CN115236680A - Positioning method, positioning device, electronic equipment and computer storage medium - Google Patents
Positioning method, positioning device, electronic equipment and computer storage medium Download PDFInfo
- Publication number
- CN115236680A CN115236680A CN202110441026.XA CN202110441026A CN115236680A CN 115236680 A CN115236680 A CN 115236680A CN 202110441026 A CN202110441026 A CN 202110441026A CN 115236680 A CN115236680 A CN 115236680A
- Authority
- CN
- China
- Prior art keywords
- map
- frame
- pose
- global
- point cloud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及计算机技术领域,尤其涉及一种定位方法、装置、电子设备及计算机存储介质。The embodiments of the present application relate to the field of computer technologies, and in particular, to a positioning method, an apparatus, an electronic device, and a computer storage medium.
背景技术Background technique
定位单元是智能驾驶系统中的基础性的单元,定位单元为无人车提供实时的全局位姿信息,而激光雷达定位是定位单元中很重要的子单元,大多激光定位方案中使用绝对定位方案,然而绝对定位方案具有以下缺点:The positioning unit is the basic unit in the intelligent driving system. The positioning unit provides real-time global pose information for the unmanned vehicle, and the lidar positioning is a very important sub-unit in the positioning unit. Most laser positioning schemes use the absolute positioning scheme. , however the absolute positioning scheme has the following disadvantages:
1)帧间定位误差波动较大,位姿不够平滑;1) The positioning error between frames fluctuates greatly, and the pose is not smooth enough;
2)在较空旷或环境变化等场景中,某些帧定位误差较大。2) In scenes such as open space or changing environment, the positioning error of some frames is relatively large.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请实施例提供一种定位方案,以至少部分解决上述问题。In view of this, the embodiments of the present application provide a positioning solution to at least partially solve the above problems.
根据本申请实施例的第一方面,提供了一种定位方法,包括:获取用于将激光雷达采集的当前点云帧映射到局部地图中的帧相对位姿、用于将所述局部地图映射到所述全局地图中的地图绝对位姿、以及用于将所述当前点云帧映射到所述全局地图中的帧绝对位姿;对所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿进行位姿融合,以获得所述当前点云帧对应的最终绝对位姿;根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点,以基于标识出所述异常全局点的所述全局地图确定下一点云帧的帧绝对位姿。According to a first aspect of the embodiments of the present application, a positioning method is provided, including: acquiring a frame relative pose for mapping a current point cloud frame collected by a lidar to a local map, and for mapping the local map to the map absolute pose in the global map, and the frame absolute pose for mapping the current point cloud frame to the global map; for the frame absolute pose, the map absolute pose and The relative pose of the frame is subjected to pose fusion to obtain the final absolute pose corresponding to the current point cloud frame; according to the final absolute pose and the current point cloud frame, the degree of position change in the global map is determined The abnormal global points greater than or equal to the screening threshold are used to determine the frame absolute pose of the next point cloud frame based on the global map identifying the abnormal global points.
根据本申请实施例的第二方面,提供了一种定位装置,包括:第一获取模块,用于获取用于将激光雷达采集的当前点云帧映射到局部地图中的帧相对位姿、用于将所述局部地图映射到所述全局地图中的地图绝对位姿、以及用于将所述当前点云帧映射到所述全局地图中的帧绝对位姿;融合模块,用于对所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿进行位姿融合,以获得所述当前点云帧对应的最终绝对位姿;评估模块,用于根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点,以基于标识出所述异常全局点的所述全局地图确定下一点云帧的帧绝对位姿。According to a second aspect of the embodiments of the present application, a positioning device is provided, including: a first acquisition module configured to acquire a frame relative pose for mapping a current point cloud frame collected by a lidar to a local map; For mapping the local map to the map absolute pose in the global map, and for mapping the current point cloud frame to the frame absolute pose in the global map; a fusion module for the The absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame are fused to obtain the final absolute pose corresponding to the current point cloud frame; an evaluation module is used to perform pose fusion according to the final absolute pose and the current point cloud frame, determine the abnormal global point in the global map whose position change degree is greater than or equal to the screening threshold, to determine the frame absolute position of the next point cloud frame based on the global map that identifies the abnormal global point posture.
根据本申请实施例的第三方面,提供了一种电子设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如第一方面所述的定位方法对应的操作。According to a third aspect of the embodiments of the present application, an electronic device is provided, including: a processor, a memory, a communication interface, and a communication bus, wherein the processor, the memory, and the communication interface complete each other through the communication bus The memory is used for storing at least one executable instruction, and the executable instruction enables the processor to perform an operation corresponding to the positioning method described in the first aspect.
根据本申请实施例的第四方面,提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面所述的定位方法。According to a fourth aspect of the embodiments of the present application, a computer storage medium is provided on which a computer program is stored, and when the program is executed by a processor, the positioning method according to the first aspect is implemented.
根据本申请实施例提供的定位方案,在确定最终绝对位姿时,在帧绝对位姿中融合了帧相对位姿和地图绝对位姿,因而使得融合出的最终绝对位姿更加准确,可以降低误差波动和误差最大值。而且,基于最终绝对位姿可以将当前点云帧映射到全局地图中,从而确定全局地图中各全局点的位置变化程度,以确定由于环境变化导致的异常全局点,以在确定下一点云帧的帧绝对位姿时避免异常全局点的干扰,以此避免环境变化导致的定位失败,提升鲁棒性。According to the positioning solution provided by the embodiment of the present application, when the final absolute pose is determined, the frame relative pose and the map absolute pose are fused in the frame absolute pose, so that the final fused absolute pose is more accurate and can reduce the Error fluctuation and error maximum. Moreover, based on the final absolute pose, the current point cloud frame can be mapped to the global map, so as to determine the position change degree of each global point in the global map, and to determine the abnormal global point caused by the environmental change, so as to determine the next point cloud frame. The frame absolute pose avoids the interference of abnormal global points, so as to avoid localization failure caused by environmental changes and improve robustness.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments described in the embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings.
图1A为根据本申请实施例一的一种定位方法的步骤流程图;1A is a flowchart of steps of a positioning method according to Embodiment 1 of the present application;
图1B为图1A所示实施例中的一种场景示例的示意图;FIG. 1B is a schematic diagram of an example of a scenario in the embodiment shown in FIG. 1A;
图2A为根据本申请实施例二的一种定位方法的步骤流程图;2A is a flowchart of steps of a positioning method according to Embodiment 2 of the present application;
图2B为图2A所示实施例中的一种激光定位框架的示意图;2B is a schematic diagram of a laser positioning frame in the embodiment shown in FIG. 2A;
图3为根据本申请实施例三的一种定位装置的结构框图;3 is a structural block diagram of a positioning device according to Embodiment 3 of the present application;
图4为根据本申请实施例四的一种电子设备的结构示意图。FIG. 4 is a schematic structural diagram of an electronic device according to Embodiment 4 of the present application.
具体实施方式Detailed ways
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。In order to make those skilled in the art better understand the technical solutions in the embodiments of the present application, the following will clearly and completely describe the technical solutions in the embodiments of the present application with reference to the accompanying drawings in the embodiments of the present application. The embodiments described above are only a part of the embodiments of the present application, rather than all the embodiments. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments in the embodiments of the present application should fall within the protection scope of the embodiments of the present application.
下面结合本申请实施例附图进一步说明本申请实施例具体实现。The specific implementation of the embodiments of the present application is further described below with reference to the accompanying drawings of the embodiments of the present application.
实施例一Example 1
参照图1A,示出了本申请实施例一的定位方法的步骤流程示意图。Referring to FIG. 1A , a schematic flowchart of steps of a positioning method according to Embodiment 1 of the present application is shown.
在本实施例中,该方法可以应用于智能驾驶领域,实现对载具的定位,从而后续可以根据载具的定位信息,进行导航或行驶控制。该方法包括下述步骤:In this embodiment, the method can be applied to the field of intelligent driving to realize the positioning of the vehicle, so that navigation or driving control can be performed subsequently according to the positioning information of the vehicle. The method includes the following steps:
步骤S102:获取用于将激光雷达采集的当前点云帧映射到局部地图中的帧相对位姿、用于将所述局部地图映射到所述全局地图中的地图绝对位姿、以及所述当前点云帧映射到所述全局地图中的帧绝对位姿。Step S102: Obtain the frame relative pose for mapping the current point cloud frame collected by the lidar to the local map, the map absolute pose for mapping the local map to the global map, and the current Point cloud frames are mapped to frame absolute poses in the global map.
当前点云帧可以是激光雷达在当前时刻采集的所处环境中反射点的信息。如,当前点云帧中包括当前时刻所处环境中多个反射点的3D位置信息。The current point cloud frame may be the information of the reflection points in the environment where the lidar is collected at the current moment. For example, the current point cloud frame includes 3D position information of multiple reflection points in the environment at the current moment.
图1B中示出了全局空间1,激光雷达配置在载具上,并从全局空间1中的A点移动到B点,在此过程中激光雷达每过一定时间采集一个点云帧。例如,当前时刻为第t时刻,第t时刻采集的点云帧即为当前点云帧。Figure 1B shows global space 1. The lidar is configured on the vehicle and moves from point A to point B in global space 1. During this process, the lidar collects a point cloud frame every certain time. For example, the current time is the t-th time, and the point cloud frame collected at the t-th time is the current point cloud frame.
基于激光雷达采集的这些点云帧中的至少部分点云帧可以构建局部地图。局部地图中包括多个局部点的位置信息。局部点的位置信息可以根据用于构建局部地图的点云帧中反射点的位置信息确定。A local map can be constructed based on at least some of the point cloud frames acquired by the lidar. The local map includes location information of multiple local points. The location information of the local point can be determined according to the location information of the reflection point in the point cloud frame used to construct the local map.
在本实施例中,可以将采集的当前点云帧输入到激光里程计中,通过激光里程计确定当前点云帧到局部地图的帧相对位姿,通过帧相对位姿可以将当前点云帧映射到局部地图中。In this embodiment, the collected current point cloud frame can be input into the laser odometry, and the frame relative pose of the current point cloud frame to the local map can be determined by the laser odometry, and the current point cloud frame can be converted by the frame relative pose Mapped to the local map.
全局地图包括多个全局点的位置信息,全局点可以是通过激光雷达对应全局空间1进行数据采集获得的点。在本实施例中,全局地图是先验地图,也就是预先通过激光雷达车进行采集的先验地图。在本实施例中,先验地图中全局点的位置信息不会改变。但是根据需要可以每隔一段时间(如半个月、1个月、或半年等)对先验地图中的全局点的位置信息进行一次更新。The global map includes position information of multiple global points, and the global points may be points obtained by data collection corresponding to the global space 1 by the lidar. In this embodiment, the global map is a priori map, that is, a priori map collected in advance by a lidar vehicle. In this embodiment, the location information of the global point in the prior map will not change. However, the position information of the global point in the prior map can be updated at regular intervals (such as half a month, one month, or half a year, etc.) as needed.
