CN115228595B - 一种基于目标检测的矿带智能分割方法 - Google Patents
一种基于目标检测的矿带智能分割方法 Download PDFInfo
- Publication number
- CN115228595B CN115228595B CN202210858722.5A CN202210858722A CN115228595B CN 115228595 B CN115228595 B CN 115228595B CN 202210858722 A CN202210858722 A CN 202210858722A CN 115228595 B CN115228595 B CN 115228595B
- Authority
- CN
- China
- Prior art keywords
- belt
- ore
- model
- mineral
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 title claims abstract description 20
- 230000011218 segmentation Effects 0.000 title claims abstract description 19
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims description 44
- 239000011707 mineral Substances 0.000 title claims description 44
- 238000004364 calculation method Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 12
- 230000033001 locomotion Effects 0.000 claims abstract description 7
- 238000011156 evaluation Methods 0.000 claims abstract description 4
- 238000009826 distribution Methods 0.000 claims description 23
- 238000005457 optimization Methods 0.000 claims description 6
- 238000005065 mining Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000012141 concentrate Substances 0.000 description 16
- 238000013527 convolutional neural network Methods 0.000 description 11
- 238000005070 sampling Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000003032 molecular docking Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/02—Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
- B03B5/04—Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on shaking tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858722.5A CN115228595B (zh) | 2022-07-20 | 2022-07-20 | 一种基于目标检测的矿带智能分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858722.5A CN115228595B (zh) | 2022-07-20 | 2022-07-20 | 一种基于目标检测的矿带智能分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115228595A CN115228595A (zh) | 2022-10-25 |
CN115228595B true CN115228595B (zh) | 2024-10-25 |
Family
ID=83672517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210858722.5A Active CN115228595B (zh) | 2022-07-20 | 2022-07-20 | 一种基于目标检测的矿带智能分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115228595B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116017160A (zh) * | 2022-12-12 | 2023-04-25 | 安徽中车瑞达电气有限公司 | 一种基于图像处理系统的智能化选矿方法 |
CN117409009A (zh) * | 2023-12-15 | 2024-01-16 | 长沙矿冶研究院有限责任公司 | 一种基于UNet的干式磁选颗粒实时分选方法 |
CN119368320A (zh) * | 2024-12-27 | 2025-01-28 | 赣州有色冶金研究所有限公司 | 一种智能摇床导流接矿分选系统、分选方法及软件中枢平台 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103785532A (zh) * | 2014-02-18 | 2014-05-14 | 云南锡业集团有限责任公司研究设计院 | 锡矿摇床选矿自动监控的方法 |
CN103810500A (zh) * | 2014-02-25 | 2014-05-21 | 北京工业大学 | 一种基于有监督学习概率主题模型的地点图像识别方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108681743B (zh) * | 2018-04-16 | 2019-12-06 | 腾讯科技(深圳)有限公司 | 图像对象识别方法和装置、存储介质 |
CN113269675B (zh) * | 2021-05-18 | 2022-05-13 | 东北师范大学 | 基于深度学习模型的时变体数据时间超分辨率可视化方法 |
-
2022
- 2022-07-20 CN CN202210858722.5A patent/CN115228595B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103785532A (zh) * | 2014-02-18 | 2014-05-14 | 云南锡业集团有限责任公司研究设计院 | 锡矿摇床选矿自动监控的方法 |
CN103810500A (zh) * | 2014-02-25 | 2014-05-21 | 北京工业大学 | 一种基于有监督学习概率主题模型的地点图像识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115228595A (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115228595B (zh) | 一种基于目标检测的矿带智能分割方法 | |
CN207451007U (zh) | 一种流水线分料机构 | |
CN101614524B (zh) | 精磨球齿直径及高度自动检测装置 | |
WO2016138675A1 (zh) | 一种联合收获机自适应清选控制装置及其自适应清选方法 | |
CN108227664A (zh) | 基于样本数据训练的产品质量控制设备及质量控制方法 | |
CN105388162A (zh) | 基于机器视觉的原料硅片表面划痕检测方法 | |
CN109580404A (zh) | 工业机器人内置型线束磨损及加速磨损测试方法与装置 | |
CN109472181B (zh) | 选矿摇床组视频图像分析及接矿点优化调节控制系统 | |
CN207222339U (zh) | 一种叠层高频振动细筛的智能控制器 | |
CN111157537A (zh) | 一种基于仿生机器视觉的带钢缺陷检测装置及系统 | |
CN210142281U (zh) | 一种浮选系统的智能控制系统 | |
CN102615053A (zh) | 柔版机添加质检剔次装置 | |
CN111889222A (zh) | 基于视觉伺服的摇床导流控制系统和摇床导流控制方法 | |
CN108647722A (zh) | 一种基于过程尺寸特征的锌矿品位软测量方法 | |
CN105195438B (zh) | 基于图像识别的嵌入式自动珍珠分拣器及分拣方法 | |
CN207222383U (zh) | 木板分拣系统 | |
CN113304869B (zh) | 一种摇床矿带自动识别及接取方法与装置 | |
CN108931621A (zh) | 一种基于过程纹理特征的锌矿品位软测量方法 | |
CN205341055U (zh) | 一种精确稳定的浮选液位检测及控制装置 | |
CN114993898A (zh) | 一种尾砂智能浓密实验系统及方法 | |
CN113245222B (zh) | 一种三七异物视觉实时检测分拣系统及分拣方法 | |
CN114378002A (zh) | 一种基于机器视觉的猴头菇分级系统及分级方法 | |
CN112387606B (zh) | 一种珍珠分选系统 | |
CN117557778A (zh) | 一种基于YOLOv5改进的摇床矿带智能分割方法 | |
CN207529393U (zh) | 选矿摇床组视频图像分析及接矿点优化调节控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Wenkang Inventor after: Wang Chunjing Inventor after: Yuan Linxun Inventor after: Liu Dan Inventor after: Yu Longzhou Inventor before: Zhang Wenkang Inventor before: Wang Chunjing Inventor before: Yuan Linxun Inventor before: Liu Dan Inventor before: Zhou Gongqiang Inventor before: He Qixue Inventor before: Lei Chao Inventor before: Yu Longzhou |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |