CN115225202A - A concatenated encoding and decoding method - Google Patents
A concatenated encoding and decoding method Download PDFInfo
- Publication number
- CN115225202A CN115225202A CN202210192714.1A CN202210192714A CN115225202A CN 115225202 A CN115225202 A CN 115225202A CN 202210192714 A CN202210192714 A CN 202210192714A CN 115225202 A CN115225202 A CN 115225202A
- Authority
- CN
- China
- Prior art keywords
- data
- order
- decoding
- low
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract 38
- 230000005540 biological transmission Effects 0.000 claims abstract 3
- 238000007476 Maximum Likelihood Methods 0.000 claims 3
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0064—Concatenated codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0033—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
技术领域technical field
本申请涉及数字通信编译码技术领域,特别涉及一种级联编码及译码方法。The present application relates to the technical field of digital communication encoding and decoding, and in particular, to a concatenated encoding and decoding method.
背景技术Background technique
数字通信系统中信源产生数据后通过信道发送出去。但信道会对传输的数据造成干扰,使信宿无法正确接收到发送数据。一般采用前向纠错(Forward Error Correction,FEC)的方法纠正传输中产生的错误,即数据发送端将信源产生的数据进行编码,数据接收端利用相应译码算法检测和纠正错误,将译码后的数据传输给信宿。In a digital communication system, the source generates data and sends it out through the channel. However, the channel will cause interference to the transmitted data, so that the sink cannot correctly receive the transmitted data. Generally, the forward error correction (FEC) method is used to correct the errors generated in the transmission, that is, the data transmitting end encodes the data generated by the source, and the data receiving end uses the corresponding decoding algorithm to detect and correct the errors. The encoded data is transmitted to the sink.
根据以太网最新标准,两种RS码(Reed-Solomon,里所码)作为FEC方案被应用到以太网子层中,分别对应于以太网标准中KR4 FEC方案的RS(528,514)码和对应于以太网标准中KP4 FEC方案的RS(544,514)码。According to the latest Ethernet standard, two RS codes (Reed-Solomon, Lisuo code) are applied to the Ethernet sublayer as FEC schemes, corresponding to the RS (528, 514) codes of the KR4 FEC scheme in the Ethernet standard and Corresponds to the RS(544,514) code of the KP4 FEC scheme in the Ethernet standard.
但是随着以太网的传输速率越来越高,目前正在研究400Gb/s以上的以太网标准,这对FEC方案的译码性能要求也越来越高。在码率一定的前提下,想要增加上述FEC方案的编码增益,就需要增加码字的码长,但是码长的增加会增加通信系统的复杂度,占用过多的硬件资源。因此,上述单一RS码字的FEC方案无法满足超越400Gb/s的以太网应用的译码性能需求。However, as the transmission rate of Ethernet is getting higher and higher, the Ethernet standard above 400Gb/s is being studied, and the decoding performance requirements of the FEC scheme are also getting higher and higher. Under the premise of a certain code rate, in order to increase the coding gain of the above-mentioned FEC scheme, the code length of the code word needs to be increased, but the increase of the code length will increase the complexity of the communication system and occupy too much hardware resources. Therefore, the above-mentioned FEC scheme of a single RS code word cannot meet the decoding performance requirements of Ethernet applications exceeding 400 Gb/s.
发明内容SUMMARY OF THE INVENTION
为了解决上述单一码字的FEC方法无法满足超越400Gb/s的以太网应用的译码性能需求,本申请通过以下方面提供了一种级联编码及译码方法。In order to solve the problem that the above single codeword FEC method cannot meet the decoding performance requirements of Ethernet applications exceeding 400Gb/s, the present application provides a concatenated encoding and decoding method through the following aspects.
本申请的第一方面提供了一种级联编码方法,所述级联编码方法包括:A first aspect of the present application provides a concatenated encoding method, and the concatenated encoding method includes:
接收信源发送的信源数据;Receive the source data sent by the source;
对信源数据进行RS编码,得到RS码字数据;RS encoding is performed on the source data to obtain RS codeword data;
对RS码字数据按照预设的交织深度进行交织,得到交织后数据;Interleaving the RS codeword data according to a preset interleaving depth to obtain interleaved data;
将交织后的数据进行分组,得到预设数量组的比特数据;其中,预设数量为预设调制方式中的一个符号对应的比特的数量,每一组比特数据对应预设调制方式中的不同位;The interleaved data are grouped to obtain a preset number of groups of bit data; wherein, the preset number is the number of bits corresponding to one symbol in the preset modulation mode, and each group of bit data corresponds to different preset modulation modes. bit;
将预设数量组的比特数据进行多层编码,得到多层码字数据;其中多层码字数据包括预设数量组的多层子码字数据,每组多层子码字数据的长度一致;对应于预设调制方式中最高有效位的多层子码字数据中的校验位长度小于对应于预设调制方式中最低有效位的多层子码字数据中的校验位长度;Multi-layer coding is performed on the bit data of a preset number of groups to obtain multi-layer codeword data; wherein the multi-layer codeword data includes a preset number of groups of multi-layer sub-codeword data, and the lengths of each group of multi-layer sub-codeword data are consistent ; The check bit length in the multi-layer sub-code word data corresponding to the most significant bit in the preset modulation mode is less than the check bit length in the multi-layer sub-code word data corresponding to the least significant bit in the preset modulation mode;
将多层码字数据按照预设调制方式进行调制,得到用于信道传输的调制数据。The multi-layer codeword data is modulated according to a preset modulation mode to obtain modulated data for channel transmission.
可选的,当预设的调制方式为PAM4时,预设数量组的比特数据包括一组高位比特数据和一组低位比特数据;Optionally, when the preset modulation mode is PAM4, the preset number of sets of bit data includes a set of high-order bit data and a set of low-order bit data;
所述将预设数量组的比特数据进行多层编码,得到多层码字数据,包括:The multi-layer encoding is performed on the bit data of the preset number of groups to obtain multi-layer codeword data, including:
对低位比特数据按照第一码率进行编码,得到低位多层子码字数据;Encoding the low-order bit data according to the first code rate to obtain low-order multi-layer sub-codeword data;
对高位比特数据按照第二码率进行编码,得到高位多层子码字数据;Encoding the high-order bit data according to the second code rate to obtain high-order multi-layer sub-codeword data;
其中,第一码率小于第二码率,高位多层子码字数据对应于PAM4调制方式中的最高有效位,低位多层子码字数据对应于PAM4调制方式中的最低有效位。The first code rate is less than the second code rate, the high-order multi-layer sub-codeword data corresponds to the most significant bit in the PAM4 modulation mode, and the low-order multi-layer sub-codeword data corresponds to the least significant bit in the PAM4 modulation mode.
可选的,当预设的调制方式为PAM4时,预设数量组的比特数据包括一组高位比特数据和一组低位比特数据;Optionally, when the preset modulation mode is PAM4, the preset number of sets of bit data includes a set of high-order bit data and a set of low-order bit data;
所述将预设数量组的比特数据进行多层编码,得到多层码字数据,包括:The multi-layer encoding is performed on the bit data of the preset number of groups to obtain multi-layer codeword data, including:
对低位比特数据按照第三码率进行编码,得到低位多层子码字数据;Encoding the low-order bit data according to the third code rate to obtain low-order multi-layer sub-codeword data;
对高位比特数据不进行编码直接输出,得到高位多层子码字数据;The high-order bit data is directly output without encoding, and the high-order multi-layer sub-codeword data is obtained;
其中,高位多层子码字数据对应于PAM4调制方式中的最高有效位,低位多层子码字数据对应于PAM4调制方式中的最低有效位。The high-order multi-layer sub-codeword data corresponds to the most significant bit in the PAM4 modulation mode, and the low-order multi-layer sub-codeword data corresponds to the least significant bit in the PAM4 modulation mode.
