integrated circuit process scheme:
实施例19:Example 19:
多层栅模拟CMOS工艺边缘应力优化集成方法,包括以下步骤:An integrated method for optimizing the edge stress of a multi-layer gate analog CMOS process, including the following steps:
1)在P型衬底形成N型阱,并在N型阱以外区域形成自对准P型阱;1) Form an N-type well on the P-type substrate, and form a self-aligned P-type well in the area outside the N-type well;
2)在N阱和自对准P阱表面形成m埃米的场氧化层;2) A field oxide layer of m angstrom is formed on the surface of the N well and the self-aligned P well;
3)在低电压系数集成双多晶电容器区N型阱上方的场氧化层上方采用低压化学汽相沉积法淀积P1埃米多晶膜层,并根据电容器性能需要完成N型光刻注入掺杂。该多晶膜层可作为低电压系数集成双多晶电容器下极板;3) A low-voltage chemical vapor deposition method is used to deposit a P1 angstrom polycrystalline film on the field oxide layer above the N-type well in the low-voltage coefficient integrated double polycrystalline capacitor region, and N-type lithography implantation is completed according to the performance of the capacitor. miscellaneous. The polycrystalline film layer can be used as a lower plate of a low voltage coefficient integrated double polycrystalline capacitor;
4)采用热氧工艺条件生长n埃米热氧化层;4) using thermal oxygen process conditions to grow n angstrom thermal oxide layer;
5)采用低压化学汽相沉积法淀积d1埃米双多晶电容器第一层介质(介电系数为ε1)和曝光刻蚀工艺,实现双多晶电容器下电极边缘保护结构制作。5) The first layer of dielectric (dielectric coefficient is ε1) of d1 angstrom double polycrystalline capacitor is deposited by low pressure chemical vapor deposition method, and the exposure and etching process is used to realize the fabrication of the lower electrode edge protection structure of the double polycrystalline capacitor.
6)依据低电压系数集成双多晶电容器性能淀积需要电容器介质层,介电系数为ε2,膜层厚度为d2埃米。并采用曝光刻蚀工艺完成电容介质层结构制作;6) According to the performance of the low voltage coefficient integrated double polycrystalline capacitor, the capacitor dielectric layer is required for deposition, the dielectric coefficient is ε2, and the film thickness is d2 angstroms. And use the exposure and etching process to complete the structure of the capacitor dielectric layer;
7)完成模拟CMOS集成电路栅多晶淀积前的牺牲氧化,调沟注入,曝光刻蚀,栅氧氧化等正常工艺步骤;7) Complete the normal process steps such as sacrificial oxidation before the gate polycrystalline deposition of the simulated CMOS integrated circuit, channel adjustment implantation, exposure etching, gate oxide oxidation, etc.;
8)采用低压化学汽相沉积法淀积P2埃米MOS晶体管栅多晶膜层,并根据MOS器件性能需要完成MOS晶体管栅多晶掺杂;8) Using low pressure chemical vapor deposition method to deposit P2 Angstrom MOS transistor gate polycrystalline film layer, and complete the MOS transistor gate polycrystalline doping according to the performance requirements of MOS devices;
9)接下来,完成正常模拟CMOS集成电路源漏注入,退火激活,介质层淀积、回流填充平坦化,接触孔刻蚀,金属互连等工艺;9) Next, complete the normal simulation CMOS integrated circuit source and drain implantation, annealing activation, dielectric layer deposition, reflow filling and planarization, contact hole etching, metal interconnection and other processes;
对于高性能高精度模拟CMOS工艺,在P型衬底上生长一层P型外延。然后再此P型外延上形成N型阱,并在N型阱以外区域形成自对准P型阱。For high-performance, high-precision analog CMOS processes, a layer of P-type epitaxy is grown on a P-type substrate. Then, an N-type well is formed on the P-type epitaxy, and a self-aligned P-type well is formed in the area outside the N-type well.
低电压系数集成双多晶电容器下电极多晶膜层氧化层、边缘保护层,电容器介质层上形成的方法为:The low voltage coefficient integrated double polycrystalline capacitor lower electrode polycrystalline film oxide layer, edge protection layer, and the method of forming the capacitor dielectric layer are as follows:
1)在双多晶电容器下电极多晶膜层热氧化工艺中,主工艺温度≤850℃,主工艺时间≤30min;1) In the thermal oxidation process of the polycrystalline film layer of the lower electrode of the double polycrystalline capacitor, the main process temperature is less than or equal to 850℃, and the main process time is less than or equal to 30min;
2)在双多晶电容器下电极多晶膜层边缘保护层中,采用低压化学汽相沉积法淀积厚度为d1埃米,介电系数为ε1介质膜层;2) In the edge protection layer of the polycrystalline film layer of the lower electrode of the double polycrystalline capacitor, a low-pressure chemical vapor deposition method is used to deposit a dielectric film with a thickness of d1 angstroms and a dielectric coefficient of ε1;
3)在低电压系数双多晶电容器介质层制作中,依据电容器性能需要淀积厚度为d2埃米,介电系数为ε2介质膜层;3) In the production of the dielectric layer of the low voltage coefficient double polycrystalline capacitor, according to the performance of the capacitor, a dielectric film with a thickness of d2 angstroms and a dielectric coefficient of ε2 is deposited;
低电压系数集成双多晶电容器上极板多晶膜层边缘保护膜层采用与正常模拟CMOS集成电路工艺中MOS型晶体管栅多晶侧面保护结构。The edge protection film of the polycrystalline film layer on the upper plate of the low-voltage coefficient integrated double polycrystalline capacitor adopts the same structure as the gate polycrystalline side protection structure of the MOS transistor in the normal analog CMOS integrated circuit process.
基于所述一种高低压兼容模拟CMOS工艺低电压系数双多晶电容器边缘效应优化制造方法的低电压系数多晶电容器,主要包括P型衬底、P型外延层,N型阱、自对准P型阱、场氧化层、牺牲氧化层、栅氧化层、多晶薄膜层、二氧化硅介质层,氮氧化硅介质层和低介电系数填充膜层,金属互连膜层,钝化层;The low-voltage-coefficient polycrystalline capacitor based on the optimized manufacturing method for the edge effect of the low-voltage-coefficient dual polycrystalline capacitor in a high- and low-voltage compatible analog CMOS process mainly includes a P-type substrate, a P-type epitaxial layer, an N-type well, a self-aligned P-type well, field oxide layer, sacrificial oxide layer, gate oxide layer, polycrystalline thin film layer, silicon dioxide dielectric layer, silicon oxynitride dielectric layer and low-k filling layer, metal interconnect layer, passivation layer ;
所述衬底位于底部;外延层位于衬底层上方;阱区位于外延层表面;the substrate is located at the bottom; the epitaxial layer is located above the substrate layer; the well region is located on the surface of the epitaxial layer;
所述场氧化层、牺牲氧化层、栅氧化层分别覆盖在阱的不同区域;The field oxide layer, the sacrificial oxide layer and the gate oxide layer cover different regions of the well respectively;
所述双多晶电容器多晶膜层位于N阱上方场氧化层上方;The polycrystalline film layer of the double polycrystalline capacitor is located above the field oxide layer above the N well;
多晶膜层顶面和侧壁覆盖有不同的二氧化硅和氮化硅复合介质层以及高介质系数电容介质层。The top surface and sidewalls of the polycrystalline film layer are covered with different silicon dioxide and silicon nitride composite dielectric layers and high dielectric coefficient capacitor dielectric layers.
所述低介电系数填充膜层填充在硅-金属1、多晶硅-金属1、场氧-金属1和多层金属之间的区域。The low dielectric constant filling film layer fills the region between the silicon-metal 1, polysilicon-metal 1, field oxygen-metal 1 and the multi-layer metal.
实施例20:Example 20:
参见图9,基于实施例1-19所述高低压兼容模拟CMOS工艺低电压系数双多晶电容器边缘效应优化制造方法制作的低电压系数多晶电容器,包括LOCOS场氧化层区11、P型MOS轻掺杂源漏注入区12、N型阱注入区13、低压MOS薄栅氧化层区14、栅多晶层区15、侧壁墙保护区16、P型MOS源漏注入区17、多晶层I18、氧氮介质层19、自对准P型阱区20、N型MOS源漏注入区21、高压MOS厚栅氧化层区22、栅多晶顶层氮氧介质保护层区23、100晶向P型衬底/外延层24、硅/多晶硅-金属1层间接触孔钨塞结构区101、硅/多晶硅/场氧-金属1层间ILD介质平坦化层102、多层金属层间IMD介质平坦化层103、第一层金属膜层区104、多层金属层间通孔钨塞结构区105、顶层金属层区106。Referring to FIG. 9 , the low-voltage-coefficient polycrystalline capacitor fabricated based on the optimized manufacturing method for the edge effect of the low-voltage-coefficient dual polycrystalline capacitor in the high-low voltage compatible analog CMOS process described in Embodiments 1-19 includes the LOCOS field
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210935982.8A CN115241131B (en) | 2022-08-05 | 2022-08-05 | Multi-layer gate analog CMOS process edge stress optimization integration method and low voltage coefficient polycrystalline capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210935982.8A CN115241131B (en) | 2022-08-05 | 2022-08-05 | Multi-layer gate analog CMOS process edge stress optimization integration method and low voltage coefficient polycrystalline capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115241131A true CN115241131A (en) | 2022-10-25 |
CN115241131B CN115241131B (en) | 2025-03-14 |
Family
ID=83679894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210935982.8A Active CN115241131B (en) | 2022-08-05 | 2022-08-05 | Multi-layer gate analog CMOS process edge stress optimization integration method and low voltage coefficient polycrystalline capacitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115241131B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0321860A2 (en) * | 1987-12-23 | 1989-06-28 | STMicroelectronics S.r.l. | Process for manufacturing integrated capacitors in mos technology |
JPH03259564A (en) * | 1990-03-09 | 1991-11-19 | Fujitsu Ltd | Manufacture of semiconductor device |
US5872034A (en) * | 1997-11-03 | 1999-02-16 | Delco Electronics Corporation | EPROM in double poly high density CMOS |
US5953599A (en) * | 1997-06-12 | 1999-09-14 | National Semiconductor Corporation | Method for forming low-voltage CMOS transistors with a thin layer of gate oxide and high-voltage CMOS transistors with a thick layer of gate oxide |
US20060033167A1 (en) * | 2004-08-11 | 2006-02-16 | David Novosel | Reduced-step CMOS processes for low-cost radio frequency identification devices |
CN106298981A (en) * | 2016-08-16 | 2017-01-04 | 中国电子科技集团公司第二十四研究所 | The double polycrystalline capacitance structures integrated with metal-oxide-semiconductor and manufacture method |
CN109994427A (en) * | 2019-02-01 | 2019-07-09 | 重庆中科渝芯电子有限公司 | Low temperature coefficient polycrystalline resistor module compatible with double gate oxygen high and low voltage CMOS process and its integration method |
CN111799224A (en) * | 2020-07-03 | 2020-10-20 | 重庆中科渝芯电子有限公司 | π-type gate polysilicon compatible with double gate oxygen high and low voltage CMOS process to improve device stability and fabrication method thereof |
CN113380799A (en) * | 2021-05-28 | 2021-09-10 | 重庆中科渝芯电子有限公司 | Low dislocation density high reliability high and low voltage CMOS self-aligned double-well process and device |
CN113451216A (en) * | 2021-06-28 | 2021-09-28 | 中国电子科技集团公司第二十四研究所 | Complete silicon-based anti-radiation high-voltage CMOS (complementary Metal oxide semiconductor) device integrated structure and manufacturing method thereof |
-
2022
- 2022-08-05 CN CN202210935982.8A patent/CN115241131B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0321860A2 (en) * | 1987-12-23 | 1989-06-28 | STMicroelectronics S.r.l. | Process for manufacturing integrated capacitors in mos technology |
JPH03259564A (en) * | 1990-03-09 | 1991-11-19 | Fujitsu Ltd | Manufacture of semiconductor device |
US5953599A (en) * | 1997-06-12 | 1999-09-14 | National Semiconductor Corporation | Method for forming low-voltage CMOS transistors with a thin layer of gate oxide and high-voltage CMOS transistors with a thick layer of gate oxide |
US5872034A (en) * | 1997-11-03 | 1999-02-16 | Delco Electronics Corporation | EPROM in double poly high density CMOS |
US20060033167A1 (en) * | 2004-08-11 | 2006-02-16 | David Novosel | Reduced-step CMOS processes for low-cost radio frequency identification devices |
CN106298981A (en) * | 2016-08-16 | 2017-01-04 | 中国电子科技集团公司第二十四研究所 | The double polycrystalline capacitance structures integrated with metal-oxide-semiconductor and manufacture method |
CN109994427A (en) * | 2019-02-01 | 2019-07-09 | 重庆中科渝芯电子有限公司 | Low temperature coefficient polycrystalline resistor module compatible with double gate oxygen high and low voltage CMOS process and its integration method |
CN111799224A (en) * | 2020-07-03 | 2020-10-20 | 重庆中科渝芯电子有限公司 | π-type gate polysilicon compatible with double gate oxygen high and low voltage CMOS process to improve device stability and fabrication method thereof |
CN113380799A (en) * | 2021-05-28 | 2021-09-10 | 重庆中科渝芯电子有限公司 | Low dislocation density high reliability high and low voltage CMOS self-aligned double-well process and device |
CN113451216A (en) * | 2021-06-28 | 2021-09-28 | 中国电子科技集团公司第二十四研究所 | Complete silicon-based anti-radiation high-voltage CMOS (complementary Metal oxide semiconductor) device integrated structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115241131B (en) | 2025-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7682896B2 (en) | Trench metal-insulator-metal (MIM) capacitors integrated with middle-of-line metal contacts, and method of fabricating same | |
US20070057305A1 (en) | MIM capacitor integrated into the damascene structure and method of making thereof | |
CN113658868B (en) | Semiconductor element and manufacturing method thereof | |
KR20150067730A (en) | Integrated circuit device with power gating switch in back end of line | |
JP2023097349A (en) | Methods for manufacturing devices and semiconductor devices (rear power rails and distribution networks for density scaling) | |
US9281213B2 (en) | High precision capacitor dielectric | |
TWI645564B (en) | Semiconductor device and method of manufacturing same | |
JP2757782B2 (en) | Method for manufacturing semiconductor device | |
CN111799224B (en) | π-type gate polysilicon compatible with double gate oxygen high and low voltage CMOS process to improve device stability and fabrication method thereof | |
KR102465102B1 (en) | Semiconductor device and manufacturing method thereof | |
TW202141588A (en) | Method of forming semiconductor structure | |
US9460957B2 (en) | Method and structure for nitrogen-doped shallow-trench isolation dielectric | |
US20020053739A1 (en) | Semiconductor device and method of fabricating the same | |
US20080251824A1 (en) | Semiconductor memory device and manufacturing method thereof | |
CN1396646A (en) | Method for making contact plug of embedded memory | |
CN115132662B (en) | Simulating high stress edge effect optimization integration method of BiCMOS process and high linearity dual polycrystalline capacitor | |
CN112289747B (en) | Method for manufacturing high dielectric constant metal gate | |
CN109994427A (en) | Low temperature coefficient polycrystalline resistor module compatible with double gate oxygen high and low voltage CMOS process and its integration method | |
CN115241131A (en) | Optimal integration method for edge stress in multi-layer gate analog CMOS process and low voltage coefficient polycrystalline capacitor | |
CN113380799B (en) | Low dislocation density, high reliability, high and low voltage CMOS self-aligned double well process method and device | |
JPH08213478A (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPH06163535A (en) | Semiconductor device and fabrication thereof | |
KR100617621B1 (en) | Method for manufacturing semiconductor integrated circuit device | |
KR100968645B1 (en) | Method of manufacturing resistors in semiconductor integrated circuits | |
JP3555078B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |