[go: up one dir, main page]

CN115233485A - 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用 - Google Patents

一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用 Download PDF

Info

Publication number
CN115233485A
CN115233485A CN202210916361.5A CN202210916361A CN115233485A CN 115233485 A CN115233485 A CN 115233485A CN 202210916361 A CN202210916361 A CN 202210916361A CN 115233485 A CN115233485 A CN 115233485A
Authority
CN
China
Prior art keywords
nanocellulose
suspension
modified
oil
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210916361.5A
Other languages
English (en)
Inventor
郭大亮
严中禹
沙力争
赵会芳
刘蓓
李静
许银超
苑田忠
孟亚会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lover Health Science and Technology Development Co Ltd
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN202210916361.5A priority Critical patent/CN115233485A/zh
Publication of CN115233485A publication Critical patent/CN115233485A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种改性纳米纤维素及其改性制备方法和应用,按如下步骤进行:向Tempo氧化的纳米纤维素悬浮液加入酒石酸溶液,反应结束后得到白色悬浮液;S2、将白色悬浮液离心和水洗,然后进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,S3、将纳米纤维素悬浮液均匀分散;将硬脂基伯胺溶于水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后搅拌反应,离心分离得到纳米颗粒,再用水和乙醇洗涤,获得改性纳米纤维素。将制得的改性纳米纤维素应用于防油纸的制造中。本发明制得的改性纳米纤维素安全可靠,防水防油,应用于食品包装纸上有很大的发展前景。

Description

一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用
技术领域
本发明涉及高分子材料制备技术领域,特别涉及一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用。
背景技术
随着人们环保意识的提高以及国家禁塑令的实行,不可降解的塑料将逐渐消失在人们的视野里,取而代之的是可回收利用、可降解、无白色污染的纸。但是,防油纸过去常常使用涂蜡或者淋膜的方法提高纸张的抗油性能,或者是添加含氟防油涂料,这些对环境和人体造成了极大威胁。因此开发出无氟的可降解的防油涂料是一种可行,且迫在眉睫的方法
纳米纤维素的制备原料来源丰富,制备方法趋于成熟,可以逐步大规模生产。纳米纤维素具有生物材料的轻质、可再生、可降解及生物相容性等优点,且具有较大的比表面积、高结晶度、高强度、高热稳定性等诸多优良性能。然而,由于其表面大量羟基存在氢键的作用,致使其很容易发生一定程度的不可逆聚集成团,分散不均匀等问题,大大限制了其在众多领域中的应用。基于此,我们希望可以对纳米纤维素其进行接枝改性,。
发明内容
本发明的目的在于,提供一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用。本发明制备的改性纳米纤维素具有良好的防水和防油特性,在食品包装、生物医药、纺织印染、涂料、造纸、化妆品等领域中的应用。
本发明的技术方案:一种无氟疏水疏油的改性纳米纤维素的制备方法,按如下步骤进行:
S1、按质量份取质量分数为0.5-1.5%的Tempo氧化的纳米纤维素悬浮液40-80g,加入1mol/L的酒石酸溶液10-30ml,在50-70℃下搅拌反应1-3h,反应结束后得到白色悬浮液;
S2、将白色悬浮液离心3-5次,每次20-40min,再用水洗2-4次,然后采用分子量8000-14000的透析袋进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,纳米纤维素悬浮液的浓度为0.5-2mg/mL;
S3、将100-200mL浓度为0.5-2mg/mL的纳米纤维素悬浮液均匀分散;将100-500mg硬脂基伯胺溶于40-60mL无水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后在50-70℃条件下搅拌反应3-5h,反应结束后通过离心分离得到纳米颗粒,用水和乙醇洗涤,获得改性纳米纤维素。
上述的无氟疏水疏油的改性纳米纤维素的制备方法,步骤S1中,所述Tempo氧化的纳米纤维素悬浮液的质量分数为1.0%,质量份为60g;所述酒石酸溶液的体积为20ml,反应温度为60℃,搅拌时间为2h。
前述的无氟疏水疏油的改性纳米纤维素的制备方法,步骤S3中,所述纳米纤维素悬浮液的浓度为1mg/ml,体积为150ml;所述硬脂基伯胺的质量为375mg;所述无水乙醇的体积为50ml;反应温度为60℃,搅拌时间为4h。
一种无氟疏水疏油的改性纳米纤维素,利用前述的方法制得。
一种改性纳米纤维素的应用,将前述的方法制得的改性纳米纤维素应用于防油纸的制造中。
上述的应用,取质量分数为0.5-2%的O,N-羧甲基壳聚糖溶液,按照O,N-羧甲基壳聚糖与改性纳米纤维素固含量比为1:1的比例,向O,N-羧甲基壳聚糖溶液中加入改性纳米纤维素,搅拌均匀获得防油涂料。
前述的应用,将防油涂料均匀涂布在纸张表面,静置30-60S,然后干燥得到防油纸。
前述的应用,将防油涂料均匀涂布在纸张表面,静置30-60S,重复涂布2-5次,然后干燥得到多层涂布的防油纸。
前述的无氟抗菌防油纸的制备方法,所述O,N-羧甲基壳聚糖溶液的制备是将2gO,N-羧甲基壳聚糖加入到200ml去离子水中,再加入2ml的冰乙酸,然后搅拌4h得到。
与现有技术相比,本发明将Tempo氧化的纳米纤维素悬浮液与酒石酸溶液进行反应,以得到酒石酸交联的纳米纤维素悬浮液,使得酒石酸成功的接枝到纳米纤维素上,然后再接枝硬脂基伯胺,从而制得改性纳米纤维素。经过测试,改性纳米纤维素的水接触角范围在132°—141°,油接触角在104.3°—129°,具有良好的疏水疏油效果;同时硬脂基伯胺接枝后,纳米纤维素的表面形成了明显的粗糙结构,这些粗糙结构增加了改性纳米纤维素表面的粗糙结构,进一步增强了改性纳米纤维素的疏水疏油效果。本发明以此改性纳米纤维素来代替石蜡或淋膜,对食品包装原纸进行涂布,使其具有良好的防水防油效果。本发明采用的纳米纤维素具有生物可降解、来源广泛、安全环保等优点,制得的改性纳米纤维素安全可靠,防水防油,应用于食品包装纸上有很大的发展前景。
附图说明
图1为是水接触角随硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系的变化图;
图2是油接触角随硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系的变化图;
图3是红外光谱测试结果图;
图4是显示了TOCNF、CA-CNF、ODA-CNF和ODA-CA-CNF的FTIR光谱;
图5显示了ODA-CA-CNF-X的FTIR光谱;
图6显示了C的ODA-CA-CNF元素映射图像;
图7显示了O的ODA-CA-CNF元素映射图像;
图8显示了N的ODA-CA-CNF元素映射图像;
图9为制备改性纳米纤维素的化学方程式原理图;
图10为不同样品的SEM显微照片和元素映射图像:a、c、e和g分别对应于TOCNF、CA-CNF、ODA-CNF和ODA-CA-CNF,b、d、f和h显示了放大视图。
具体实施方式
下面实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例1:一种无氟疏水疏油的改性纳米纤维素的制备方法,按如下步骤进行:
S1、按质量份取质量分数为1.5%的Tempo氧化的纳米纤维素悬浮液65g,加入1mol/L的酒石酸溶液25ml,在55℃下搅拌反应2h,反应结束后得到白色悬浮液;
S2、将白色悬浮液离心3-5次。离心转速4000rpm,每次35min,再用水洗2-4次,然后采用分子量8000-14000的透析袋进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,纳米纤维素悬浮液的浓度为1.5mg/mL;
S3、将100mL浓度为1.5mg/mL的纳米纤维素悬浮液均匀分散;将150mg硬脂基伯胺溶于50mL无水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后在60℃条件下搅拌反应4h,反应结束后通过离心分离(4000rpm)得到纳米颗粒,用水和乙醇洗涤,获得改性纳米纤维素。
实施例2:一种无氟疏水疏油的改性纳米纤维素的制备方法,按如下步骤进行:
S1、按质量份取质量分数为1%的Tempo氧化的纳米纤维素悬浮液60g,加入1mol/L的酒石酸溶液20ml,在60℃下搅拌反应2h,反应结束后得到白色悬浮液;
S2、将白色悬浮液离心4次.离心转速4000rpm,每次30min,再用水洗3次,然后采用分子量8000-14000的透析袋进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,纳米纤维素悬浮液的浓度为1mg/mL;
S3、将150mL浓度为1mg/mL的纳米纤维素悬浮液均匀分散;将150mg硬脂基伯胺溶于50mL无水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后在60℃条件下搅拌反应4h,反应结束后通过离心(4000rpm)分离得到纳米颗粒,用水和乙醇洗涤,获得改性纳米纤维素。
实施例3:一种无氟疏水疏油的改性纳米纤维素的制备方法,按如下步骤进行:
S1、按质量份取质量分数为1%的Tempo氧化的纳米纤维素悬浮液60g,加入1mol/L的酒石酸溶液20ml,在60℃下搅拌反应2h,反应结束后得到白色悬浮液;
S2、将白色悬浮液离心4次.离心转速4000rpm,每次30min,再用水洗3次,然后采用分子量8000-14000的透析袋进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,纳米纤维素悬浮液的浓度为1mg/mL;
S3、将150mL浓度为1mg/mL的纳米纤维素悬浮液均匀分散;将375mg硬脂基伯胺溶于50mL无水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后在60℃条件下搅拌反应4h,反应结束后通过离心(4000rpm)分离得到纳米颗粒,用水和乙醇洗涤,获得改性纳米纤维素。
实施例4:一种改性纳米纤维素的应用,将实施例1或实施例2中制得的改性纳米纤维素应用在防油纸的制备中。
具体的,先制备防油涂料:取2gO,N-羧甲基壳聚糖,加入到200m去离子水中,再加入2ml冰乙酸,搅拌4h至O,N-羧甲基壳聚糖完全溶解,得到质量分数为1%的O,N-羧甲基壳聚糖溶液。所述的O,N-羧甲基壳聚糖可以是任何一种O,N-羧甲基壳聚糖或者两种、多种O,N-羧甲基壳聚糖的混合物,聚乙烯醇的粘度和分子量可以根据产品生产的要求进行变更。等待O,N-羧甲基壳聚糖溶液冷却至室温;冷却后,按照O,N-羧甲基壳聚糖与改性纳米纤维素固含量比为1:1的比例,向O,N-羧甲基壳聚糖溶液中加入改性纳米纤维素,搅拌均匀获得防油涂料。