本申请的第二方面提供了一种级联译码方法,用于译码根据本申请第一方面所述的级联编码方法得到的调制数据;所述级联译码方法包括:A second aspect of the present application provides a concatenated decoding method for decoding modulated data obtained according to the concatenated encoding method described in the first aspect of the present application; the concatenated decoding method includes:
对信道接收数据按照预设调制方式执行第一解调过程,得到第一数量组的低位解调数据;对低位解调数据进行译码,得到低位比特数据Perform a first demodulation process on the channel received data according to a preset modulation mode to obtain a first number of low-order demodulated data; decode the low-order demodulated data to obtain low-order data
使用低位比特数据辅助对信道接收数据进行处理,得到第二数量组的高位比特数据;其中,第一数量加上第二数量等于预设数量,预设数量为预设调制方式中一个符号对应的比特的数量;Using the low-order bit data to assist in processing the channel received data to obtain a second quantity of high-order bit data; wherein, the first quantity plus the second quantity is equal to a preset quantity, and the preset quantity is a symbol corresponding to a preset modulation mode the number of bits;
对高位比特数据和低位比特数据进行解交织处理,得到解交织数据;Perform de-interleaving processing on high-order bit data and low-order bit data to obtain de-interleaving data;
对解交织数据进行RS译码,得到RS译码数据;RS decoding is performed on the deinterleaved data to obtain RS decoding data;
将RS译码数据发送给信宿。The RS decoded data is sent to the sink.
可选的,当预设调制方式为PAM4时,第一数量和第二数量都等于1;低位比特数据对应于调制数据中的最低有效位,高位比特数据对应于调制数据中的最高有效位;Optionally, when the preset modulation mode is PAM4, the first quantity and the second quantity are both equal to 1; the low-order bit data corresponds to the least significant bit in the modulation data, and the high-order bit data corresponds to the most significant bit in the modulation data;
所述使用低位比特数据辅助对信道接收数据进行处理,得到高位比特数据,包括:The use of low-order bit data to assist in processing the channel received data to obtain high-order bit data, including:
当调制数据中的最高有效位在多层编码过程中没有进行编码时,则使用低位比特数据辅助对信道接收数据的最高有效位采用硬判决方式执行第二解调过程,得到高位比特数据;When the most significant bit in the modulated data is not encoded in the multi-layer coding process, the second demodulation process is performed using a hard-decision method for the most significant bit of the channel received data using the auxiliary data of the low-order bits to obtain high-order bit data;
当调制数据中的最高有效位在多层编码过程中进行编码时,则使用低位比特数据辅助对信道接收数据的最高有效位采用硬判决方式或者软判决方式执行第三解调过程,对解调结果进行译码,得到高位比特数据;其中,当采用硬判决执行第三解调过程时,对解调结果采用硬译码方式进行译码;当采用软判决方式执行第三解调过程时,对解调结果采用软译码方式进行译码。When the most significant bit in the modulated data is encoded in the multi-layer encoding process, the low-order bit data is used to assist in the third demodulation process using the hard decision method or the soft decision method for the most significant bit of the channel received data. The result is decoded to obtain high-order bit data; wherein, when the third demodulation process is performed by using a hard decision, the demodulation result is decoded by a hard decoding method; when the third demodulation process is performed by a soft decision method, The demodulation result is decoded by soft decoding.
可选的,在将RS译码数据发送给信宿之前,所述级联译码方法包括:Optionally, before sending the RS decoding data to the sink, the concatenated decoding method includes:
对RS译码数据进行迭代译码,得到RS迭代译码数据;Perform iterative decoding on the RS decoded data to obtain RS iteratively decoded data;
将RS迭代译码数据发送给信宿;Send the RS iteratively decoded data to the sink;
其中,所述对RS译码数据进行迭代译码,得到RS迭代译码数据,包括:Wherein, performing iterative decoding on the RS decoding data to obtain RS iterative decoding data, including:
对RS译码数据进行交织,得到迭代输入数据;其中,迭代输入数据包括低位迭代输入数据和高位迭代输入数据;Interleaving the RS decoded data to obtain iterative input data; wherein the iterative input data includes low-order iterative input data and high-order iterative input data;
对低位迭代输入数据进行译码,得到低位迭代比特数据;Decoding low-order iterative input data to obtain low-order iterative bit data;
当调制数据中的最高有效位在多层编码过程中没有进行编码,则使用低位迭代比特数据辅助对高位迭代输入数据采用硬判决方式执行第二解调过程,得到高位迭代比特数据;When the most significant bit in the modulated data is not encoded in the multi-layer encoding process, the second demodulation process is performed by using the low-order iterative bit data to assist the high-order iterative input data in a hard-decision manner to obtain high-order iterative bit data;
当调制数据中的最高有效位在多层编码过程中进行编码,则使用低位迭代比特数据辅助对高位迭代输入数据采用硬判决方式或者软判决方式执行第三解调过程,对解调结果进行译码,得到高位迭代比特数据;其中,当采用硬判决方式执行第三解调过程时,对解调结果采用硬译码方式进行译码;当采用软判决方式执行第三解调过程时,对解调结果采用软译码方式进行译码;When the most significant bit in the modulated data is encoded in the multi-layer encoding process, the low-order iterative bit data is used to assist the high-order iterative input data to perform the third demodulation process in a hard-decision mode or a soft-decision mode, and the demodulation result is decoded. code to obtain high-order iterative bit data; wherein, when the third demodulation process is performed in the hard decision mode, the demodulation result is decoded in the hard decoding mode; when the third demodulation process is performed in the soft decision mode, the The demodulation result is decoded by soft decoding;
对高位迭代比特数据和低位迭代比特数据进行解交织处理,得到解交织迭代数据;Perform de-interleaving processing on the high-order iterative bit data and the low-order iterative bit data to obtain de-interleaving iterative data;
对解交织迭代数据进行RS译码,得到RS迭代译码数据;Perform RS decoding on the deinterleaved iterative data to obtain RS iteratively decoded data;
将RS迭代译码数据发送给信宿。The RS iteratively decoded data is sent to the sink.
可选的,当对低位迭代输入数据采用硬译码方式进行译码时,低位迭代输入数据中的校验位设为所述低位比特数据中的校验位。Optionally, when the low-order iterative input data is decoded in a hard decoding manner, the check bit in the low-order iterative input data is set as the check bit in the low-order bit data.
可选的,当对低位迭代输入数据采用软译码方式进行译码时,低位迭代数据中信息位的最大似然比设为最可靠,低位迭代输入数据中校验位的最大似然比设为低位解调数据中的最大似然比。Optionally, when the low-order iterative input data is decoded by soft decoding, the maximum likelihood ratio of the information bits in the low-order iterative data is set to be the most reliable, and the maximum likelihood ratio of the check bits in the low-order iterative input data is set to be the most reliable. is the maximum likelihood ratio in the low-order demodulated data.
可选的,对信道接收数据按照PAM4调制方式执行第一解调过程时采用硬判决的方法,得到低位解调数据;Optionally, when performing the first demodulation process on the channel received data according to the PAM4 modulation mode, a hard decision method is used to obtain low-order demodulation data;
对低位解调数据进行译码时采用硬译码的方式,得到低位比特数据。When decoding the low-order demodulated data, a hard decoding method is adopted to obtain low-order bit data.
可选的,对信道接收数据按照PAM4调制方式执行第一解调过程时采用软判决的方式,得到低位解调数据;Optionally, when performing the first demodulation process on the channel received data according to the PAM4 modulation mode, a soft decision mode is used to obtain low-order demodulation data;
对低位解调数据进行译码时采用软译码的方式,得到低位比特数据。When decoding the low-order demodulated data, a soft decoding method is used to obtain low-order bit data.
本申请提供了一种级联编码及译码方法。本申请利用传输数据在经过调制后,每个传输符号的低位比高位更容易出错的特性,提出了一种外码采用RS码,内码运用多层编码思想的级联编码方法及对应的级联译码方法。所述级联编码方法的外码采用RS码,对RS码字数据进行交织,然后对交织后的数据分成预设数量组的比特数据,对每一组比特数据采用不同码率的码字进行编码,得到预设数量组的多层子码字数据,然后进行调制得到调制数据;其中,每组多层子码字数据的长度一致,并分别对应调制数据中的不同位。所述级联编码方法在码率一定的情况下,使用较短的码长实现了较高的编码增益。The present application provides a concatenated encoding and decoding method. In this application, after the transmission data is modulated, the low-order bits of each transmission symbol are more prone to errors than the high-order bits, and proposes a concatenated coding method in which the outer code adopts the RS code, and the inner code adopts the multi-layer coding idea and the corresponding level Linked decoding method. The outer code of the cascading coding method adopts RS code, and the RS codeword data is interleaved, and then the interleaved data is divided into a preset number of groups of bit data, and each group of bit data is performed using codewords with different code rates. encoding to obtain a preset number of groups of multi-layer sub-codeword data, and then modulating to obtain modulated data; wherein, each group of multi-layer sub-codeword data has the same length and corresponds to different bits in the modulation data respectively. The concatenated coding method achieves higher coding gain by using a shorter code length under a certain code rate.