地图绝对位姿用于将局部地图映射到全局地图中。在一种可行方式中,可以将局部地图输入到全局绝对定位单元中,通过全局绝对定位单元确定地图绝对位姿。The map absolute pose is used to map the local map into the global map. In a feasible manner, the local map can be input into the global absolute positioning unit, and the absolute pose of the map can be determined by the global absolute positioning unit.
帧绝对位姿用于将当前点云帧映射到全局地图中。在一种可行方式中,可以将当前点云帧输入到全局绝对定位单元中,通过全局绝对定位单元确定帧绝对位姿。The frame absolute pose is used to map the current point cloud frame into the global map. In a feasible manner, the current point cloud frame can be input into the global absolute positioning unit, and the absolute pose of the frame can be determined by the global absolute positioning unit.
全局绝对定位单元可以根据需要采用适当的、能够实现对应功能的单元。The global absolute positioning unit may adopt an appropriate unit capable of realizing corresponding functions as required.
步骤S104:对所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿进行位姿融合,以获得所述当前点云帧对应的最终绝对位姿。Step S104: Perform pose fusion on the absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame to obtain the final absolute pose corresponding to the current point cloud frame.
在本实施例中,可以采用图优化方式对帧绝对位姿、地图绝对位姿和帧相对位姿进行融合,从而以地图绝对位姿和帧相对位姿等作为约束,使得融合出的最终绝对位姿更加准确。而且由于最终绝对位姿中融合了帧相对位姿和地图绝对位姿,使得最终绝对位姿的误差最大值可以有效降低,且可以降低误差波动,从而获得更加准确的当前点云帧的最终绝对位姿。In this embodiment, the absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame can be fused by using the graph optimization method, so that the absolute pose of the map and the relative pose of the frame are used as constraints, so that the final absolute pose of the fusion is obtained. The pose is more accurate. Moreover, since the frame relative pose and the map absolute pose are integrated in the final absolute pose, the maximum error value of the final absolute pose can be effectively reduced, and the error fluctuation can be reduced, so as to obtain a more accurate final absolute pose of the current point cloud frame. pose.
步骤S106:根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点,以基于标识出所述异常全局点的所述全局地图确定下一点云帧的帧绝对位姿。Step S106: According to the final absolute pose and the current point cloud frame, determine the abnormal global point in the global map whose position change degree is greater than or equal to the screening threshold, so as to identify the abnormal global point based on the global point that identifies the abnormal global point. The map determines the frame-absolute pose of the next point cloud frame.
基于确定的最终绝对位姿,可以将当前点云帧中的各反射点映射到全局地图中,针对每个反射点,根据反射点映射到全局地图中的位置,可以确定反射点与最邻近的全局点之间的第二偏移距离,该第二偏移距离可以作为全局点的位置变化程度,根据每个全局点的位置变化程度可以确定筛选阈值,筛选阈值的具体确定方式可以根据需要确定。Based on the determined final absolute pose, each reflection point in the current point cloud frame can be mapped to the global map, and for each reflection point, according to the position of the reflection point mapped to the global map, the reflection point and the nearest neighbor can be determined. The second offset distance between the global points, the second offset distance can be used as the position change degree of the global point, the screening threshold can be determined according to the position change degree of each global point, and the specific determination method of the screening threshold value can be determined as required .
依据筛选阈值可以从全局点中确定位置变化程度大于或等于筛选阈值的异常全局点,这样就能够及时地发现全局地图中产生的环境变化,因为出现环境变化时会出现不同的反射点,因此基于实时采集的当前点云帧可以确定全局地图对应的真实环境是否发生变化。According to the screening threshold, the abnormal global points whose position change degree is greater than or equal to the screening threshold can be determined from the global points, so that the environmental changes generated in the global map can be found in time, because different reflection points will appear when the environment changes, so based on the The current point cloud frame collected in real time can determine whether the real environment corresponding to the global map has changed.
这样可以及时确定环境变化,进而从全局地图中确定变化的环境对应的全局点(也就是异常全局点),这样在确定下一点云帧对应的帧绝对位姿时,可以避免异常全局点的影响,从而保证在有环境变化的情况中也能够准确地进行最终绝对位姿的确定,从而实现了定位的鲁棒性。In this way, the environment change can be determined in time, and then the global point corresponding to the changed environment (that is, the abnormal global point) can be determined from the global map, so that the influence of the abnormal global point can be avoided when the absolute pose of the frame corresponding to the next point cloud frame is determined. , so as to ensure that the final absolute pose can be determined accurately even in the case of environmental changes, thereby realizing the robustness of the positioning.
下面结合一具体使用场景对定位方法的实现过程进行说明如下:The implementation process of the positioning method is described below in combination with a specific usage scenario as follows:
预先获取全局空间1中的全局地图。例如,通过激光雷达车在全局空间1中行驶,并采集反射点的三维位置信息,这些由激光雷达车采集的反射点即作为全局地图中的全局点。Pre-fetch the global map in global space 1. For example, the lidar vehicle drives in the global space 1 and collects the three-dimensional position information of the reflection points. These reflection points collected by the lidar vehicle are used as the global points in the global map.
在基于全局地图进行定位时,通过载具上的激光雷达采集所在环境出的反射点的信息作为当前点云帧。当前点云帧中包括所在环境中的目标对象上的反射点的信息,如位置信息和发射值等。When positioning based on the global map, the information of the reflection points from the environment is collected by the lidar on the vehicle as the current point cloud frame. The current point cloud frame includes the information of the reflection points on the target object in the environment, such as position information and emission value.
一方面,将当前点云帧输入到激光里程计中,获得用于将当前点云帧映射到局部地图中的帧相对位姿;另一方面可以将当前点云帧和局部地图输入到全局绝对定位单元中,获得当前点云帧对应的帧绝对位姿、以及局部地图对应的地图绝对位姿。On the one hand, the current point cloud frame is input into the laser odometer to obtain the frame relative pose used to map the current point cloud frame to the local map; on the other hand, the current point cloud frame and the local map can be input into the global absolute In the positioning unit, the frame absolute pose corresponding to the current point cloud frame and the map absolute pose corresponding to the local map are obtained.
通过位姿融合单元,对帧绝对位姿、地图绝对位姿和帧相对位姿进行融合处理,获得较为准确的最终绝对位姿,最终绝对位姿用于将当前点云帧映射到全局地图中。Through the pose fusion unit, the absolute pose of the frame, the absolute pose of the map and the relative pose of the frame are fused to obtain a more accurate final absolute pose, and the final absolute pose is used to map the current point cloud frame to the global map .
在将当前点云帧映射到全局地图中之后,可以根据映射结果确定全局地图的全局点与对应的反射点之间的距离,以此确定全局点的位置变化程度,从而确定全局点中位置变化程度大于或等于筛选阈值(筛选阈值可以根据需要确定)的异常全局点,进而在确定下一帧点云的帧绝对位姿时,可以基于标记出异常全局点的全局地图,从而保证了在出现环境变化时,也能够很好地进行位姿估计,降低由于环境变化导致的定位失败的情况。After the current point cloud frame is mapped to the global map, the distance between the global point of the global map and the corresponding reflection point can be determined according to the mapping result, so as to determine the position change degree of the global point, thereby determining the position change in the global point. Abnormal global points whose degree is greater than or equal to the screening threshold (the screening threshold can be determined as needed), and then when determining the frame absolute pose of the next frame of point cloud, it can be based on the global map that marks the abnormal global points, thus ensuring the occurrence of abnormal global points. When the environment changes, the pose estimation can also be performed well, reducing the situation of localization failure caused by the environment change.
通过本实施例,在确定最终绝对位姿时,在帧绝对位姿中融合了帧相对位姿和地图绝对位姿,因而使得融合出的最终绝对位姿更加准确,可以降低误差波动和误差最大值。而且,基于最终绝对位姿可以将当前点云帧映射到全局地图中,从而确定全局地图中各全局点的位置变化程度,以确定由于环境变化导致的异常全局点,以在确定下一点云帧的帧绝对位姿时避免异常全局点的干扰,以此避免环境变化导致的定位失败,提升鲁棒性。Through this embodiment, when the final absolute pose is determined, the frame relative pose and the map absolute pose are fused in the frame absolute pose, so that the final fused absolute pose is more accurate, and the error fluctuation and the maximum error can be reduced. value. Moreover, based on the final absolute pose, the current point cloud frame can be mapped to the global map, so as to determine the position change degree of each global point in the global map, and to determine the abnormal global point caused by the environmental change, so as to determine the next point cloud frame. The frame absolute pose avoids the interference of abnormal global points, so as to avoid localization failure caused by environmental changes and improve robustness.
本实施例的定位方法可以由任意适当的具有定位能力的电子设备执行,包括但不限于:服务器、移动终端(如手机、PAD等)和PC机等。The positioning method in this embodiment may be executed by any appropriate electronic device with positioning capability, including but not limited to: a server, a mobile terminal (such as a mobile phone, a PAD, etc.), a PC, and the like.
实施例二Embodiment 2
参照图2A,示出了本申请的实施例二的定位方法的步骤流程示意图。Referring to FIG. 2A , a schematic flowchart of steps of the positioning method according to the second embodiment of the present application is shown.
在本实施例中,定位方法包括以下步骤:In this embodiment, the positioning method includes the following steps:
步骤S202:获取用于将激光雷达采集的当前点云帧映射到局部地图中的帧相对位姿。Step S202: Obtain a frame relative pose for mapping the current point cloud frame collected by the lidar to the local map.
在一具体实现中,将激光雷达采集的当前点云帧输入到激光里程计中,由激光里程计进行当前点云帧到局部地图的匹配,从而获得帧相对位姿,进而还可以确定局部地图在设定的局部坐标系下的第一参考位姿和当前点云帧在局部坐标系下的第二参考位姿。在此过程中,激光里程计还可以进行关键点云帧选择和局部地图更新等操作。In a specific implementation, the current point cloud frame collected by the lidar is input into the laser odometer, and the laser odometer matches the current point cloud frame to the local map, so as to obtain the relative pose of the frame, and then the local map can be determined. The first reference pose in the set local coordinate system and the second reference pose of the current point cloud frame in the local coordinate system. During this process, the laser odometry can also perform operations such as key point cloud frame selection and local map update.
其中,局部地图(也可以称为子地图)由多个关键点云帧构成。例如,按照每个关键点云帧对应的帧相对位姿将关键点云帧中的反射点映射到局部地图中,依据反射点的映射位置和局部地图中局部点的位置信息,对反射点和局部点一起进行聚类,从而获得多个类簇,然后计算每个类簇的质心,将各类簇的质心作为新的局部点,并以质心的位置信息作为新的局部点的位置信息。Among them, the local map (also called sub-map) is composed of multiple key point cloud frames. For example, map the reflection points in the key point cloud frame to the local map according to the frame relative pose corresponding to each key point cloud frame. The local points are clustered together to obtain multiple clusters, and then the centroid of each cluster is calculated, and the centroid of each cluster is used as a new local point, and the position information of the centroid is used as the position information of the new local point.
基于此,步骤S202包括以下过程:Based on this, step S202 includes the following processes:
过程A1:确定所述当前点云帧是否为关键点云帧。Process A1: Determine whether the current point cloud frame is a key point cloud frame.
由于局部地图是通过关键点云帧构建的,因此针对采集的当前点云帧,需要确定其是否为关键点云帧。Since the local map is constructed from key point cloud frames, it is necessary to determine whether the current point cloud frame collected is a key point cloud frame.
一种确定是否为关键点云帧的方式可以是:以当前点云帧的前一点云帧的帧相对位姿与预设的调整量求和,将求和结果作为当前点云帧的初始帧相对位姿。若当前点云帧的初始帧相对位姿与局部地图中最后一个关键点云帧对应的帧相对位姿之间的位置差或者姿态差大于或等于设定位姿差阈值(其可以根据经验或需要确定,本实施例对此不作限定),则将当前点云帧确定为关键点云帧,反之,不将当前点云帧确定为关键点云帧。A way to determine whether it is a key point cloud frame may be: summing the frame relative pose of the previous point cloud frame of the current point cloud frame and a preset adjustment amount, and using the summation result as the initial frame of the current point cloud frame relative pose. If the position difference or the pose difference between the initial frame relative pose of the current point cloud frame and the frame relative pose corresponding to the last key point cloud frame in the local map is greater than or equal to the set pose difference threshold (which can be based on experience or It needs to be determined, which is not limited in this embodiment), then the current point cloud frame is determined as the key point cloud frame, otherwise, the current point cloud frame is not determined as the key point cloud frame.
若当前点云帧为关键点云帧,则执行过程B1;反之,则执行C1。If the current point cloud frame is a key point cloud frame, execute process B1; otherwise, execute C1.
过程B1:将当前点云帧作为关键点云帧对局部地图进行更新。Process B1: Use the current point cloud frame as the key point cloud frame to update the local map.
情况1,若当前使用的局部地图中关键点云帧数量未大于拆分值,则将当前点云帧直接添加到当前使用的局部地图中,并采用前述的方式计算局部地图中的局部点以及局部点的位置信息。Case 1, if the number of key point cloud frames in the currently used local map is not greater than the split value, the current point cloud frame is directly added to the currently used local map, and the local points in the local map and Location information of local points.
情况2,若当前使用的局部地图中关键点云帧数量大于拆分值,但小于总容纳值(该值可以根据定位能力、存储能力等确定,例如为10帧、20帧、50帧等),则可以将当前点云帧添加到当前使用的局部地图中,并采用前述的方式计算局部地图中的局部点以及局部点的位置信息。同时将当前点云帧添加到备用局部地图中。Case 2, if the number of key point cloud frames in the currently used local map is greater than the split value, but less than the total accommodation value (the value can be determined according to the positioning capability, storage capability, etc., such as 10 frames, 20 frames, 50 frames, etc.) , the current point cloud frame can be added to the currently used local map, and the local points in the local map and the location information of the local points can be calculated in the aforementioned manner. Also add the current point cloud frame to the alternate local map.
情况3,若当前使用的局部地图中的关键点云帧数量等于总容纳值,则以备用局部地图作为新的当前使用的局部地图,并确定新的当前使用的局部地图所属的情况是情况1或2,若新的当前使用的局部地图所属的是情况1,则参照前述的情况1,将当前点云帧添加到新的当前使用的局部地图,再进行后续操作。Case 3, if the number of key point cloud frames in the currently used local map is equal to the total accommodation value, then use the spare local map as the new currently used local map, and determine the situation to which the new currently used local map belongs is Case 1 Or 2, if the new currently used local map belongs to case 1, refer to the aforementioned case 1, add the current point cloud frame to the new currently used local map, and then perform subsequent operations.
在更新局部地图后可以执行过程C1。Process C1 may be performed after updating the local map.
过程C1:根据与当前点云帧对应的局部地图,确定帧相对位姿。Process C1: Determine the relative pose of the frame according to the local map corresponding to the current point cloud frame.
一种可行方式中,根据当前点云帧的初始帧相对位姿,将当前点云帧的多个反射点映射到局部地图中,获得各反射点的映射位置。根据映射位置确定各反射点在局部地图中的k个最邻近局部点,以k个最邻近局部点构建反射点的参考面,并计算该反射点到对应的参考面之间的距离。In a feasible manner, according to the relative pose of the initial frame of the current point cloud frame, a plurality of reflection points of the current point cloud frame are mapped to the local map, and the mapping position of each reflection point is obtained. Determine the k nearest local points of each reflection point in the local map according to the mapping position, construct the reference surface of the reflection point with the k nearest local points, and calculate the distance between the reflection point and the corresponding reference surface.
计算每个反射点到相应参考面的距离的平方和,并根据该平方和,按照高斯牛顿迭代方式,对初始帧相对位姿进行优化,再以优化后的帧相对位姿将当前点云帧映射到局部地图中,再计算各反射点到相应参考面的距离的平方和,依据平方和按照高斯牛顿迭代方式对帧相对位姿进行优化,如此迭代优化直至收敛,然后以收敛时优化出的帧相对位姿作为当前点云帧的帧相对位姿。Calculate the square sum of the distance from each reflection point to the corresponding reference surface, and according to the square sum, according to the Gauss-Newton iteration method, optimize the relative pose of the initial frame, and then use the optimized frame relative pose to convert the current point cloud frame. Map to the local map, and then calculate the sum of squares of the distances from each reflection point to the corresponding reference surface. According to the sum of squares, the relative pose of the frame is optimized according to the Gauss-Newton iteration method. This iterative optimization is performed until convergence. Frame-relative pose as the frame-relative pose of the current point cloud frame.
收敛的条件可以是相邻两次平方和相等或者差值小于设定值(设定值可以根据需要确定)。The condition for convergence can be that the sum of two adjacent squares is equal or the difference is less than the set value (the set value can be determined as required).
可选地,步骤S202除了能够获得当前点云帧的帧相对位姿外,还可以获得局部地图在设定的局部坐标系中的第一参考位姿和当前点云帧在局部坐标系下的第二参考位姿,第一参考位姿和第二参考位姿可以使得后续绝对位姿的确定更加准确。Optionally, in addition to obtaining the frame relative pose of the current point cloud frame in step S202, the first reference pose of the local map in the set local coordinate system and the current point cloud frame in the local coordinate system can also be obtained. The second reference pose, the first reference pose and the second reference pose can make the determination of the subsequent absolute pose more accurate.
局部坐标系可以是根据需要选定的坐标系,局部坐标系与激光里程计(或激光雷达)对应,例如可以将激光雷达采集的第一个点云帧对应的帧相对位姿作为局部坐标系对应的位姿,或者是以全局地图对应的全局坐标系的位姿作为局部坐标系的位姿,或者也可以选定任意一个位姿作为局部坐标系的位姿。The local coordinate system can be a coordinate system selected according to needs, and the local coordinate system corresponds to the laser odometer (or lidar). For example, the relative pose of the frame corresponding to the first point cloud frame collected by the lidar can be used as the local coordinate system. The corresponding pose is either the pose of the global coordinate system corresponding to the global map as the pose of the local coordinate system, or any one of the poses can be selected as the pose of the local coordinate system.
在局部坐标系的位姿确定后,局部坐标系与全局坐标系的转换关系就可以确定。当然,由于局部坐标系的位姿是激光雷达第一个点云帧的帧相对位姿,而帧相对位姿中可能存在误差,因此,局部坐标系的位姿是可以进行优化的,因此局部坐标系与全局坐标系的转换关系随着优化也会发生变化。After the pose of the local coordinate system is determined, the transformation relationship between the local coordinate system and the global coordinate system can be determined. Of course, since the pose of the local coordinate system is the frame relative pose of the first point cloud frame of the lidar, and there may be errors in the frame relative pose, the pose of the local coordinate system can be optimized, so the local The transformation relationship between the coordinate system and the global coordinate system will also change with optimization.
在确定局部坐标系的位姿后,可以通过过程D1确定局部地图在局部坐标系中的第一参考位姿,通过过程E1确定当前点云帧在局部坐标系中的第二参考位姿。After the pose of the local coordinate system is determined, the first reference pose of the local map in the local coordinate system can be determined through the process D1, and the second reference pose of the current point cloud frame in the local coordinate system can be determined through the process E1.
过程D1:根据所述局部地图中的至少一个关键点云帧的帧相对位姿,确定所述局部地图在所述局部坐标系中的第一参考位姿。Process D1: Determine a first reference pose of the local map in the local coordinate system according to the frame relative pose of at least one key point cloud frame in the local map.
在一可行方式中,根据局部地图中的第一个关键点云帧的帧相对位姿和局部坐标系的位姿,确定第一参考位姿。In a feasible manner, the first reference pose is determined according to the frame relative pose of the first key point cloud frame in the local map and the pose of the local coordinate system.
过程E1:确定所述当前点云帧在所述局部坐标系中的第二参考位姿。Process E1: Determine the second reference pose of the current point cloud frame in the local coordinate system.
在一种可行方式中,根据当前点云帧的帧相对位姿和第一参考位姿的乘积作为第二参考位姿。In a feasible manner, the product of the frame relative pose of the current point cloud frame and the first reference pose is used as the second reference pose.
步骤S204:获取用于将所述局部地图映射到所述全局地图中的地图绝对位姿。Step S204: Obtain the absolute map pose for mapping the local map to the global map.
在一种可行方式中,步骤S204包括以下子步骤:In a feasible manner, step S204 includes the following sub-steps:
子步骤S2041:确定用于将所述局部地图映射到全局地图中的地图预测绝对位姿。Sub-step S2041: Determine the map predicted absolute pose for mapping the local map into the global map.
例如,子步骤S2041包括以下过程:For example, sub-step S2041 includes the following processes:
过程A2:获取前一点云帧对应的帧绝对位姿、所述前一点云帧在所述局部坐标系下的第二参考位姿、以及用于将局部地图映射到局部坐标系中的第一参考位姿。Process A2: Obtain the frame absolute pose corresponding to the previous point cloud frame, the second reference pose of the previous point cloud frame in the local coordinate system, and the first reference pose for mapping the local map to the local coordinate system. Reference pose.
前一点云帧对应的帧绝对位姿可以记作其是已经计算得到的位姿,故不再赘述。前一点云帧在所述局部坐标系下的第二参考位姿可以记作其是已经计算出的值,故不再赘述。用于将局部地图映射到局部坐标系中的第一参考位姿可以记作其可以通过前述的过程D1确定,故不再赘述。The absolute pose of the frame corresponding to the previous cloud frame can be recorded as It is the pose that has been calculated, so it is not repeated here. The second reference pose of the previous point cloud frame in the local coordinate system can be written as It is an already calculated value, so it will not be repeated here. The first reference pose used to map the local map into the local coordinate system can be written as It can be determined through the aforementioned process D1, so it is not repeated here.
过程B2:基于所述第一参考位姿、所述前一点云帧对应的帧绝对位姿、所述前一点云帧的第二参考位姿,确定所述局部地图对应的地图预测绝对位姿。Process B2: Based on the first reference pose, the frame absolute pose corresponding to the previous point cloud frame, and the second reference pose of the previous point cloud frame, determine the map prediction absolute pose corresponding to the local map .
在一可行方式中,可以以所述第一参考位姿、所述前一点云帧对应的帧绝对位姿、所述前一点云帧的第二参考位姿的乘积作为地图预测绝对位姿。地图预测绝对位姿表示为: In a feasible manner, the product of the first reference pose, the frame absolute pose corresponding to the previous point cloud frame, and the second reference pose of the previous point cloud frame may be used as the map prediction absolute pose. The absolute pose of the map prediction is expressed as:
子步骤S2042:根据所述地图预测绝对位姿,将所述局部地图与所述全局地图进行匹配,以确定用于将所述局部地图映射到所述全局地图中的地图绝对位姿。Sub-step S2042: Predict the absolute pose according to the map, and match the local map with the global map to determine an absolute map pose for mapping the local map to the global map.
在一可行方式中,可以通过全局绝对定位单元根据地图预测位姿,将局部地图与全局地图进行匹配,从而确定用于将所述局部地图映射到所述全局地图中的地图绝对位姿。In a feasible manner, the global absolute positioning unit may predict the pose according to the map, and match the local map with the global map, thereby determining the absolute map pose for mapping the local map to the global map.
例如,将局部地图的局部点按照地图预测位姿映射到全局地图中,根据局部点的映射位置,确定k个最邻近全局点。针对每个局部点对应的k个最邻近全局点,基于当前点云帧对应的全局地图中的异常全局点,对k个最邻近全局点进行筛除。如针对局部点A对应的k个最邻近全局点,去除掉其中的异常全局点。For example, the local points of the local map are mapped to the global map according to the predicted pose of the map, and the k nearest global points are determined according to the mapping positions of the local points. For the k nearest global points corresponding to each local point, based on the abnormal global points in the global map corresponding to the current point cloud frame, the k nearest global points are screened out. For example, for the k nearest global points corresponding to the local point A, the abnormal global points are removed.
若剩余的正常全局点的数量大于或等于3个,能够构成参考面,则计算这些局部点与参考面之间的距离,并根据这些局部点的距离平方的和,按照高斯牛顿迭代方式对地图预测位姿进行优化,获得优化后的地图绝对位姿。If the number of the remaining normal global points is greater than or equal to 3, and the reference surface can be formed, then the distance between these local points and the reference surface is calculated, and according to the sum of the squares of the distances of these local points, the map is calculated according to the Gauss-Newton iteration method. The predicted pose is optimized, and the optimized absolute map pose is obtained.
再将局部地图按照优化后的地图绝对位姿映射到全局坐标系中,重复上述的根据局部点的映射位置,确定k个最邻近全局点的过程,如此对地图绝对位姿进行迭代优化,直至满足收敛条件。如此优化出的位姿即为地图绝对位姿。Then map the local map to the global coordinate system according to the optimized absolute pose of the map, and repeat the above process of determining the k nearest global points according to the mapping positions of the local points, so that the absolute pose of the map is iteratively optimized until meet the convergence conditions. The pose thus optimized is the absolute pose of the map.
步骤S206:获取用于将所述当前点云帧映射到所述全局地图中的帧绝对位姿。Step S206: Obtain the frame absolute pose for mapping the current point cloud frame to the global map.
在一可行方式中,所述步骤S206包括以下子步骤:In a feasible manner, the step S206 includes the following sub-steps:
子步骤S2061:根据所述激光雷达采集的前一点云帧对应的最终绝对位姿、和所述前一点云帧在所述局部坐标系下的第二参考位姿、以及所述当前点云帧在所述局部坐标系下的第二参考位姿,确定用于将所述当前点云帧映射到所述全局地图中的帧预测绝对位姿。Sub-step S2061: According to the final absolute pose corresponding to the previous point cloud frame collected by the lidar, the second reference pose of the previous point cloud frame in the local coordinate system, and the current point cloud frame In the second reference pose in the local coordinate system, a frame predicted absolute pose for mapping the current point cloud frame to the global map is determined.
前一点云帧对应的最终绝对位姿可以记作由于其是已经计算出的位姿,故不再进行赘述。The final absolute pose corresponding to the previous cloud frame can be recorded as Since it is the already calculated pose, it will not be repeated here.
前一点云帧的第二参考位姿可以记作由于其是已经计算出的位姿,故不再赘述。The second reference pose of the previous cloud frame can be written as Since it is the already calculated pose, it will not be repeated here.
当前点云帧在所述局部坐标系下的第二参考位姿记作其可以通过前述的过程E1确定,故不再赘述。The second reference pose of the current point cloud frame in the local coordinate system is recorded as It can be determined through the aforementioned process E1, so it is not repeated here.
用于将所述当前点云帧映射到所述全局地图中的帧预测绝对位姿可以是三者的乘积,其可以表示为: The frame prediction absolute pose used to map the current point cloud frame to the global map can be the product of the three, which can be expressed as:
子步骤S2062:确定所述当前点云帧包含的反射点中的正常反射点和异常反射点。Sub-step S2062: Determine normal reflection points and abnormal reflection points in the reflection points included in the current point cloud frame.
其中,所述异常反射点为与所述全局地图中相应的全局点之间的第一偏移距离大于或等于变化阈值的反射点。The abnormal reflection point is a reflection point whose first offset distance from the corresponding global point in the global map is greater than or equal to a change threshold.
变化阈值可以根据需要或经验确定,本实施例对此不作限制。The change threshold may be determined according to needs or experience, which is not limited in this embodiment.
子步骤S2062包括以下过程:Sub-step S2062 includes the following processes:
过程A3:获取帧间位移增量,并根据所述帧间位移增量和所述激光雷达采集的上一点云帧对应的最终绝对位姿,确定与所述当前点云帧对应的预测绝对位姿。Process A3: Obtain the inter-frame displacement increment, and determine the predicted absolute position corresponding to the current point cloud frame according to the inter-frame displacement increment and the final absolute pose corresponding to the previous point cloud frame collected by the lidar posture.
帧间位移增量可以根据需要或者经验确定。The inter-frame displacement increment can be determined as needed or empirically.
当前点云帧对应的异常筛选绝对位姿可以是帧间位移增量和所述激光雷达采集的上一点云帧对应的最终绝对位姿的和。The abnormal screening absolute pose corresponding to the current point cloud frame may be the sum of the inter-frame displacement increment and the final absolute pose corresponding to the previous point cloud frame collected by the lidar.
过程B3:根据所述预测绝对位姿和与所述当前点云帧对应的全局地图,确定所述当前点云帧的反射点与所述全局地图中对应的全局点之间的第一偏移距离。Process B3: According to the predicted absolute pose and the global map corresponding to the current point cloud frame, determine the first offset between the reflection point of the current point cloud frame and the corresponding global point in the global map distance.
根据异常筛选绝对位姿将当前点云帧的反射点映射到全局地图中,根据每个反射点的映射位置,从全局地图的全局点中确定各反射点最邻近的全局点,并计算各反射点和对应的最邻近的全局点之间的第一偏移距离。Screen the absolute pose according to the abnormality and map the reflection points of the current point cloud frame to the global map. According to the mapping position of each reflection point, determine the nearest global point of each reflection point from the global points of the global map, and calculate each reflection point. The first offset distance between the point and the corresponding nearest-neighbor global point.
过程C3:根据各所述反射点的第一偏移距离,确定并标识所述当前点云帧中的异常反射点Process C3: Determine and identify abnormal reflection points in the current point cloud frame according to the first offset distance of each reflection point
若该第一偏移距离大于或等于变化阈值,则将其确定为异常反射点。If the first offset distance is greater than or equal to the change threshold, it is determined as an abnormal reflection point.
由于异常反射点可能是由于环境变化产生的,其会对定位准确度产生不利影响,因此在确定帧绝对位姿时,将异常反射点去除,从而保证准确性。Since abnormal reflection points may be generated due to environmental changes, which will adversely affect the positioning accuracy, when determining the absolute pose of the frame, the abnormal reflection points are removed to ensure accuracy.
子步骤S2063:根据所述帧预测绝对位姿,将所述当前点云帧中异常反射点外的正常反射点与所述全局地图进行匹配,并根据匹配结果确定所述当前点云帧对应的帧绝对位姿。Sub-step S2063: Predict the absolute pose according to the frame, match the normal reflection points outside the abnormal reflection points in the current point cloud frame with the global map, and determine the corresponding position of the current point cloud frame according to the matching result. Frame absolute pose.
例如,子步骤S2063包括以下过程:For example, sub-step S2063 includes the following processes:
过程A4:根据所述帧预测绝对位姿,将所述当前点云帧中的各正常反射点映射到所述全局地图中,以获得各所述正常反射点的第一映射位置。Process A4: Predict the absolute pose according to the frame, and map each normal reflection point in the current point cloud frame to the global map to obtain a first mapping position of each normal reflection point.
例如将当前点云帧中的每个正常反射点与帧预测绝对位姿中的偏航角、俯仰角和翻滚角相乘,再加上x轴、y轴和z轴的偏移量,其结果即为在全局地图中的第一映射位置。For example, multiply each normal reflection point in the current point cloud frame by the yaw angle, pitch angle and roll angle in the predicted absolute pose of the frame, plus the offsets of the x-axis, y-axis and z-axis, the The result is the first mapped position in the global map.
过程B4:根据各所述正常反射点的第一映射位置和所述全局地图中所述全局点的位置,确定各所述正常反射点对应的k个邻近全局点。Process B4: According to the first mapping position of each normal reflection point and the position of the global point in the global map, determine k adjacent global points corresponding to each of the normal reflection points.
根据第一映射位置,从全局地图包括的全局点中获取k个邻近全局点,这些k个邻近全局点中可能不包括异常全局点,也可能包括异常全局点。异常全局点根据当前点云帧对应的全局地图确定。According to the first mapping position, k adjacent global points are obtained from the global points included in the global map, and these k adjacent global points may not include abnormal global points, or may include abnormal global points. The abnormal global point is determined according to the global map corresponding to the current point cloud frame.
过程C4:针对各所述正常反射点,将所述正常反射点对应的k个邻近全局点中的异常全局点筛除,并确定各所述正常反射点相对由剩余的正常全局点构建的参考面的面偏移距离。Process C4: For each of the normal reflection points, screen out the abnormal global points among the k adjacent global points corresponding to the normal reflection points, and determine the relative reference of each of the normal reflection points constructed by the remaining normal global points The face offset distance for the face.
例如,针对正常反射点M,若其对应的k个邻近全局点中包括异常全局点,则将异常全局点筛除。For example, for the normal reflection point M, if the corresponding k adjacent global points include abnormal global points, the abnormal global points are screened out.
若筛除后剩余的正常全局点数量大于或等于3个,则根据剩余的正常全局点确定参考面,并计算正常反射点与参考面之间的面偏移距离。If the number of normal global points remaining after screening is greater than or equal to 3, the reference surface is determined according to the remaining normal global points, and the surface offset distance between the normal reflection point and the reference surface is calculated.
或者,若筛除后剩余的正常全局点数量小于3个,由于无法构成参考面,则可以放弃该正常反射点。Alternatively, if the number of normal global points remaining after screening is less than 3, since the reference surface cannot be formed, the normal reflection point can be discarded.
过程D4:根据各所述面偏移距离,确定所述当前点云帧对应的帧绝对位姿。Process D4: Determine the absolute pose of the frame corresponding to the current point cloud frame according to the offset distance of each of the surfaces.
在一种可行方式中,依据各面偏移距离的平方和,采用高斯牛顿迭代方式,对帧预测绝对位姿进行优化,获得优化的帧绝对位姿,然后以优化的帧绝对位姿进行迭代优化,最终获得当前点云帧对应的帧绝对位姿。迭代优化的过程可以是返回过程A4,并以优化的帧绝对位姿替代帧预测绝对位姿,继续执行,直至获得收敛的帧绝对位姿。收敛的帧绝对位姿可以是相邻两次优化的帧绝对位姿的偏差小于或等于一定值。In a feasible way, according to the square sum of the offset distances of each surface, the Gauss-Newton iteration method is used to optimize the frame prediction absolute pose to obtain the optimized frame absolute pose, and then iterate with the optimized frame absolute pose Optimization, and finally obtain the absolute pose of the frame corresponding to the current point cloud frame. The iterative optimization process may be to return to process A4, and replace the frame predicted absolute pose with the optimized frame absolute pose, and continue to execute until the converged frame absolute pose is obtained. The converged frame absolute pose may be that the deviation of the frame absolute poses of two adjacent optimizations is less than or equal to a certain value.
步骤S208:对所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿进行位姿融合,以获得所述当前点云帧对应的最终绝对位姿。Step S208: Perform pose fusion on the absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame to obtain the final absolute pose corresponding to the current point cloud frame.
其中,步骤S208包括以下过程:Wherein, step S208 includes the following process:
过程A5:获取所述局部地图在设定的局部坐标系内的第一参考位姿、所述当前点云帧在所述局部坐标系内的第二参考位姿、以及所述局部坐标系和所述全局地图对应的全局坐标系统的转换关系。Process A5: Obtain the first reference pose of the local map in the set local coordinate system, the second reference pose of the current point cloud frame in the local coordinate system, and the local coordinate system and The conversion relationship of the global coordinate system corresponding to the global map.
第一参考位姿可以表示为可以使用前述过程获取的位姿,故不再赘述。The first reference pose can be expressed as The pose obtained in the foregoing process can be used, so it is not repeated here.
第二参考位姿可以表示为可以使用前述过程获取的位姿,故不再赘述。The second reference pose can be expressed as The pose obtained in the foregoing process can be used, so it is not repeated here.
转换关系可以表示为在局部坐标系的位姿确定的情况下转换关系是可知的,故不再赘述。The transformation relation can be expressed as The transformation relationship is known when the pose of the local coordinate system is determined, so it is not repeated here.
过程B5:根据所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿,按照图优化规则构建融合的图优化问题。Process B5: According to the absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame, construct a fused graph optimization problem according to a graph optimization rule.
帧绝对位姿可以表示为可以使用前述过程获取的位姿,故不再赘述。The frame absolute pose can be expressed as The pose obtained in the foregoing process can be used, so it is not repeated here.
地图绝对位姿可以表示为可以使用前述过程获取的位姿,故不再赘述。The absolute pose of the map can be expressed as The pose obtained in the foregoing process can be used, so it is not repeated here.
帧相对位姿可以表示为可以使用前述过程获取的位姿,故不再赘述。The frame relative pose can be expressed as The pose obtained in the foregoing process can be used, so it is not repeated here.
图优化规则可以采用任何适当的规则,故不再赘述。The graph optimization rule can adopt any appropriate rule, so it will not be repeated here.
过程C5:根据所述第一参考位姿、所述第二参考位姿和所述转换关系对所述图优化问题进行求解,以获得所述当前点云帧对应的融合的最终绝对位姿。Process C5: Solve the graph optimization problem according to the first reference pose, the second reference pose, and the conversion relationship to obtain the final fused absolute pose corresponding to the current point cloud frame.
在一可行方式中,对第一参考位姿、所述第二参考位姿和所述转换关系进行优化,并根据优化后的第一参考位姿、所述第二参考位姿和所述转换关系,确定最终的帧绝对位姿。In a feasible manner, the first reference pose, the second reference pose and the conversion relationship are optimized, and the optimized first reference pose, the second reference pose and the conversion relationship to determine the final frame absolute pose.
优化过程例如:The optimization process is for example:
一方面,根据第一参考位姿和第二参考位姿计算中间帧相对位姿,然后求中间帧相对位姿和帧相对位姿的差值,然后根据差值对第一参考位姿和第二参考位姿进行优化。On the one hand, the relative pose of the intermediate frame is calculated according to the first reference pose and the second reference pose, and then the difference between the relative pose of the intermediate frame and the relative pose of the frame is calculated, and then the first reference pose and the first reference pose are calculated according to the difference. The second reference pose is optimized.
另一方面,根据第一参考位姿和转换关系计算中间地图绝对位姿,然后求中间地图绝对位姿和地图绝对位姿的差值,然后根据差值对第一参考位姿和转换关系进行优化。On the other hand, the absolute pose of the intermediate map is calculated according to the first reference pose and the transformation relationship, and then the difference between the absolute pose of the intermediate map and the absolute map pose is calculated, and then the first reference pose and the transformation relationship are calculated according to the difference. optimization.
再一方面,根据第二参考位姿和转换关系计算中间帧绝对位姿,然后求中间帧绝对位姿和帧绝对位姿的差值,然后根据差值对第二参考位姿和转换关系进行优化。On the other hand, the absolute pose of the intermediate frame is calculated according to the second reference pose and the transformation relationship, and then the difference between the absolute pose of the intermediate frame and the absolute pose of the frame is calculated, and then the second reference pose and the transformation relationship are performed according to the difference. optimization.
如此将三个方面进行联合优化,直至获得三个差值最小的第一参考位姿、第二参考位姿和转换关系。In this way, the three aspects are jointly optimized until the first reference pose, the second reference pose and the transformation relationship with the three smallest differences are obtained.
在根据优化的第一参考位姿、第二参考位姿和转换关系确定最终绝对位姿时,针对关键点云帧,其最终绝对位姿表示为 When the final absolute pose is determined according to the optimized first reference pose, the second reference pose and the conversion relationship, for the key point cloud frame, the final absolute pose is expressed as
非关键点云帧,其最终绝对位姿表示为 The non-key point cloud frame whose final absolute pose is represented as
步骤S210:根据所述最终绝对位姿,将所述当前点云帧映射到所述全局地图中,以获得所述当前点云帧中的各反射点在所述全局地图中的第二映射位置。Step S210: Map the current point cloud frame to the global map according to the final absolute pose, so as to obtain the second mapping position of each reflection point in the current point cloud frame in the global map .
步骤S212:根据各所述反射点的所述第二映射位置和所述全局地图中各所述反射点对应的最邻近全局点,确定各所述反射点与所述全局地图中对应的最邻近全局点之间的第二偏移距离。Step S212: According to the second mapping position of each of the reflection points and the nearest global point corresponding to each of the reflection points in the global map, determine the nearest neighbor corresponding to each of the reflection points in the global map. Second offset distance between global points.
步骤S214:根据各所述全局点对应的反射点的第二偏移距离,使用归一化函数确定所述最终绝对位姿的置信度。Step S214: According to the second offset distance of the reflection point corresponding to each of the global points, use a normalization function to determine the confidence of the final absolute pose.
在一可行方式中,根据各反射点的第二偏移距离进行求和,求得第二偏移距离和,并使用归一化函数(如softmax函数)对第二偏移距离和进行归一化处理,从而使其归一化到[0,1]之间,以此获得最终绝对位姿的置信度。In a feasible manner, summing is performed according to the second offset distances of the reflection points to obtain the second offset distance sum, and a normalization function (such as a softmax function) is used to normalize the second offset distance sum. process, so that it is normalized to between [0, 1], so as to obtain the confidence of the final absolute pose.
该置信度可以通过置信度评估单元进行计算,通过置信度可以评估定位的可靠性。The confidence can be calculated by the confidence evaluation unit, and the reliability of the positioning can be evaluated through the confidence.
步骤S216:所述根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点。Step S216 : determining, according to the final absolute pose and the current point cloud frame, an abnormal global point whose position change degree in the global map is greater than or equal to a screening threshold.
在一可行方式中,步骤S216包括以下过程:In a feasible manner, step S216 includes the following processes:
过程A6:根据所述最终绝对位姿,将所述当前点云帧的反射点映射到所述全局地图中,以获得所述反射点在所述全局地图中的第二映射位置。Process A6: Map the reflection point of the current point cloud frame to the global map according to the final absolute pose, so as to obtain a second mapping position of the reflection point in the global map.
过程B6:根据各所述反射点的第二映射位置,确定各所述反射点与所述全局地图中对应的最邻近全局点之间的第二偏移距离。Process B6: Determine a second offset distance between each of the reflection points and the corresponding closest global point in the global map according to the second mapping position of each of the reflection points.
例如,针对每个反射点,从全局点中选取与该反射点的距离最小的全局点,并以该反射点和选定的全局点之间的距离作为第二偏移距离。For example, for each reflection point, a global point with the smallest distance from the reflection point is selected from the global points, and the distance between the reflection point and the selected global point is used as the second offset distance.
过程C6:根据各所述全局点对应的反射点的第二偏移距离,确定位置变化程度大于或等于筛选阈值的异常全局点。Process C6: According to the second offset distance of the reflection point corresponding to each of the global points, an abnormal global point whose position change degree is greater than or equal to the screening threshold is determined.
例如,全局地图中包括全局点1~N,N大于1。其中,P个全局点具有对应的反射点,则这P个全局点的位置变化程度可以是对应的反射点的第二偏移距离。剩余的全局点的位置变化程度可以确定为0。For example, the global map includes global points 1 to N, where N is greater than 1. Wherein, the P global points have corresponding reflection points, and the position change degree of the P global points may be the second offset distance of the corresponding reflection points. The degree of position change of the remaining global points can be determined to be 0.
依据各全局点的位置变化程度,可以确定不同位置变化程度区间分布的全局点的数量,进而根据分布情况确定筛选阈值,并根据筛选阈值确定位置变化程度大于或等于筛选阈值的全局点作为异常全局点。According to the position change degree of each global point, the number of global points distributed in different position change degree intervals can be determined, and then the screening threshold is determined according to the distribution, and the global point whose position change degree is greater than or equal to the screening threshold is determined as an abnormal global point according to the screening threshold. point.
通过这种方式可以根据当前点云帧和对应的最终绝对位姿,确定全局地图中的异常全局点,从而及时确定是否存在环境变化。该全局地图中的异常全局点可以应用到下一点云帧中,如在确定下一点云帧的帧绝对位姿和下一点云帧对应的局部地图的地图绝对位姿时使用,保证在计算绝对位姿时筛除异常全局点,从而避免由于环境变化导致的定位失败,而且也可以降低误差波动范围和误差最大值。In this way, abnormal global points in the global map can be determined according to the current point cloud frame and the corresponding final absolute pose, so as to determine whether there is an environmental change in time. The abnormal global point in the global map can be applied to the next point cloud frame, for example, it is used when determining the frame absolute pose of the next point cloud frame and the map absolute pose of the local map corresponding to the next point cloud frame. The abnormal global points are filtered out during the pose, so as to avoid the localization failure caused by the environment change, and it can also reduce the error fluctuation range and the maximum error value.
如图2B所示,本方法可以由于包含激光里程计、全局绝对定位单元、环境风险评估单元和定位置信度评估单元的鲁棒的激光定位框架执行和实现。该方法可提供持续稳定可靠的定位输出,即输出当前点云帧的最终绝对位姿。As shown in Figure 2B, the present method can be performed and implemented due to a robust laser positioning framework comprising a laser odometry, a global absolute positioning unit, an environmental risk assessment unit, and a positional reliability assessment unit. This method can provide continuous stable and reliable positioning output, that is, output the final absolute pose of the current point cloud frame.
由于引入了环境风险评估单元和定位置信度评估单元,因此能够及时准确地确定环境变化,以很大程度降低由于环境变化导致的定位失败的情况;定位置信度评估单元能够给出当前最终绝对位姿的可靠性。而在确定最终绝对位姿的过程中使用了局部地图和全局地图的匹配,也就是地图绝对位姿,该匹配在环境变化以及短时出地图等情况中具有正向作用,可以有效提高定位可靠性。Due to the introduction of the environmental risk assessment unit and the fixed position reliability assessment unit, the environmental changes can be determined in a timely and accurate manner, so as to greatly reduce the failure of positioning due to environmental changes; the fixed position reliability assessment unit can give the current final absolute position posture reliability. In the process of determining the final absolute pose, the matching of the local map and the global map is used, that is, the absolute map pose. This matching has a positive effect in the situation of environmental changes and short-term map output, which can effectively improve the reliability of positioning. sex.
其中,激光里程计提供当前点云帧相对于局部地图的帧相对位姿信息;全局绝对定位单元提供当前点云帧相对于全局地图的帧绝对位姿,以及局部地图相对于全局地图的地图绝对位姿。Among them, the laser odometer provides the frame relative pose information of the current point cloud frame relative to the local map; the global absolute positioning unit provides the frame absolute pose of the current point cloud frame relative to the global map, and the map absolute position of the local map relative to the global map. pose.
位姿融合单元用于将激光里程计输出的帧相对位姿和全局绝对定位单元输出的帧绝对位姿、地图绝对位姿进行融合输出最终绝对位姿。The pose fusion unit is used to fuse the frame relative pose output by the laser odometer with the frame absolute pose and map absolute pose output by the global absolute positioning unit to output the final absolute pose.
风险评估单元可以检测当前点云帧相对于先验的全局地图的异常反射点以及先验的全局地图中的各个全局点的位置变化程度,进而确定异常全局点。The risk assessment unit can detect the abnormal reflection points of the current point cloud frame relative to the prior global map and the position change degree of each global point in the prior global map, and then determine the abnormal global point.
全局绝对定位单元会将这些异常反射点和异常全局点应用于当前点云帧的帧绝对位姿和局部地图的地图绝对位姿时通过给异常反射点和异常全局点设置更低的权重(如筛除这些异常点)来降低环境变化对全局定位带来的负面影响,从而提升可靠性。The global absolute positioning unit will apply these abnormal reflection points and abnormal global points to the frame absolute pose of the current point cloud frame and the map absolute pose of the local map by setting lower weights for the abnormal reflection points and abnormal global points (such as Screening out these outliers) to reduce the negative impact of environmental changes on global positioning, thereby improving reliability.
通过本方法可以解决无最终置信度输出,无法判断定位结果好坏的问题,而且做了环境变化检测可以将变化信息反馈至绝对位姿确定中,对于大范围的环境变化可以进行较好的定位。This method can solve the problem that there is no final confidence output and it is impossible to judge whether the positioning result is good or bad, and the change information can be fed back to the absolute pose determination after environmental change detection, and better positioning can be performed for large-scale environmental changes. .
综上,本方法能够提供稳定可靠的定位输出,而且鲁棒性更好,能够很大程度降低由于环境变化导致的定位失败的情况;能够给出激光定位的可靠度,在定位误差较大时能够及时报出问题;融合相对位姿和全局的绝对位姿,能够降低定位误差波动以及误差最大值。In summary, this method can provide stable and reliable positioning output, and has better robustness, which can greatly reduce the situation of positioning failure caused by environmental changes; it can give the reliability of laser positioning, and when the positioning error is large The problem can be reported in time; the fusion of relative pose and global absolute pose can reduce the fluctuation of positioning error and the maximum error value.
该方法可以应用于自动驾驶场景中,通过包含绝对定位、相对定位、环境风险评估和定位置信度评估的激光定位框架,对车辆进行持续、稳定可靠的定位。该方法可以应用于不同类型的自动驾驶车辆中,例如,对于物流车辆、公共服务车辆、医疗服务车辆、终端服务车辆等,只要携带有激光里程计的车辆均可以使用该方法进行定位。The method can be applied to autonomous driving scenarios, and the vehicle can be positioned continuously, stably and reliably through a laser positioning framework including absolute positioning, relative positioning, environmental risk assessment and positional reliability assessment. This method can be applied to different types of autonomous vehicles. For example, for logistics vehicles, public service vehicles, medical service vehicles, terminal service vehicles, etc., as long as the vehicle carries a laser odometer, this method can be used for positioning.
对于物流车辆,其可以在自动驾驶过程中按照设定路线将货物运输到适当的位置。在自动行驶过程中融合将当前点云帧映射到局部地图中的帧相对位姿、将局部地图映射到全局地图中的地图绝对位姿和当前点云帧映射到全局地图中的帧绝对位姿获得最终绝对位姿,并根据最终绝对位姿确定异常全局点,并在确定下一点云帧的帧绝对位姿时考虑异常全局点,从而使得帧绝对位姿确定更加准确。For logistics vehicles, it can transport goods to the appropriate location according to the set route during the autonomous driving process. In the process of automatic driving, the frame relative pose that maps the current point cloud frame to the local map, the map absolute pose that maps the local map to the global map, and the frame absolute pose that maps the current point cloud frame to the global map are fused The final absolute pose is obtained, and the abnormal global point is determined according to the final absolute pose, and the abnormal global point is considered when determining the frame absolute pose of the next point cloud frame, so that the frame absolute pose determination is more accurate.
类似地,对于公共服务车辆,例如消防车、除冰车、洒水车、铲雪车、垃圾处理车辆、交通指挥车辆等。这些公共服务车辆在自动驾驶过程中为了能够准确地确定当前所处位置,需要准确地确定自身的位姿,这些公共服务车辆也可以配置该方法,利用搭载的激光里程计采集的当前点云帧、先验的全局地图和局部地图,确定当前点云帧映射到局部地图中的帧相对位姿、局部地图映射到所述全局地图中的地图绝对位姿、以及当前点云帧映射到所述全局地图中的帧绝对位姿,根据帧相对位姿、帧绝对位姿和地图绝对位姿,确定最终绝对位姿,进而根据最终绝对位姿和当前点云帧,确定异常全局点,以基于标识出所述异常全局点的全局地图确定下一点云帧的帧绝对位姿,从而提升了最终绝对位姿的准确。其他具有不同功能的车辆的过程类似,故不再赘述。Similarly, for public service vehicles, such as fire trucks, de-icers, sprinklers, snow plows, garbage disposal vehicles, traffic command vehicles, and the like. In order to accurately determine the current position of these public service vehicles in the process of automatic driving, they need to accurately determine their own poses. These public service vehicles can also be configured with this method, using the current point cloud frame collected by the onboard laser odometer. , a priori global map and local map, determine the relative pose of the current point cloud frame mapped to the frame in the local map, the local map is mapped to the absolute map pose in the global map, and the current point cloud frame is mapped to the The absolute pose of the frame in the global map, according to the relative pose of the frame, the absolute pose of the frame and the absolute pose of the map, the final absolute pose is determined, and then the abnormal global point is determined based on the final absolute pose and the current point cloud frame. The global map identifying the abnormal global point determines the frame absolute pose of the next point cloud frame, thereby improving the accuracy of the final absolute pose. The process for other vehicles with different functions is similar, so it is not repeated here.
通过本实施例,在确定最终绝对位姿时,在帧绝对位姿中融合了帧相对位姿和地图绝对位姿,因而使得融合出的最终绝对位姿更加准确,可以降低误差波动和误差最大值。而且,基于最终绝对位姿可以将当前点云帧映射到全局地图中,从而确定全局地图中各全局点的位置变化程度,以确定由于环境变化导致的异常全局点,以在确定下一点云帧的帧绝对位姿时避免异常全局点的干扰,以此避免环境变化导致的定位失败,提升鲁棒性。Through this embodiment, when the final absolute pose is determined, the frame relative pose and the map absolute pose are fused in the frame absolute pose, so that the final fused absolute pose is more accurate, and the error fluctuation and the maximum error can be reduced. value. Moreover, based on the final absolute pose, the current point cloud frame can be mapped to the global map, so as to determine the position change degree of each global point in the global map, and to determine the abnormal global point caused by the environmental change, so as to determine the next point cloud frame. The frame absolute pose avoids the interference of abnormal global points, so as to avoid localization failure caused by environmental changes and improve robustness.
本实施例的定位方法可以由任意适当的具有定位能力的电子设备执行,包括但不限于:服务器、移动终端(如手机、PAD等)和PC机等。The positioning method in this embodiment may be executed by any appropriate electronic device with positioning capability, including but not limited to: a server, a mobile terminal (such as a mobile phone, a PAD, etc.), a PC, and the like.
实施例三Embodiment 3
参照图3,示出了本申请的实施例三的定位装置的结构框图。Referring to FIG. 3 , a structural block diagram of a positioning apparatus according to Embodiment 3 of the present application is shown.
本实施例中,定位装置包括:In this embodiment, the positioning device includes:
第一获取模块302,用于获取用于将激光雷达采集的当前点云帧映射到局部地图中的帧相对位姿、用于将所述局部地图映射到所述全局地图中的地图绝对位姿、以及用于将所述当前点云帧映射到所述全局地图中的帧绝对位姿;The first obtaining module 302 is used to obtain the frame relative pose for mapping the current point cloud frame collected by the lidar to the local map, and the map absolute pose for mapping the local map to the global map , and the frame absolute pose for mapping the current point cloud frame to the global map;
融合模块304,用于对所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿进行位姿融合,以获得所述当前点云帧对应的最终绝对位姿;A fusion module 304, configured to perform pose fusion on the absolute pose of the frame, the absolute pose of the map, and the relative pose of the frame to obtain the final absolute pose corresponding to the current point cloud frame;
评估模块306,用于根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点,以基于标识出所述异常全局点的所述全局地图确定下一点云帧的帧绝对位姿。The evaluation module 306 is configured to determine, according to the final absolute pose and the current point cloud frame, an abnormal global point whose position change degree in the global map is greater than or equal to the screening threshold, so as to identify the abnormal global point based on the identification of the abnormal global point. The global map determines the frame absolute pose of the next point cloud frame.
可选地,第一获取模块302用于在所述获取用于将所述局部地图映射到所述全局地图中的地图绝对位姿时,确定用于将所述局部地图映射到所述全局地图中的地图预测绝对位姿;根据所述地图预测绝对位姿,将所述局部地图与所述全局地图进行匹配,以确定用于将所述局部地图映射到所述全局地图中的地图绝对位姿。Optionally, the first obtaining module 302 is configured to determine a map used for mapping the local map to the global map when the absolute pose of the map used for mapping the local map to the global map is obtained. Predict the absolute pose according to the map in posture.
可选地,第一获取模块302用于在确定用于将所述局部地图映射到所述全局地图中的地图预测绝对位姿时,获取前一点云帧对应的帧绝对位姿、所述前一点云帧在所述局部坐标系下的第二参考位姿、以及用于将局部地图映射到局部坐标系中的第一参考位姿;基于所述第一参考位姿、所述前一点云帧对应的帧绝对位姿、所述前一点云帧的第二参考位姿,确定所述局部地图对应的地图预测绝对位姿。Optionally, the first obtaining module 302 is configured to obtain the frame absolute pose corresponding to the previous point cloud frame, the The second reference pose of the point cloud frame in the local coordinate system, and the first reference pose for mapping the local map into the local coordinate system; based on the first reference pose, the previous point cloud The absolute pose of the frame corresponding to the frame and the second reference pose of the cloud frame at the previous point are used to determine the absolute pose of the map prediction corresponding to the local map.
可选地,第一获取模块302用于在获取所述当前点云帧映射到所述全局地图中的帧绝对位姿时,根据所述激光雷达采集的前一点云帧对应的最终绝对位姿、和所述前一点云帧在所述局部坐标系下的第二参考位姿、以及所述当前点云帧在所述局部坐标系下的第二参考位姿,确定用于将所述当前点云帧映射到所述全局地图中的帧预测绝对位姿;确定所述当前点云帧包含的反射点中的正常反射点和异常反射点,其中,所述异常反射点为与所述全局地图中相应的全局点之间的第一偏移距离大于或等于变化阈值的反射点;根据所述帧预测绝对位姿,将所述当前点云帧中异常反射点外的正常反射点与所述全局地图进行匹配,并根据匹配结果确定所述当前点云帧对应的帧绝对位姿。Optionally, the first obtaining module 302 is configured to obtain the final absolute pose corresponding to the previous point cloud frame collected by the lidar when obtaining the absolute pose of the frame mapped from the current point cloud frame to the global map. , and the second reference pose of the previous point cloud frame under the local coordinate system, and the second reference pose of the current point cloud frame under the local coordinate system, determine the current The point cloud frame is mapped to the frame prediction absolute pose in the global map; the normal reflection point and the abnormal reflection point in the reflection points included in the current point cloud frame are determined, wherein the abnormal reflection point is the same as the global reflection point. The first offset distance between the corresponding global points in the map is greater than or equal to the reflection point of the change threshold; the absolute pose is predicted according to the frame, and the normal reflection point outside the abnormal reflection point in the current point cloud frame is compared with all the reflection points. The global map is matched, and the absolute pose of the frame corresponding to the current point cloud frame is determined according to the matching result.
可选地,所述第一获取模块302用于在确定所述当前点云帧包含的反射点中的正常反射点和异常反射点时,获取帧间位移增量,并根据所述帧间位移增量和所述激光雷达采集的上一点云帧对应的最终绝对位姿,确定与所述当前点云帧对应的预测绝对位姿;根据所述预测绝对位姿和与所述当前点云帧对应的全局地图,确定所述当前点云帧的反射点与所述全局地图中对应的全局点之间的第一偏移距离;根据各所述反射点的第一偏移距离,确定并标识所述当前点云帧中的异常反射点。Optionally, the first obtaining module 302 is configured to obtain an inter-frame displacement increment when determining a normal reflection point and an abnormal reflection point in the reflection points included in the current point cloud frame, and according to the inter-frame displacement Increment and the final absolute pose corresponding to the last point cloud frame collected by the lidar, determine the predicted absolute pose corresponding to the current point cloud frame; according to the predicted absolute pose and the current point cloud frame The corresponding global map is to determine the first offset distance between the reflection point of the current point cloud frame and the corresponding global point in the global map; according to the first offset distance of each of the reflection points, determine and identify Abnormal reflection points in the current point cloud frame.
可选地,所述第一获取模块302用于在根据所述帧预测绝对位姿,将所述当前点云帧中异常反射点外的正常反射点与所述全局地图进行匹配,并根据匹配结果确定所述当前点云帧对应的帧绝对位姿时,根据所述帧预测绝对位姿,将所述当前点云帧中的各正常反射点映射到所述全局地图中,以获得各所述正常反射点的第一映射位置;根据各所述正常反射点的第一映射位置和所述全局地图中所述全局点的位置,确定各所述正常反射点对应的k个邻近全局点;针对各所述正常反射点,将所述正常反射点对应的k个邻近全局点中的异常全局点筛除,并确定各所述正常反射点相对由剩余的正常全局点构建的参考面的面偏移距离;根据各所述面偏移距离,确定所述当前点云帧对应的帧绝对位姿。Optionally, the first acquisition module 302 is used to predict the absolute pose according to the frame, match the normal reflection points outside the abnormal reflection points in the current point cloud frame with the global map, and match As a result, when the absolute pose of the frame corresponding to the current point cloud frame is determined, the absolute pose is predicted according to the frame, and each normal reflection point in the current point cloud frame is mapped to the global map to obtain each the first mapping position of the normal reflection point; according to the first mapping position of each normal reflection point and the position of the global point in the global map, determine k adjacent global points corresponding to each of the normal reflection points; For each of the normal reflection points, screen out the abnormal global points among the k adjacent global points corresponding to the normal reflection points, and determine the surface of each of the normal reflection points relative to the reference surface constructed by the remaining normal global points Offset distance; according to the offset distance of each surface, determine the absolute pose of the frame corresponding to the current point cloud frame.
可选地,所述融合模块304用于获取所述局部地图在设定的局部坐标系内的第一参考位姿、所述当前点云帧在所述局部坐标系内的第二参考位姿、以及所述局部坐标系和所述全局地图对应的全局坐标系统的转换关系;根据所述帧绝对位姿、所述地图绝对位姿和所述帧相对位姿,按照图优化规则构建融合的图优化问题;根据所述第一参考位姿、所述第二参考位姿和所述转换关系对所述图优化问题进行求解,以获得所述当前点云帧对应的融合的最终绝对位姿。Optionally, the fusion module 304 is configured to obtain the first reference pose of the local map in the set local coordinate system, and the second reference pose of the current point cloud frame in the local coordinate system. , and the transformation relationship of the global coordinate system corresponding to the local coordinate system and the global map; according to the absolute pose of the frame, the absolute pose of the map and the relative pose of the frame, build a fusion Graph optimization problem; solve the graph optimization problem according to the first reference pose, the second reference pose and the conversion relationship to obtain the final absolute pose of fusion corresponding to the current point cloud frame .
可选地,所述装置还包括:Optionally, the device further includes:
第二获取模块308,用于根据所述最终绝对位姿,将所述当前点云帧映射到所述全局地图中,以获得所述当前点云帧中的各反射点在所述全局地图中的第二映射位置;The second obtaining module 308 is configured to map the current point cloud frame to the global map according to the final absolute pose, so as to obtain the reflection points in the current point cloud frame in the global map the second mapping position of ;
确定模块310,用于根据各所述反射点的所述第二映射位置和所述全局地图中各所述反射点对应的最邻近全局点,确定各所述反射点与所述全局地图中对应的最邻近全局点之间的第二偏移距离;A determination module 310 is configured to determine, according to the second mapping position of each of the reflection points and the nearest global point corresponding to each of the reflection points in the global map, that each of the reflection points corresponds to that in the global map The second offset distance between the nearest global points of ;
归一化模块312,用于根据各所述全局点对应的反射点的第二偏移距离,使用归一化函数确定所述最终绝对位姿的置信度。The normalization module 312 is configured to use a normalization function to determine the confidence of the final absolute pose according to the second offset distance of the reflection point corresponding to each of the global points.
可选地,所述评估模块306用于在根据所述最终绝对位姿和所述当前点云帧,确定所述全局地图中位置变化程度大于或等于筛选阈值的异常全局点时,根据所述最终绝对位姿,将所述当前点云帧的反射点映射到所述全局地图中,以获得所述反射点在所述全局地图中的第二映射位置;根据各所述反射点的第二映射位置,确定各所述反射点与所述全局地图中对应的最邻近全局点之间的第二偏移距离;根据各所述全局点对应的反射点的第二偏移距离,确定位置变化程度大于或等于筛选阈值的异常全局点。Optionally, the evaluation module 306 is configured to determine, according to the final absolute pose and the current point cloud frame, an abnormal global point whose position change degree in the global map is greater than or equal to the screening threshold, according to the In the final absolute pose, the reflection point of the current point cloud frame is mapped to the global map to obtain the second mapping position of the reflection point in the global map; according to the second mapping position of each reflection point mapping the position, determining the second offset distance between each of the reflection points and the corresponding nearest global point in the global map; determining the position change according to the second offset distance of the reflection point corresponding to each of the global points Anomalous global points whose degree is greater than or equal to the screening threshold.
本实施例的定位装置用于实现前述多个方法实施例中相应的定位方法,并具有相应的方法实施例的有益效果,在此不再赘述。此外,本实施例的定位装置中的各个模块的功能实现均可参照前述方法实施例中的相应部分的描述,在此亦不再赘述。The positioning apparatus in this embodiment is used to implement the corresponding positioning methods in the foregoing multiple method embodiments, and has the beneficial effects of the corresponding method embodiments, which will not be repeated here. In addition, for the function implementation of each module in the positioning apparatus of this embodiment, reference may be made to the descriptions of the corresponding parts in the foregoing method embodiments, and details are not repeated here.
实施例四Embodiment 4
参照图4,示出了根据本申请实施例四的一种电子设备的结构示意图,本申请具体实施例并不对电子设备的具体实现做限定。Referring to FIG. 4 , a schematic structural diagram of an electronic device according to Embodiment 4 of the present application is shown. The specific embodiments of the present application do not limit the specific implementation of the electronic device.
如图4所示,该电子设备可以包括:处理器(processor)402、通信接口(Communications Interface)404、存储器(memory)406、以及通信总线408。As shown in FIG. 4 , the electronic device may include: a processor (processor) 402 , a communication interface (Communications Interface) 404 , a memory (memory) 406 , and a communication bus 408 .
其中:in:
处理器402、通信接口404、以及存储器406通过通信总线408完成相互间的通信。The processor 402 , the
通信接口404,用于与其它电子设备或服务器进行通信。The
处理器402,用于执行程序410,具体可以执行上述定位方法实施例中的相关步骤。The processor 402 is configured to execute the
具体地,程序410可以包括程序代码,该程序代码包括计算机操作指令。Specifically, the
处理器402可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。智能设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 402 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application. One or more processors included in the smart device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.
存储器406,用于存放程序410。存储器406可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 406 is used to store the
程序410具体可以用于使得处理器402执行前述定位方法对应的步骤。The
程序410中各步骤的具体实现可以参见上述定位方法实施例中的相应步骤和单元中对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和模块的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。For the specific implementation of the steps in the
需要指出,根据实施的需要,可将本申请实施例中描述的各个部件/步骤拆分为更多部件/步骤,也可将两个或多个部件/步骤或者部件/步骤的部分操作组合成新的部件/步骤,以实现本申请实施例的目的。It should be pointed out that, according to the needs of implementation, each component/step described in the embodiments of the present application may be split into more components/steps, or two or more components/steps or part of operations of components/steps may be combined into New components/steps to achieve the purpose of the embodiments of the present application.
上述根据本申请实施例的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当所述软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的定位方法。此外,当通用计算机访问用于实现在此示出的定位方法的代码时,代码的执行将通用计算机转换为用于执行在此示出的定位方法的专用计算机。The above-described methods according to the embodiments of the present application may be implemented in hardware, firmware, or as software or computer codes that may be stored in a recording medium (such as CD ROM, RAM, floppy disk, hard disk, or magneto-optical disk), or implemented by Network downloaded computer code originally stored in a remote recording medium or non-transitory machine-readable medium and will be stored in a local recording medium so that the methods described herein can be stored on a computer using a general purpose computer, special purpose processor or programmable or such software processing on a recording medium of dedicated hardware such as ASIC or FPGA. It will be understood that a computer, processor, microprocessor controller or programmable hardware includes storage components (eg, RAM, ROM, flash memory, etc.) that can store or receive software or computer code, when the software or computer code is executed by a computer, When accessed and executed by a processor or hardware, the positioning methods described herein are implemented. Furthermore, when a general purpose computer accesses code for implementing the positioning methods shown herein, execution of the code converts the general purpose computer into a special purpose computer for executing the positioning methods shown herein.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。Those of ordinary skill in the art can realize that the units and method steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
以上实施方式仅用于说明本申请实施例,而并非对本申请实施例的限制,有关技术领域的普通技术人员,在不脱离本申请实施例的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本申请实施例的范畴,本申请实施例的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the embodiments of the present application, but are not intended to limit the embodiments of the present application. Those of ordinary skill in the relevant technical field can also make various Therefore, all equivalent technical solutions also belong to the scope of the embodiments of the present application, and the patent protection scope of the embodiments of the present application should be defined by the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110441026.XA CN115236680A (en) | 2021-04-23 | 2021-04-23 | Positioning method, positioning device, electronic equipment and computer storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110441026.XA CN115236680A (en) | 2021-04-23 | 2021-04-23 | Positioning method, positioning device, electronic equipment and computer storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115236680A true CN115236680A (en) | 2022-10-25 |
Family
ID=83666426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110441026.XA Pending CN115236680A (en) | 2021-04-23 | 2021-04-23 | Positioning method, positioning device, electronic equipment and computer storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115236680A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116255976A (en) * | 2023-05-15 | 2023-06-13 | 长沙智能驾驶研究院有限公司 | Map fusion method, device, equipment and medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107709928A (en) * | 2015-04-10 | 2018-02-16 | 欧洲原子能共同体由欧洲委员会代表 | For building figure and the method and apparatus of positioning in real time |
KR20180080828A (en) * | 2017-01-05 | 2018-07-13 | 서울대학교산학협력단 | Method for recognizing lane-level vehicle positioning information based on lidar map matching, recording medium and device for performing the method |
US20180299557A1 (en) * | 2017-04-17 | 2018-10-18 | Baidu Online Network Technology (Beijing) Co., Ltd | Method and apparatus for updating maps |
US20190271780A1 (en) * | 2016-11-18 | 2019-09-05 | Dibotics | Methods and systems for vehicle environment map generation and updating |
CN111947671A (en) * | 2020-03-02 | 2020-11-17 | 北京百度网讯科技有限公司 | Method, apparatus, computing device and computer-readable storage medium for positioning |
CN111947672A (en) * | 2020-03-02 | 2020-11-17 | 北京百度网讯科技有限公司 | Method, apparatus, device and medium for detecting environmental changes |
-
2021
- 2021-04-23 CN CN202110441026.XA patent/CN115236680A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107709928A (en) * | 2015-04-10 | 2018-02-16 | 欧洲原子能共同体由欧洲委员会代表 | For building figure and the method and apparatus of positioning in real time |
US20190271780A1 (en) * | 2016-11-18 | 2019-09-05 | Dibotics | Methods and systems for vehicle environment map generation and updating |
KR20180080828A (en) * | 2017-01-05 | 2018-07-13 | 서울대학교산학협력단 | Method for recognizing lane-level vehicle positioning information based on lidar map matching, recording medium and device for performing the method |
US20180299557A1 (en) * | 2017-04-17 | 2018-10-18 | Baidu Online Network Technology (Beijing) Co., Ltd | Method and apparatus for updating maps |
CN111947671A (en) * | 2020-03-02 | 2020-11-17 | 北京百度网讯科技有限公司 | Method, apparatus, computing device and computer-readable storage medium for positioning |
CN111947672A (en) * | 2020-03-02 | 2020-11-17 | 北京百度网讯科技有限公司 | Method, apparatus, device and medium for detecting environmental changes |
Non-Patent Citations (2)
Title |
---|
丁帅华 等: "基于局部子图匹配的SLAM方法", 机器人, no. 04, 15 July 2009 (2009-07-15) * |
杨冬冬 等: "基于局部与全局优化的双目视觉里程计算法", 计算机工程, 31 December 2018 (2018-12-31) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116255976A (en) * | 2023-05-15 | 2023-06-13 | 长沙智能驾驶研究院有限公司 | Map fusion method, device, equipment and medium |
CN116255976B (en) * | 2023-05-15 | 2023-10-31 | 长沙智能驾驶研究院有限公司 | Map fusion methods, devices, equipment and media |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102581263B1 (en) | Method, apparatus, computing device and computer-readable storage medium for positioning | |
CN109540142B (en) | Robot positioning navigation method and device, and computing equipment | |
CN113593017B (en) | Method, device, equipment and storage medium for constructing surface three-dimensional model of strip mine | |
Huang et al. | V2X cooperative perception for autonomous driving: Recent advances and challenges | |
CN112037260B (en) | Position estimation method and device for tracking target and unmanned aerial vehicle | |
CN111968229A (en) | High-precision map making method and device | |
CN113376650A (en) | Mobile robot positioning method and device, electronic equipment and storage medium | |
CN113093128A (en) | Method and device for calibrating millimeter wave radar, electronic equipment and road side equipment | |
JP7371148B2 (en) | Method, device, storage medium and program for determining vehicle positioning information | |
WO2021017072A1 (en) | Laser radar-based slam closed-loop detection method and detection system | |
CN114398455B (en) | Heterogeneous multi-robot collaborative SLAM map fusion method | |
WO2023273169A1 (en) | Vision and laser-fused 2.5d map construction method | |
CN113139696B (en) | Trajectory prediction model construction method and trajectory prediction method and device | |
WO2025060919A1 (en) | Elevation-information processing method and apparatus, and electronic device and storage medium | |
CN117392215A (en) | A mobile robot pose correction method based on improved AMCL and PL-ICP point cloud matching | |
CN115236680A (en) | Positioning method, positioning device, electronic equipment and computer storage medium | |
CN117011220A (en) | Robot obstacle detection method, device, medium and electronic equipment | |
CN115937449A (en) | High-precision map generation method and device, electronic equipment and storage medium | |
CN119469189A (en) | Vehicle positioning method, device, electronic equipment and storage medium | |
CN117213470B (en) | A multi-machine fragment map aggregation and update method and system | |
CN116883504B (en) | Method and device for calibrating vehicle orientation, computer equipment and storage medium | |
CN118500382A (en) | Map updating method and device, robot and storage medium | |
CN115655291B (en) | Method, device, mobile robot, equipment and medium for laser SLAM closed loop mapping | |
US20230046001A1 (en) | Map information update method, landmark generation method, and feature point distribution adjustment method | |
CN117576200A (en) | Long-period mobile robot positioning method, system, equipment and medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230719 Address after: Room 437, Floor 4, Building 3, No. 969, Wenyi West Road, Wuchang Subdistrict, Yuhang District, Hangzhou City, Zhejiang Province Applicant after: Wuzhou Online E-Commerce (Beijing) Co.,Ltd. Address before: Room 01, 45 / F, AXA building, 8 Shanton Road, Singapore Applicant before: Alibaba Singapore Holdings Ltd. |