使用涂布棒将防油涂料均匀的涂布于普通纸张表面,静置30~60s以便其渗透于普通纸张纤维中,依次交替2~5次将涂布后的纸置于室温下干燥12~24h得到多层的防油纸。在其他实施例中,也可以涂布1次,在选择普通纸张时,滤纸、打印纸和书本用纸均可。
为了验证本申请的硬脂基伯胺改性的防水防油效果,申请人通过修改硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系,来得到水接触角和油接触角的数据,如图1和图2所示。图1是水接触角随硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系的变化图,图2是油接触角随硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系的变化图。从图1和图2可以看出,硬脂基伯胺可以改性纳米纤维素,使其水接触角最高可以达到141°,而随着硬脂基伯胺用量的增大,水接触角先下降,在逐渐增大,最后下降137°后维持不变;而油接触角最高可以达到129°,随着硬脂基伯胺用量的增大,油接触角呈不稳定波动趋势。因此纳米纤维素的水接触角范围在132°—141°,油接触角在104.3°—129°,具有良好的疏水疏油效果,同时硬脂基伯胺与Tempo氧化的纳米纤维素的比例关系在2.5∶1时最佳,与实施例3中的比例相同。
进一步的,申请人使用傅里叶变换红外光谱分析仪测试,将烘干后的样品(TEMPO氧化纳米纤维素(简称TOCNF)、酒石酸交联的纳米纤维素(简称CA-CNF)以及改性纳米纤维素(简称ODA-CA-CNF))进行研磨,采用压片法,与光谱级KBr进行压片,放入红外光谱仪中进行分析。其中测试波数范围为4000~500cm-1,分辨率为2cm-1。结果如图3所示,从图3中分析可知,CA-CNF的FT-IR光谱表明,TOCNF与酒石酸反应引起了TOCNF的一些化学变化。这些化学变化包括与-OH基团相关的带的相对强度明显降低(3440cm-1),并在1732cm-1附近出现新的吸收带,这一新谱带归因于新形成的酯基中羰基(C=O)的伸缩振动。这表明酒石酸成功地接枝到了CNF表面。另一方面,ODA-CA-CNF的FT-IR光谱表明,与未改性的CA-CNF相比,在1466cm-1和1595cm-1附近出现了一个新的吸收带。这些新谱带可分别归因于酰胺基团N-H和C-N的伸缩振动。此外,ODA-CA-CNF在1736cm-1处羰基(-COOH)的C=O振动消失,表明硬脂基伯胺接枝成功。以上结果表明,改性纳米纤维素成功制备。图4显示了TOCNF、CA-CNF、ODA-CNF(硬脂基伯胺改性纳米纤维素)和ODA-CA-CNF的FTIR光谱;图5显示了ODA-CA-CNF-X的FTIR光谱(X为硬脂基伯胺与CNF的质量比);图6-8分别显示了C、O和N的ODA-CA-CNF元素映射图像;图9为制备改性纳米纤维素的化学方程式原理图。
此外,申请人还使用扫描电镜对烘干后的样品(TEMPO氧化纳米纤维素(简称TOCNF)、酒石酸交联的纳米纤维素(简称CA-CNF)、硬脂基伯胺改性纳米纤维素(简称ODA-CNF)以及改性纳米纤维素(简称ODA-CA-CNF))进行观察,结果如图10所示。图10为不同样品的SEM显微照片和元素映射图像:a、c、e和g分别对应于TOCNF、CA-CNF、ODA-CNF和ODA-CA-CNF,b、d、f和h显示了放大视图。从图4中可以看出,TEMPO氧化纳米纤维素的表面结构较为光滑平整,并无明显的粗糙结构,酒石酸交联的纳米纤维素(CA-CNF)表面结构无明显变化,与TOCNF表面较为相似。而改性纳米纤维素(ODA-CA-CNF)表面形成了明显的粗糙结构,这些粗糙结构增加了改性纳米纤维素表面的粗糙结构,进一步增强了改性纳米纤维素的疏水疏油效果。
再进一步地,申请人对涂布后的纸张进行形成测试,将原纸纸在60℃烘箱中干燥5h,随后通过刮涂的方式涂覆在纸张表面(仅进行单面涂布),并将涂布的纸张放在60℃的烘箱中干燥1-2h即可。随后对对纸张的物理性能(包括水接触角、油接触角、防油等级)分别进行了测试,结果如下表1所示:
涂布量g/m<sup>2</sup> 水接触角° 油接触角° 防油等级
O,N-羧甲基壳聚糖 4 91.4 27.5 3
TOCNF 4 99.0 37.4 5
ODA-CNF 4 133.3 104.8 7
CA-CNF 4 77.2 64.8 4
ODA-CA-CNF 4 151.2 106.6 8
原纸 定量70 0 7.4 0
表1
从表1中可以看出,采用本发明制备的改性纳米纤维素来制备防油涂料并应用与纸质的涂布,其可以明显的提高纸张的水接触角和油接触角,并提高防油等级,防油等级可以达到8级。
综上所述,本发明采用的纳米纤维素具有生物可降解、来源广泛、安全环保等优点,制得的改性纳米纤维素安全可靠,防水防油,应用于食品包装纸上有很大的发展前景。