在译码时,先对信道接收数据中的低位进行解调和译码,得到低位比特数据;使用低位比特数据辅助对信道接收数据中的高位进行处理,得到高位比特数据;将高位比特数据和低位比特数据进行解交织、RS译码,得到RS译码数据发送给信宿。使用本申请提供的级联编码及译码方法的FEC方案可以满足超越400Gb/s的以太网应用的译码性能需求。When decoding, first demodulate and decode the low-order bits in the channel received data to obtain low-order bit data; use the low-order bit data to assist in processing the high-order bits in the channel received data to obtain high-order bit data; The low-order bit data is deinterleaved and RS decoded, and the RS decoded data is obtained and sent to the sink. The FEC solution using the concatenated encoding and decoding method provided by the present application can meet the decoding performance requirements of Ethernet applications exceeding 400 Gb/s.
附图说明Description of drawings
图1为一种使用两个码组成级联码的通信系统的结构示意图;1 is a schematic structural diagram of a communication system using two codes to form concatenated codes;
图2为本申请实施例提供的一种级联编码方法的流程示意图;2 is a schematic flowchart of a concatenated encoding method provided by an embodiment of the present application;
图3为本申请实施例提供的一种级联编码方法中对交织后的数据进行分组的一种划分方式的示意图;3 is a schematic diagram of a division manner for grouping interleaved data in a concatenated coding method provided by an embodiment of the present application;
图4为本申请实施例提供的一种级联编码方法中MLC编码的示例示意图;4 is a schematic diagram of an example of MLC coding in a concatenated coding method provided by an embodiment of the present application;
图5为16QMA调制方式中调制数据的一种星座图示例;Fig. 5 is a kind of constellation diagram example of modulated data in 16QMA modulation mode;
图6为本申请实施例提供的一种级联译码方法的流程示意图;6 is a schematic flowchart of a cascade decoding method provided by an embodiment of the present application;
图7为本申请实施例提供的一种级联译码方法中的MLC编译码过程示意图;7 is a schematic diagram of an MLC encoding and decoding process in a cascaded decoding method provided by an embodiment of the present application;
图8为本申请实施例提供的一种级联译码方法中使用低位比特数据辅助对信道接收数据进行硬判决解调的过程示意图;FIG. 8 is a schematic diagram of a process of performing hard-decision demodulation on channel received data using the assistance of low-order bit data in a cascade decoding method provided by an embodiment of the present application;
图9为本申请实施例提供的一种级联译码方法中低位比特数据辅助对信道接收数据进行处理得到高位比特数据的过程示意图;9 is a schematic diagram of a process in which low-order bit data assists in processing channel received data to obtain high-order bit data in a cascade decoding method provided by an embodiment of the present application;
图10为实验组1、对比组1和对比组2的译码性能仿真结果对比示意图;10 is a schematic diagram showing the comparison of the decoding performance simulation results of
图11为实验组2和实验组3的译码性能仿真结果对比示意图;11 is a schematic diagram of the comparison of the decoding performance simulation results of
图12为实验组1、实验组4、实验组5和对比组1的译码性能仿真结果对比示意图。12 is a schematic diagram showing the comparison of the decoding performance simulation results of the
具体实施方式Detailed ways
为便于对申请的技术方案进行解释说明,先对本申请所涉及到级联编码的概念进行简单介绍。In order to facilitate the explanation of the technical solution of the application, the concept of concatenated coding involved in the application is briefly introduced first.
级联码是由两个或多个简单码组成,图1示例性的给出了两个码组成级联码的通信系统的结构示意图。如图1所示,级联码包括一个外码(一般是非二进制的)和一个内码(一般是二进制的),这是两个独立的码,在一个信道上串行传输。先对信源发送的数据进行外码编码,然后经过交织后进行内码编码,再通过信道传输,级联码在译码端采用两级译码的方式,先进行内码译码,解交织后再进行外码译码。A concatenated code is composed of two or more simple codes, and FIG. 1 exemplarily shows a schematic structural diagram of a communication system in which two codes form a concatenated code. As shown in Figure 1, the concatenated code consists of an outer code (usually non-binary) and an inner code (usually binary), which are two independent codes transmitted serially on a channel. The data sent by the source is first encoded with the outer code, then interleaved and then encoded with the inner code, and then transmitted through the channel. The concatenated code adopts a two-level decoding method at the decoding end, and the inner code is first decoded and deinterleaved. Then perform outer code decoding.
参见图2,为本申请第一实施例提供的级联编码方法的流程示意图。所述级联编码方法包括步骤11至步骤16。Referring to FIG. 2 , it is a schematic flowchart of the concatenated encoding method provided by the first embodiment of the present application. The concatenated encoding method includes
步骤11,接收信源发送的信源数据。信源是通信系统中数据的产生端和发送端,把各种消息转换成原始的电信号,在本申请中称为信源数据。Step 11: Receive the source data sent by the source. The information source is the data generating end and the transmitting end in the communication system, which converts various messages into original electrical signals, and is referred to as source data in this application.
步骤12,对信源数据进行RS编码,得到RS码字数据。Step 12: Perform RS encoding on the source data to obtain RS codeword data.
在本实施例中,外码采用RS码字。在最新的以太网标准中,采用两种RS码字对信源数据进行编码。RS码是以symbol的形式进行传输的,一种是RS(528,514)码,对应于以太网标准中的KR4 FEC方案;其中,一个RS码字共有528个码元,514个信息码元。另一种是RS(544,514)码,其中,一个RS码字共有544个码元,514个信息码元;对应于以太网标准中的KP4 FEC方案。1个码元为1个symbol(符号数),1 symbol=10bits。In this embodiment, the outer code adopts the RS codeword. In the latest Ethernet standard, two RS codewords are used to encode the source data. RS codes are transmitted in the form of symbols. One is RS (528, 514) code, which corresponds to the KR4 FEC scheme in the Ethernet standard; among them, an RS code word has a total of 528 symbols and 514 information symbols. . The other is RS (544, 514) code, in which one RS code word has 544 symbols in total and 514 information symbols; it corresponds to the KP4 FEC scheme in the Ethernet standard. 1 symbol is 1 symbol (number of symbols), and 1 symbol=10 bits.
步骤13,对RS码字数据按照预设的交织深度进行交织,得到交织后数据。Step 13: Interleave the RS codeword data according to a preset interleaving depth to obtain interleaved data.
对RS码字数据进行symbol级行列交织,预设的交织深度为I,其中I可以为任意的正整数。但是时延会随着I的增加而增长,在实际应用中,根据时延、吞吐率等需求去配置合适的I。The symbol-level row-column interleaving is performed on the RS codeword data, and the preset interleaving depth is I, where I can be any positive integer. However, the delay will increase with the increase of I. In practical applications, an appropriate I should be configured according to requirements such as delay and throughput.
步骤14,将交织后的数据进行分组,得到预设数量组的比特数据。其中,预设数量为预设调制方式中的一个符号对应的比特的数量,每一组所述比特数据对应预设调制方式中的不同位。Step 14: Group the interleaved data to obtain a preset number of groups of bit data. The preset number is the number of bits corresponding to one symbol in the preset modulation mode, and each group of the bit data corresponds to different bits in the preset modulation mode.
步骤15,将预设数量组的比特数据进行多层编码,得到多层码字数据;其中,多层码字数据包括预设数量组的多层子码字数据,每组多层子码字数据的长度一致;对应于预设调制方式中最高有效位的多层子码字数据中的校验位长度小于对应于预设调制方式中最低有效位的多层子码字数据中的校验位长度。Step 15: Multi-layer coding is performed on the bit data of a preset number of groups to obtain multi-layer codeword data; wherein, the multi-layer codeword data includes a preset number of groups of multi-layer sub-codeword data, and each group of multi-layer sub-codewords. The length of the data is the same; the length of the parity bit in the multi-layer sub-codeword data corresponding to the most significant bit in the preset modulation mode is smaller than the check bit length in the multi-layer sub-codeword data corresponding to the least significant bit in the preset modulation mode bit length.
在本实施例中,以PAM4(4 Pulse Amplitude Modulation,第四代脉冲幅度调制)调制方式、外码采用RS(544,514)码对步骤14-15的执行过程进行介绍。在PAM4调制中,两个比特被调制成一个符号,预设数量等于2。将交织后的数据先分成N份,每一份包含2k个比特数据,将2k个比特数据划分成高位比特数据(共k1个)和低位比特数据(共k2个);其中,2k=k1+k2,k1>k2;即将交织后的数据分成2组,第一组包含N份k1个比特数据,对应于PAM4调制中的最高有效位(Most Significant Bit,MSB)上的数据,第二组包含N份k2个比特数据,对应于PAM4调制中的最低有效位(Least Significant Bit,LSB)上的数据。In this embodiment, the execution process of steps 14-15 is described by adopting the PAM4 (4 Pulse Amplitude Modulation, fourth generation pulse amplitude modulation) modulation mode and using the RS (544, 514) code as the outer code. In PAM4 modulation, two bits are modulated into one symbol, and the preset number is equal to 2. Divide the interleaved data into N parts first, each part contains 2k bits of data, and divide the 2k bits of data into high-order bit data (k 1 in total) and low-order bit data (k 2 in total); wherein, 2k= k 1 +k 2 , k 1 >k 2 ; that is, the interleaved data is divided into two groups, the first group contains N pieces of k 1 bit data, corresponding to the most significant bit (Most Significant Bit, MSB) in PAM4 modulation The second group contains N pieces of k 2 -bit data, corresponding to the data on the least significant bit (Least Significant Bit, LSB) in the PAM4 modulation.
在实际应用中,有多种方式将2k个比特数据划分为高位比特数据(共k1个)和低位比特数据(共k2个)。图3本实施例给出的将2k个比特数据划分为高位比特数据(共k1个)和低位比特数据(共k2个)的一种划分方式示例。如图3所示,对2k个比特数据中的前2k1个比特数据按照奇偶顺序进行划分,奇数为高位比特数据,偶数为低位比特数据;后面(k2-k1)个数据为高位比特数据。在其它示例中,也可以按照其它顺序进行划分,只要满足2k=k1+k2且k1>k2即可,本申请对划分方法不做具体限制。In practical applications, there are various ways to divide the 2k bit data into high-order bit data (k 1 in total) and low-order bit data (k 2 in total). FIG. 3 shows an example of a division manner of dividing 2k bit data into high-order bit data (k 1 in total) and low-order bit data (k 2 in total) given in this embodiment. As shown in Figure 3, the first 2k 1 bit data in the 2k bit data are divided according to the order of parity, the odd number is the high-order bit data, the even number is the low-order bit data; the following (k 2 -k 1 ) data are the high-order bits data. In other examples, the division may also be performed in other orders, as long as 2k=k 1 +k 2 and k 1 >k 2 are satisfied, and the present application does not specifically limit the division method.
对高位比特数据和低位比特数据进行多层编码(Multi-level coding,MLC),得到多层码字数据(在本申请中称为MLC码字数据)。在本实施例中,以预设调制方式为PAM4作为示例,多层码字数据包括两组MLC子码字数据。MLC编码的组成码选择BCH码,即对高位比特数据和低位比特数据采用不同码率的BCH码进行编码,得到的长度一致的两组MLC子码字数据;其中,一个MLC子码字数据的长度为n,一个MLC码字数据的长度为2n。Multi-level coding (MLC) is performed on the high-order bit data and the low-order bit data to obtain multi-layer codeword data (referred to as MLC codeword data in this application). In this embodiment, taking the preset modulation mode as PAM4 as an example, the multi-layer codeword data includes two groups of MLC sub-codeword data. The BCH code is selected as the component code of MLC encoding, that is, the high-order bit data and the low-order bit data are encoded with BCH codes of different code rates, and two sets of MLC sub-codeword data with the same length are obtained; The length is n, and the length of one MLC codeword data is 2n.
参见图4,是本实施例一种MLC编码的示例示意图。我们由码率的计算公式(码率=信息位长度/码长)可知,当码率和码长一定时,信息位的比特数据长度也是一定的。图4中,k是k1和k2的平均值。在实际应用中,根据实际的通信系统的设计需求,结合MLC码字的码率rate和码长2n,推导出MLC码字的信息位长度2k,再进一步推导出适合的k1和k2。Referring to FIG. 4 , it is a schematic diagram of an example of MLC encoding in this embodiment. We know from the calculation formula of the code rate (code rate=information bit length/code length) that when the code rate and code length are constant, the bit data length of the information bit is also constant. In Fig. 4, k is the average value of k1 and k2. In practical applications, according to the design requirements of the actual communication system, combined with the code rate rate and code length 2n of the MLC codeword, the information bit length 2k of the MLC codeword is deduced, and the appropriate k 1 and k 2 are further deduced.
在一种实现方式中,MLC编码中使用第一码率的BCH码对低位比特数据进行编码,使用第二码率的BCH码对高位比特数据进行编码,分别得到低位多层子码字数据和高位多层子码字数据,其中第一码率小于第二码率,即低位多层子码字数据的纠错能力高于高位多层子码字数据的纠错能力。示例性的,对低位比特数据使用BCH(360,320)码进行编码,纠错能力为4;对高位比特数据使用BCH(360,340)码进行编码,纠错能力为2。对应的,n=360,k1=320,k2=340。In an implementation manner, in MLC encoding, the BCH code of the first code rate is used to encode the low-order bit data, and the BCH code of the second code rate is used to encode the high-order bit data to obtain the low-order multi-layer sub-codeword data and In the high-order multi-layer sub-codeword data, the first code rate is smaller than the second code rate, that is, the error correction capability of the low-order multi-layer sub-codeword data is higher than that of the high-order multi-layer sub-codeword data. Exemplarily, the BCH(360,320) code is used to encode the low-order bit data, and the error correction capability is 4; the high-order bit data is encoded by the BCH(360,340) code, the error correction capability is 2. Correspondingly, n=360, k 1 =320, k 2 =340.
在另外一种实现方式中,MLC编码中使用第三码率的BCH码对低位比特数据进行编码,得到低位多层子码字数据;对高位比特数据不进行编码,直接输出得到高位多层子码字数据,即高位多层子码字数据没有纠错能力。示例性的,对低位比特数据使用BCH(360,320)码进行编码,对应的k1=320,k2=360,n=360。In another implementation manner, the BCH code of the third code rate is used in the MLC encoding to encode the low-order bit data to obtain the low-order multi-layer sub-codeword data; the high-order bit data is not encoded, and the high-order multi-layer sub-codeword data is directly output. The codeword data, that is, the high-order multi-layer sub-codeword data, has no error correction capability. Exemplarily, the BCH (360, 320) code is used to encode the low-order bit data, corresponding k 1 =320, k 2 =360, and n=360.
在本实施例中,因为外码和内码的码长不一样,所以要对交织后的数据先分成N份,再对每一份进行编码。N根据RS码字数据长度、预设的交织深度以及步骤15中多层编码中选用的编码码字的信息位的长度进行确定。示例性的,其中,预设的交织深度设为2,外码采用RS(544,514)码,内码MLC码字的数据长度等于360(对应于高位比特数据没有纠错能力)+320(对应于低位比特数据的纠错能力为4,采用BCH(360,320)码)。In this embodiment, since the code lengths of the outer code and the inner code are different, the interleaved data is divided into N parts first, and then each part is encoded. N is determined according to the data length of the RS codeword, the preset interleaving depth, and the length of the information bits of the encoded codeword selected in the multi-layer encoding in
需要说明的是,以上示例中MLC编码采用BCH码作为组成码,也可以采用其它的码字作为组成码,比如,使用LDPC码或者Polar码作为MLC编码的组成码。It should be noted that, in the above example, the BCH code is used as the component code for MLC encoding, and other codewords may also be used as the component code, for example, LDPC code or Polar code is used as the component code for MLC encoding.
步骤16,将多层码字数据按照预设调制方式进行调制,得到用于信道传输的调制数据。在本实施例中,以PAM4调制方式为例,将高位多层子码字数据(对应调制数据中的MSB)和低位多层子码字数据(对应调制数据中的LSB)的对应位经过PAM4调制成为调制数据中的一个符号位。表1给出了PAM4调制方式下,多层码字数据和调制数据的对应关系。Step 16: Modulate the multi-layer codeword data according to a preset modulation mode to obtain modulated data for channel transmission. In this embodiment, taking the PAM4 modulation method as an example, the corresponding bits of the high-order multi-layer sub-code word data (corresponding to the MSB in the modulation data) and the low-order multi-layer sub-code word data (corresponding to the LSB in the modulation data) are passed through PAM4 The modulation becomes a sign bit in the modulated data. Table 1 shows the correspondence between the multi-layer codeword data and the modulated data under the PAM4 modulation mode.
表1:将多层码字数据按照PAM4进行调制Table 1: Modulate multi-layer codeword data according to PAM4
从表1中PAM4调制数据的数据形式可以看出来,调制数据小于0时,对应的最高比特位都是0,调制数据大于0时,最高比特位都是1。由此可以看出,最高比特位对调制数据的值影响最大。所以,在编码过程中,对最低有效位和最高有效位对应的比特数据采用不同码率的编码方式。在译码过程中,即使最低有效位译码错误,但只需要根据调制数据是大于0还是小于0,就可以判断最高有效位对应的值。It can be seen from the data form of the PAM4 modulated data in Table 1 that when the modulated data is less than 0, the corresponding highest bits are all 0, and when the modulated data is greater than 0, the highest bits are all 1. It can be seen from this that the most significant bit has the greatest influence on the value of the modulated data. Therefore, in the encoding process, encoding modes with different code rates are used for the bit data corresponding to the least significant bit and the most significant bit. In the decoding process, even if the least significant bit is decoded incorrectly, the value corresponding to the most significant bit can be determined only according to whether the modulated data is greater than 0 or less than 0.
示例性的,参见图5,是16QAM调制数据的一种星座图示例的示意图。以未加粗的两位译码为00为例,低位辅助高位解调过程如表2所示。5 is a schematic diagram of an example of a constellation diagram of 16QAM modulated data. Taking the unbolded two bits decoded as 00 as an example, the low-order auxiliary high-order demodulation process is shown in Table 2.
表2:16QAM低位辅助高位解调过程(以低位为00为例)Table 2: 16QAM low-order auxiliary high-order demodulation process (take the low-order as 00 as an example)
需要说明的是,对数据进行调制时,一般会使用格雷码来减少出错的可能,提升译码的性能。但是在本申请所提供的编码方法中,如果在调制时使用格雷码进行调制,当利用低位比特数据辅助对高位比特数据进行解调和译码时,即使低位比特数据译码正确,高位比特数据也有很大可能出错。所以为了使高位比特数据的译码结果尽可能的可靠,在使用本申请的级联编码方法进行通信系统的设计时,调制过程不使用格雷码。It should be noted that when data is modulated, a Gray code is generally used to reduce the possibility of errors and improve the decoding performance. However, in the coding method provided by this application, if the modulation is performed using Gray code, when the low-order bit data is used to assist in the demodulation and decoding of the high-order bit data, even if the low-order bit data is decoded correctly, the high-order bit data There is also a high chance of error. Therefore, in order to make the decoding result of the high-order bit data as reliable as possible, when the concatenated coding method of the present application is used to design the communication system, the modulation process does not use the Gray code.
本实施例提供了一种级联编码方法,所述级联编码方法包括接收信源发送的信源数据;对信源数据进行RS编码,得到RS码字数据;对RS码字数据按照预设的交织深度进行交织,得到交织后数据;将交织后的数据进行分组,得到预设数量组的比特数据;其中,预设数量为预设调制方式中的一个符号对应的比特的数量,每一组比特数据对应预设调制方式中的不同位;将预设数量组的比特数据进行多层编码,得到多层码字数据;其中多层码字数据包括预设数量组的多层子码字数据,每组多层子码字数据的长度一致;对应于预设调制方式中最高有效位的多层子码字数据中的校验位长度小于对应于预设调制方式中最低有效位的多层子码字数据中的校验位长度;将多层码字数据按照预设调制方式进行调制,得到用于信道传输的调制数据。This embodiment provides a concatenated encoding method. The concatenated encoding method includes receiving source data sent by a source; performing RS encoding on the source data to obtain RS codeword data; The interleaving depth is interleaved to obtain the interleaved data; the interleaved data is grouped to obtain a preset number of groups of bit data; wherein, the preset number is the number of bits corresponding to one symbol in the preset modulation mode, and each The group bit data corresponds to different bits in the preset modulation mode; multi-layer coding is performed on the bit data of a preset number of groups to obtain multi-layer codeword data; wherein the multi-layer codeword data includes a preset number of groups of multi-layer sub-codewords Data, the length of each group of multi-layer sub-codeword data is the same; the length of the parity bit in the multi-layer sub-codeword data corresponding to the most significant bit in the preset modulation mode is less than the length corresponding to the least significant bit in the preset modulation mode. Check bit length in the layer sub-codeword data; modulate the multi-layer codeword data according to a preset modulation method to obtain modulated data for channel transmission.
所述级联编码方法利用传输数据在经过调制后,每个传输符号的低位比高位更容易出错的特性,对调制符号的低位和高位分别采用不同纠错能力的内码,对调制后的符号的不同位提供了不同的纠错能力,在码率一定的情况下,使用较短的码长实现了较高的编码增益。The concatenated coding method utilizes the characteristic that the low-order bits of each transmission symbol are more error-prone than the high-order bits after the transmission data is modulated, and the low-order bits and high-order bits of the modulation symbols respectively use inner codes with different error correction capabilities, and the modulated symbols Different bits provide different error correction capabilities. In the case of a certain code rate, using a shorter code length achieves a higher coding gain.
需要说明的是,在上述第一实施例中,以预设调制方式为PAM4进行了示例说明。上述实施例提供的级联编码方法中的预设调制方式还可以是其它调制方式。It should be noted that, in the above-mentioned first embodiment, the preset modulation mode is PAM4 as an example for description. The preset modulation mode in the concatenated coding method provided by the foregoing embodiment may also be other modulation modes.
示例性的,当预设调制方式为16QAM时,16QAM调制数据中的一个符号对应四个比特,将交织后的数据进行分组,得到四组比特数据,一组比特数据对应16QAM调制数据中的一位。对应于调制数据的从高位到低位的顺序,MLC码字中的组成码可以分别选择BCH(360,350),BCH(360,350),BCH(360,330),BCH(360,330),也可以选择BCH(360,350),BCH(360,340),BCH(360,340),BCH(360,330)。只要满足下述两个条件即可:经过MLC编码后,MLC子码字数据的长度是一致的,并且最低有效位对应的MLC子码字数据的纠错能力高于最高有效位对应的MLC子码字数据的纠错能力。Exemplarily, when the preset modulation mode is 16QAM, one symbol in the 16QAM modulation data corresponds to four bits, and the interleaved data is grouped to obtain four groups of bit data, one group of bit data corresponds to one of the 16QAM modulation data. bit. Corresponding to the order of modulation data from high to low, BCH(360,350), BCH(360,350), BCH(360,330), BCH(360,330) or BCH(360,350) can be selected as the constituent codes in the MLC codeword, respectively. BCH(360,340), BCH(360,340), BCH(360,330). As long as the following two conditions are met: after MLC encoding, the length of the MLC sub-codeword data is consistent, and the error correction capability of the MLC sub-codeword data corresponding to the least significant bit is higher than that of the MLC sub-codeword data corresponding to the most significant bit. The error correction capability of the codeword data.
与前述级联编码方法的实施例相对应,本申请还提供了一种级联译码方法的实施例。参见图6,为本申请第二实施例提供的一种级联译码方法的工作流程示意图。所述级联译码方法包括步骤21-26。Corresponding to the foregoing embodiments of the concatenated encoding method, the present application further provides an embodiment of a concatenated decoding method. Referring to FIG. 6 , it is a schematic work flow diagram of a concatenated decoding method provided by the second embodiment of the present application. The concatenated decoding method includes steps 21-26.
步骤21,对信道接收数据按照预设调制方式执行第一解调过程,得到第一数量组的低位解调数据。其中,信道接收数据是指由本申请第一实施例提供的所述级联编码方法得到的调制数据经过信道传输,加上了信道噪声信号后的数据。Step 21: Perform a first demodulation process on the channel received data according to a preset modulation mode to obtain a first number of groups of low-order demodulation data. Wherein, the channel received data refers to the modulated data obtained by the concatenated coding method provided by the first embodiment of the present application, which is transmitted through the channel and added with the channel noise signal.
在本实施例中,采用与级联编码方法中对应的预设调制方式执行第一解调过程。其中,第一解调过程是指对信道接收数据中的低位数据进行解调,得到低位调解数据。前述级联编码方法中的预设调制方式使用了PAM4调制时,对应的第一解调过程中,也要按照PAM4调制方式进行解调,第一数量等于1,低位解调数据对应于PAM4调制数据中的最低有效位;前述级联编码方法中的预设调制方式使用了16QAM调制时,对应的第一解调过程中,也要按照16QAM调制方式进行解调,第一数量等于2,低位解调数据对应于16QAM调制数据中的最低有效位和次低有效位。In this embodiment, the first demodulation process is performed using a preset modulation mode corresponding to the concatenated coding method. The first demodulation process refers to demodulating low-order data in the channel received data to obtain low-order modulated data. When the preset modulation method in the aforementioned cascade coding method uses PAM4 modulation, the corresponding first demodulation process should also be demodulated according to the PAM4 modulation method, the first number is equal to 1, and the low-order demodulation data corresponds to PAM4 modulation. The least significant bit in the data; when 16QAM modulation is used in the preset modulation method in the aforementioned concatenated encoding method, the corresponding first demodulation process should also be demodulated according to the 16QAM modulation method, the first number is equal to 2, the low bit The demodulated data corresponds to the least significant bit and the next least significant bit in the 16QAM modulated data.
在步骤21中,所述的低位解调数据对应到级联编码方法中的多层码字数据中的低位部分的多层子码字数据。示例性的,预设调制方式为16QAM时,低位解调数据对应两组低位的多层子码字数据,预设调制方式为PAM4时,低位解调数据对应最低有效位对应的一组多层子码数据。In
步骤22,对低位解调数据进行译码,得到低位比特数据。Step 22: Decode the low-order demodulated data to obtain low-order bit data.
在一种实现方式中,可以对PAM4调制数据按照硬判决方式执行第一解调过程,得到低位解调数据。对应的,对低位解调数据按照硬译码的方式进行译码,得到低位比特数据。In an implementation manner, the first demodulation process may be performed on the PAM4 modulated data in a hard-decision manner to obtain low-order demodulated data. Correspondingly, the low-order demodulated data is decoded in a hard decoding manner to obtain low-order bit data.
在另外一种实现方式中,可以对PAM4调制数据按照软判决方式执行第一解调过程,得到低位比特数据;对应的,对低位解调数据按照软译码的方式进行译码,得到低位比特数据。In another implementation manner, the first demodulation process may be performed on the PAM4 modulated data according to a soft decision method to obtain low-order bit data; correspondingly, the low-order demodulated data is decoded according to a soft decoding method to obtain low-order bits. data.
采用软判决+软译码的方式译码性能好,误码率低,但是复杂度稍高,并且需要信道提供软消息。采用硬判决+硬译码方式复杂度低,译码性能较之软判决+软译码的方式较低,但不需要信道提供软消息,大大减少了均衡器的功耗。在实际应用中,可以根据具体的应用场景的需求来选择不同的判决方式执行第一解调过程。The soft decision + soft decoding method has good decoding performance and low bit error rate, but the complexity is slightly higher, and the channel needs to provide soft messages. The hard decision + hard decoding method has low complexity and lower decoding performance than the soft decision + soft decoding method, but does not require the channel to provide soft messages, which greatly reduces the power consumption of the equalizer. In practical applications, different decision modes may be selected to execute the first demodulation process according to the requirements of specific application scenarios.
在本实施例中,当级联编码方法中MLC编码的组成码选择BCH码时,对应的,在进行级联译码时,BCH码的硬译码可以采用BM(Berlekamp-Massey)算法,软译码时可以采用Chase-II算法。In this embodiment, when the BCH code is selected as the component code of the MLC encoding in the concatenated encoding method, correspondingly, when the concatenated decoding is performed, the BM (Berlekamp-Massey) algorithm can be used for the hard decoding of the BCH code, and the soft The Chase-II algorithm can be used when decoding.
步骤23,使用所述低位比特数据辅助对所述信道接收数据进行处理,得到第二数量组的高位比特数据;其中,所述第一数量加上所述第二数量等于预设数量,所述预设数量为所述预设调制方式中一个符号对应的比特的数量。Step 23: Use the low-order bit data to assist in processing the channel received data to obtain high-order bit data of a second quantity group; wherein the first quantity plus the second quantity is equal to a preset quantity, and the The preset number is the number of bits corresponding to one symbol in the preset modulation mode.
在本实施例中,使用信道接收数据的低位译码结果辅助对信道接收数据进行高位解调。参见图7,是一种MLC编码和译码过程的示意图。如图7所示,以PAM4调制方式为例,先对信道接收数据进行低位解调,得到低位解调数据,然后对低位解调数据进行译码,得到低位比特数据;使用低位比特数据辅助对信道接收数据进行解调,得到高位解调数据,对高位解调数据进行译码,得到高位比特数据。其中,图7中AWGN信道指高斯加性白噪声信道,用于模拟真实的信道噪声。In this embodiment, the decoding result of the low-order bits of the channel received data is used to assist the high-order demodulation of the channel received data. Referring to FIG. 7, it is a schematic diagram of an MLC encoding and decoding process. As shown in Figure 7, taking the PAM4 modulation method as an example, first demodulate the low-order bits of the channel received data to obtain the low-order demodulated data, and then decode the low-order demodulated data to obtain the low-order bit data; The channel receives data for demodulation to obtain high-order demodulated data, and decodes the high-order demodulated data to obtain high-order bit data. Among them, the AWGN channel in Fig. 7 refers to the Gaussian additive white noise channel, which is used to simulate the real channel noise.
参见图8,给出了一种使用低位比特数据辅助对所述调制数据进行解调的过程示意图,图8中给的解调方法采用了硬判决方式进行解调,得到二进制的高位解调数据;其中,图8中noise_symbol表示信道接收到的调制数据。当低位比特数据为0时且信道接收数据大于-1,则对应的高位解调数据为1;当低位比特数据为0且信道接收数据小于-1时,对应的高位解调数据为0;当低位比特数据为1且信道接收数据大于1时,对应的高位解调数据为1;当低位比特数据为1且信道接收数据小于1时,对应的高位解调数据为0。Referring to FIG. 8 , a schematic diagram of a process of demodulating the modulated data using low-order bit data is provided. The demodulation method given in FIG. 8 adopts a hard-decision method to demodulate, and obtains binary high-order demodulation data. ; Among them, noise_symbol in Figure 8 represents the modulated data received by the channel. When the low-order bit data is 0 and the channel received data is greater than -1, the corresponding high-order demodulated data is 1; when the low-order bit data is 0 and the channel received data is less than -1, the corresponding high-order demodulated data is 0; when When the low-order bit data is 1 and the channel received data is greater than 1, the corresponding high-order demodulated data is 1; when the low-order bit data is 1 and the channel received data is less than 1, the corresponding high-order demodulated data is 0.
当使用低位比特数据辅助对信道接收数据采用软判决方式进行解调时,得到的高位解调数据是软信息,具体辅助过程与图8类似,在此不再赘述。When the low-order bit data is used to assist in demodulating the channel received data in a soft-decision manner, the obtained high-order demodulated data is soft information, and the specific assisting process is similar to that in FIG.
在实际应用中,当使用低位比特数据辅助对信道接收数据采用硬判决进行解调时,得到二进制的高位解调数据,对应的,对高位解调数据进行译码时采用硬译码的方式。当使用低位比特数据辅助对信道接收数据采用软判决进行解调时,得到软信息的高位解调数据,对应的,对高位解调数据进行译码时采用软译码的方式。In practical applications, when the low-order bit data is used to assist in demodulating the channel received data by hard decision, binary high-order demodulated data is obtained. Correspondingly, the high-order demodulated data is decoded by hard decoding. When the low-order bit data is used to assist in demodulating the channel received data by soft decision, high-order demodulated data of soft information is obtained, and correspondingly, soft decoding is used when decoding the high-order demodulated data.