Claims (9)

1.一种无氟疏水疏油的改性纳米纤维素的制备方法,其特征在于:按如下步骤进行:
S1、按质量份取质量分数为0.5-1.5%的Tempo氧化的纳米纤维素悬浮液40-80g,加入1mol/L的酒石酸溶液10-30ml,在50-70℃下搅拌反应1-3h,反应结束后得到白色悬浮液;
S2、将白色悬浮液离心3-5次,每次20-40min,再用水洗2-4次,然后采用分子量8000-14000的透析袋进行透析,透析后得到酒石酸交联的纳米纤维素悬浮液,纳米纤维素悬浮液的浓度为0.5-2mg/mL;
S3、将100-200mL浓度为0.5-2mg/mL的纳米纤维素悬浮液均匀分散;将100-500mg硬脂基伯胺溶于40-60mL无水乙醇中,在磁力搅拌下加入至分散后的纳米纤维素悬浮液中,然后在50-70℃条件下搅拌反应3-5h,反应结束后通过离心分离得到纳米颗粒,用水和乙醇洗涤,获得改性纳米纤维素。
2.根据权利要求1所述的无氟疏水疏油的改性纳米纤维素的制备方法,其特征在于:步骤S1中,所述Tempo氧化的纳米纤维素悬浮液的质量分数为1.0%,质量份为60g;所述酒石酸溶液的体积为20ml,反应温度为60℃,搅拌时间为2h。
3.根据权利要求1所述的无氟疏水疏油的改性纳米纤维素的制备方法,其特征在于:步骤S3中,所述纳米纤维素悬浮液的浓度为1mg/ml,体积为150ml;所述硬脂基伯胺的质量为375mg;所述无水乙醇的体积为50ml;反应温度为60℃,搅拌时间为4h。
4.一种无氟疏水疏油的改性纳米纤维素,其特征在于:利用权利要求1-3任一项所述的方法制得。
5.一种改性纳米纤维素的应用,其特征在于:将权利要求1-3任一项所述的方法制得的改性纳米纤维素应用于防油纸的制造中。
6.根据权利要求5所述的应用,其特征在于:取质量分数为0.5-2%的O,N-羧甲基壳聚糖溶液,按照O,N-羧甲基壳聚糖与改性纳米纤维素固含量比为1:1的比例,向O,N-羧甲基壳聚糖溶液中加入改性纳米纤维素,搅拌均匀获得防油涂料涂料。
7.根据权利要求5所述的应用,其特征在于:将防油涂料均匀涂布在纸张表面,静置30-60S,然后干燥得到防油纸。
8.根据权利要求5所述的应用,其特征在于:将防油涂料均匀涂布在纸张表面,静置30-60S,重复涂布2-5次,然后干燥得到多层涂布的防油纸。
9.根据权利要求5所述的应用,其特征在于:所述O,N-羧甲基壳聚糖溶液的制备是将2gO,N-羧甲基壳聚糖加入到200ml去离子水中,再加入2ml的冰乙酸,然后搅拌4h得到。
CN202210916361.5A 2022-08-01 2022-08-01 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用 Pending CN115233485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210916361.5A CN115233485A (zh) 2022-08-01 2022-08-01 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210916361.5A CN115233485A (zh) 2022-08-01 2022-08-01 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115233485A true CN115233485A (zh) 2022-10-25

Family

ID=83677422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210916361.5A Pending CN115233485A (zh) 2022-08-01 2022-08-01 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115233485A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116607352A (zh) * 2023-05-16 2023-08-18 浙江科技学院 采用酰胺化改性纳米纤维素制备无氟食品防油纸的方法
CN116623459A (zh) * 2023-07-11 2023-08-22 中国制浆造纸研究院衢州分院 一种可降解抗菌壳聚糖改性纳米纤维素防油纸的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210355244A1 (en) * 2020-05-15 2021-11-18 National Taiwan University Of Science And Technology Modified cellulose nanofiber, single-layer laminate including the same, and method for manufacturing modified cellulose nanofiber
CN113773404A (zh) * 2021-07-23 2021-12-10 天津科技大学 一种纳米纤维素的超疏水改性方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210355244A1 (en) * 2020-05-15 2021-11-18 National Taiwan University Of Science And Technology Modified cellulose nanofiber, single-layer laminate including the same, and method for manufacturing modified cellulose nanofiber
CN113773404A (zh) * 2021-07-23 2021-12-10 天津科技大学 一种纳米纤维素的超疏水改性方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOHAMMED MAJDOUB ET AL.,: "Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals" *
NATTINEE KRATHUMKHET ET AL.,: "Self-standing films of octadecylaminated-TEMPO-oxidized cellulose nanofibrils with antifingerprint properties" *
蒋轩: "羧甲基壳聚糖在纸张阻隔涂布中的应用研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116607352A (zh) * 2023-05-16 2023-08-18 浙江科技学院 采用酰胺化改性纳米纤维素制备无氟食品防油纸的方法
CN116623459A (zh) * 2023-07-11 2023-08-22 中国制浆造纸研究院衢州分院 一种可降解抗菌壳聚糖改性纳米纤维素防油纸的制备方法
CN116623459B (zh) * 2023-07-11 2024-06-21 中国制浆造纸研究院衢州分院 一种可降解抗菌壳聚糖改性纳米纤维素防油纸的制备方法

Similar Documents

Publication Publication Date Title
CN115233485A (zh) 一种无氟疏水疏油的改性纳米纤维素及其制备方法和应用
Rodionova et al. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications
Mascheroni et al. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials
Rubentheren et al. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker
Le Gars et al. Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules
CN115142299B (zh) 一种无塑涂布环保包装材料
Yang et al. Bacterial cellulose–poly (vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking
CN114086421A (zh) 一种无氟防水防油剂及其制备方法和应用
Chen et al. Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP
Xie et al. Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance
Fonseca et al. Fabrication and characterization of native and oxidized potato starch biodegradable films
Krysztof et al. Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials
Schio et al. Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption
Long et al. Preparation and oil-resistant mechanism of chitosan/cationic starch oil-proof paper
CN110452423B (zh) 一种复合膜及其制备方法
Ding et al. A waterborne bio-based polymer pigment: colored regenerated cellulose suspension from waste cotton fabrics
Deng et al. The effect of dopamine modified titanium dioxide nanoparticles on the performance of Poly (vinyl alcohol)/titanium dioxide composites
Samyn et al. Hydrophobic waterborne coating for cellulose containing hybrid organic nanoparticle pigments with vegetable oils
Li et al. Phytic acid-assist for self-healing nanocomposite hydrogels with surface functionalization of cellulose nanocrystals via SI-AGET ATRP
Zhang et al. One-step fabrication of eco-friendly multi-functional amphiphobic coatings for cellulose-based food packaging
CN115124720A (zh) 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用
Tang et al. Preparation and characterization of soy protein isolate–carboxymethylated konjac glucomannan blend films
He et al. Surface morphology analysis and hydrophobic property design for cotton clothing fabric based on vinyl-bearing silane coupling agent
Nizardo et al. Poly (vinyl alcohol)/Carboxymethyl Cellulose/Cellulose nanofibrils nanocomposite as coating for food packaging paper
Cerrutti et al. Carboxymethyl chitosan: Preparation and use in colloidal ceramic processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221025