参见图9,以PAM4调制方式为例,按照调制数据中的最高有效位在多层编码过程中是否进行编码,给出了低位比特数据辅助对信道接收数据进行处理得到高位比特数据的工作流程示意图。Referring to FIG. 9 , taking the PAM4 modulation mode as an example, according to whether the most significant bit in the modulated data is encoded in the multi-layer coding process, a schematic diagram of the workflow of the low-order bit data assisted by processing the channel received data to obtain the high-order bit data is provided. .
当所述调制数据中的最高有效位在多层编码过程中没有进行编码时,则在级联译码过程中也不需要译码,直接输出高位解调数据。上述使用低位比特数据辅助对信道接收数据进行解调时采用硬判决的方式,得到的二进制的高位解调数据直接输出成高位比特数据。在本实施例中,将上述解调过程称为第二解调过程。此时,如图9所示,步骤23进一步包括步骤231-1、步骤232-1和步骤233。When the most significant bits in the modulated data are not encoded in the multi-layer encoding process, decoding is also not required in the concatenated decoding process, and the high-order demodulated data is directly output. The above-mentioned use of the low-order bit data to assist in demodulating the channel received data adopts a hard decision method, and the obtained binary high-order demodulated data is directly output as high-order bit data. In this embodiment, the above-mentioned demodulation process is referred to as the second demodulation process. At this time, as shown in FIG. 9 , step 23 further includes step 231 - 1 , step 232 - 1 and step 233 .
步骤231-1,使用低位比特数据辅助对信道接收数据进行解调时采用硬判决的方式,得到二进制的高位解调数据。具体解调过程如图8所示。Step 231-1, using the low-order bit data to assist in demodulating the channel received data by adopting a hard-decision manner to obtain binary high-order demodulation data. The specific demodulation process is shown in Figure 8.
步骤232-1,将二进制的高位解调数据直接输出。Step 232-1, directly outputting the binary high-order demodulated data.
步骤233,得到高位比特数据。
当所述调制数据中的最高有效位在多层编码过程中进行编码时,则在级联译码过程中需要对高位解调数据进行译码。在本实施例中,将得到需要译码的高位解调数据的解调过程称为第三解调过程。When the most significant bits in the modulated data are encoded in the multi-layer encoding process, the high-order demodulated data needs to be decoded in the concatenated decoding process. In this embodiment, the demodulation process of obtaining the high-order demodulated data to be decoded is called the third demodulation process.
当采用硬判决的方式执行第三解调过程时,对得到的高位解调数据采用硬译码的方式进行译码。此时,如图9所示,步骤23进一步包括步骤231-2、步骤232-2和步骤233。When the third demodulation process is performed in a hard-decision manner, the obtained high-order demodulated data is decoded in a hard-decoding manner. At this time, as shown in FIG. 9 , step 23 further includes step 231 - 2 , step 232 - 2 and step 233 .
步骤231-2,使用低位比特数据辅助对信道接收数据进行解调时采用硬判决的方式,得到二进制的高位解调数据。解调过程如图8所示。Step 231-2, using the low-order bit data to assist in demodulating the channel received data by adopting a hard-decision manner to obtain binary high-order demodulation data. The demodulation process is shown in Figure 8.
步骤232-2,将二进制的高位解调数据采用硬译码的方式进行译码。Step 232-2, decode the binary high-order demodulated data by hard decoding.
步骤233,得到高位比特数据。
当采用软判决的方式执行第三解调过程时,对得到的高位解调数据采用软译码的方式进行译码。此时,如图9所示,步骤23进一步包括步骤231-3、步骤232-3和步骤233。When the third demodulation process is performed in a soft-decision manner, the obtained high-order demodulated data is decoded in a soft decoding manner. At this time, as shown in FIG. 9 , step 23 further includes step 231 - 3 , step 232 - 3 and step 233 .
步骤231-3,使用低位比特数据辅助对信道接收数据进行解调时采用软判决的方式,得到软信息的高位解调数据。Step 231-3, using the low-order bit data to assist the demodulation of the channel received data by adopting a soft decision method to obtain high-order demodulated data of the soft information.
步骤232-3,将软信息的高位解调数据采用软译码的方式进行译码。Step 232-3, decoding the high-order demodulated data of the soft information by soft decoding.
步骤233,得到高位比特数据。
在本实施例中,将步骤21-步骤23的执行过程称为MLC译码过程。当步骤21中的第一解调过程采用软判决方式时,称为MLC软译码。进一步的,MLC软译码包括使用低位比特数据辅助对信道接收数据进行解调时采用硬判决和软判决两种形式。当步骤22中的第一解调过程采用硬判决方式时,称为MLC硬译码。进一步的,MLC硬译码包括使用低位比特数据辅助对信道接收数据进行解调时采用硬判决和软判决两种形式。也就是说,MCL软译码包括低位软判决解调+高位软判决解调和低位软判决解调+高位硬判决解调两种形式;MLC硬译码包括低位硬判决解调+高位硬判决解调和低位硬判决解调+高位软判决解调两种形式。In this embodiment, the execution process of
步骤24,对高位比特数据和低位比特数据进行解交织处理,得到解交织数据。Step 24: Perform de-interleaving processing on the high-order bit data and the low-order bit data to obtain de-interleaved data.
步骤25,对所述解交织数据进行RS译码,得到RS译码数据。Step 25: Perform RS decoding on the deinterleaved data to obtain RS decoded data.
步骤26,将所述RS译码数据发送给信宿。Step 26: Send the RS decoded data to the sink.
对MLC译码结果进行解交织,还原成RS码字的顺序,进行RS译码,得到RS译码数据发送给信宿。在本实施例中,RS译码采用硬译码的方式。The MLC decoding result is deinterleaved, restored to the order of RS codewords, and RS decoding is performed to obtain RS decoded data and send it to the sink. In this embodiment, the RS decoding adopts a hard decoding manner.
在本实施例中,还可以通过迭代译码的方式增加级联译码方法的性能,即在完成RS硬译码后,利用RS译码数据作为迭代输入数据,再次进行MLC译码和RS译码过程,将得到的迭代译码结果发送给信宿。具体包括步骤31-36。In this embodiment, the performance of the cascaded decoding method can also be increased by means of iterative decoding, that is, after the RS hard decoding is completed, the RS decoding data is used as the iterative input data, and MLC decoding and RS decoding are performed again. The decoding process is performed, and the obtained iterative decoding result is sent to the sink. Specifically, steps 31-36 are included.
步骤31,对RS译码数据进行交织,得到迭代输入数据。需要说明的是,对RS译码数据进行交织后不用进行编码,直接将交织后的数据作为迭代译码的输入数据,再次作为MLC译码过程的输入。迭代输入数据中包括低位迭代输入数据和高位迭代输入数据。Step 31: Interleave the RS decoded data to obtain iterative input data. It should be noted that, after the RS decoding data is interleaved, no encoding is required, and the interleaved data is directly used as the input data of the iterative decoding, which is again used as the input of the MLC decoding process. The iterative input data includes low-order iterative input data and high-order iterative input data.
步骤32,对低位迭代输入数据进行译码,得到低位迭代比特数据。以PAM4调制方式为例,先对低位迭代输入数据直接进行译码,得到低位迭代比特数据。因为RS译码数据已经没有校验位的信息,因此,RS译码数据交织后得到的迭代输入数据中需要对抛弃的校验位进行处理。在一种实现方式中,对低位迭代输入数据采用硬译码方式进行译码,将迭代输入数据中的校验位设为第一次低位译码后数据的校验位,即低位比特数据中的校验位;在另外一种实现方式中,对低位迭代输入数据采用软译码方式进行译码,将低位迭代数据中信息位的最大似然比设为最可靠,将低位迭代输入数据中校验位的最大似然比设为低位解调数据中的最大似然比。Step 32: Decode the low-order iterative input data to obtain low-order iterative bit data. Taking the PAM4 modulation mode as an example, the low-order iterative input data is directly decoded first to obtain the low-order iterative bit data. Because the RS decoded data has no information about the check digit, the discarded check digit needs to be processed in the iterative input data obtained after the RS decoded data is interleaved. In one implementation, the low-order iterative input data is decoded by hard decoding, and the check digit in the iterative input data is set as the check digit of the data after the first low-order decoding, that is, in the low-order bit data In another implementation, soft decoding is used to decode the low-order iterative input data, and the maximum likelihood ratio of the information bits in the low-order iterative data is set as the most reliable, and the low-order iterative input data is The maximum likelihood ratio of the parity bits is set to the maximum likelihood ratio in the demodulated data of the lower bits.
步骤33,使用低位迭代比特数据辅助对高位迭代输入数据进行处理,得到高位迭代比特数据。根据调制数据中的最高有效位在多层编码过程中是否进行了编码操作,步骤33进一步的包括步骤331和步骤332。Step 33: Use the low-order iterative bit data to assist in processing the high-order iterative input data to obtain high-order iterative bit data. Step 33 further includes step 331 and step 332 according to whether the most significant bit in the modulated data is encoded in the multi-layer encoding process.
步骤331,当调制数据中的最高有效位在多层编码过程中没有进行编码时,使用低位迭代比特数据辅助对高位迭代输入数据采用硬判决方式执行第二解调过程,得到高位迭代比特数据。Step 331, when the most significant bit in the modulated data is not encoded in the multi-layer encoding process, use the low-order iterative bit data to assist the high-order iterative input data to perform the second demodulation process in a hard-decision manner to obtain high-order iterative bit data.
步骤332,当调制数据中的最高有效位在多层编码过程中进行编码时,使用低位迭代比特数据辅助对高位迭代输入数据采用硬判决方式或者软判决方式执行第三解调过程,得到高位解调迭代数据,对高位解调迭代数据进行译码,得到高位迭代比特数据。进一步的,当采用硬判决方式执行第三解调过程时,对高位解调迭代数据采用硬译码方式进行译码;当采用软判决方式执行第三解调过程时,对高位解调迭代数据采用硬译码方式进行译码。Step 332, when the most significant bit in the modulated data is encoded in the multi-layer encoding process, use the low-order iterative bit data to assist the high-order iterative input data to perform the third demodulation process in a hard-decision mode or a soft-decision mode to obtain a high-order solution. Demodulation iterative data, decoding the high-order demodulation iterative data to obtain high-order iterative bit data. Further, when the third demodulation process is performed in a hard-decision manner, the high-order demodulation iterative data is decoded in a hard decoding manner; when the third demodulation process is performed in a soft-decision manner, the high-order demodulation iterative data is decoded. Decoding is performed by hard decoding.
在本实施例中,将步骤32-33称为MLC迭代译码过程,其中,当对低位迭代输入数据采用硬译码方式进行译码时,称为MLC硬迭代译码过程;当对低位迭代输入数据采用软译码方式进行译码时,称为MLC软迭代译码过程。进一步的,MLC硬迭代译码过程包括低位迭代硬译码+高位迭代硬译码和低位迭代硬译码+高位迭代软译码两种形式,MLC软迭代译码过程包括低位软译码+高位迭代软译码和低位软译码+高位迭代硬译码两种形式。In this embodiment, steps 32-33 are called the MLC iterative decoding process, wherein when the low-order iterative input data is decoded in a hard decoding manner, it is called the MLC hard iterative decoding process; When the input data is decoded by soft decoding, it is called the MLC soft iterative decoding process. Further, the MLC hard iterative decoding process includes two forms of low-order iterative hard decoding + high-order iterative hard decoding and low-order iterative hard decoding + high-order iterative soft decoding. The MLC soft iterative decoding process includes low-order soft decoding + high-order soft decoding. There are two forms of iterative soft decoding and low-order soft decoding + high-order iterative hard decoding.
步骤34,将高位迭代比特数据和低位迭代比特数据进行解交织处理,得到解交织迭代数据。Step 34: Perform de-interleaving processing on the high-order iterative bit data and the low-order iterative bit data to obtain de-interleaving iterative data.
步骤35,对解交织迭代数据进行RS译码,得到RS迭代译码数据。在本实施例中,对解交织迭代数据进行RS译码时采用硬译码的方式。Step 35: Perform RS decoding on the deinterleaved iterative data to obtain RS iteratively decoded data. In this embodiment, a hard decoding manner is used when performing RS decoding on the deinterleaved iterative data.
步骤36,将RS迭代译码数据发送给信宿。Step 36: Send the RS iteratively decoded data to the sink.
需要说明的是,当对信道传输过来的信道接收数据采用硬判决方式执行第一解调过程得到低位解调数据时,需要采用迭代译码的方式,得到的译码数据才能满足400Gb/s以上的以太网的性能要求。也就是说,当采用硬判决方式执行第一解调过程时,级联译码方法的流程包括MLC硬译码+RS译码+MLC硬迭代译码+RS译码。It should be noted that when the first demodulation process is performed on the channel received data transmitted by the channel to obtain low-order demodulation data in the hard-decision mode, the iterative decoding method needs to be adopted, and the decoded data obtained can meet the requirements of more than 400Gb/s. Ethernet performance requirements. That is to say, when the first demodulation process is performed in a hard-decision manner, the flow of the concatenated decoding method includes MLC hard decoding+RS decoding+MLC hard iterative decoding+RS decoding.
当对信道传输过来的调制数据采用软判决方式执行第一解调过程得到低位解调数据时,级联译码的方法流程可以包括不迭代的方式,即MLC软译码+RS译码;也可以采用迭代译码的方式,包括两种形式,一种是MLC软译码+RS译码+MLC软迭代译码+RS译码,另外一种是MLC软译码+RS译码+MLC硬迭代译码+RS译码。When the first demodulation process is performed on the modulated data transmitted by the channel to obtain low-order demodulation data, the method flow of the cascaded decoding may include a non-iterative method, that is, MLC soft decoding + RS decoding; Iterative decoding can be used, including two forms, one is MLC soft decoding + RS decoding + MLC soft iterative decoding + RS decoding, the other is MLC soft decoding + RS decoding + MLC hard decoding Iterative decoding + RS decoding.
本申请第二实施例提供的一种级联译码方法,用于译码使用本申请第一实施例提供的级联编码方法得到的调制数据,所述级联译码方法包括对信道接收数据按照预设调制方式执行第一解调过程,得到低位解调数据;对低位解调数据进行译码,得到低位比特数据;使用低位比特数据辅助对信道接收数据进行处理,得到高位比特数据;对高位比特数据和低位比特数据进行解交织处理,得到解交织数据;对解交织数据进行RS译码,得到RS译码数据;将RS译码数据发送给信宿。所述级联译码方法使用低位比特数据辅助对调制数据中的高位进行处理,得到高位比特数据,保证了译码的性能,还降低了系统的复杂度,减少时延。A concatenated decoding method provided by the second embodiment of the present application is used to decode modulated data obtained by using the concatenated encoding method provided by the first embodiment of the present application, and the concatenated decoding method includes receiving data on a channel. Perform the first demodulation process according to the preset modulation mode to obtain low-order demodulated data; decode the low-order demodulated data to obtain low-order bit data; use the low-order bit data to assist in processing the channel received data to obtain high-order bit data; The high-order bit data and the low-order bit data are de-interleaved to obtain de-interleaved data; RS-decoding is performed on the de-interleaved data to obtain RS-decoded data; and the RS-decoded data is sent to the sink. The cascade decoding method uses the low-order bit data to assist in processing the high-order bits in the modulated data to obtain the high-order bit data, which ensures the decoding performance, reduces the complexity of the system, and reduces the time delay.
为了进一步体现本申请所提供的级联编码方法和级联译码方法的性能优势,本申请以PAM4调制方式为例,进行了对比实验。In order to further reflect the performance advantages of the concatenated encoding method and the concatenated decoding method provided by the present application, the present application uses the PAM4 modulation mode as an example to conduct comparative experiments.
对比实验1中,实验组1使用本申请第一实施例提供的RS码+MLC码的级联编码方法,具体的,外码采用RS(544,514,t=15),即KP4 FEC方案,内码MLC码的组成码中对低位比特数据采用BCH(360,320)码进行编码,纠错能力为4,高位比特数据不进行编码,没有纠错能力,预设的交织深度I=2。其中,交织深度I=2有很大的潜能去与现有以太网的PCS(Physical Coding Sublayer,物理编码子层)兼容。使用本申请第二实施例提供给的MLC软译码+RS译码的级联译码方法进行译码,具体的,MLC软译码过程中,对信道接收数据采用软判决方式进行解调,得到低位解调数据,对低位解调数据使用Chase-II算法进行译码,得到低位比特数据;其中Chase-II算法中翻转比特数设为3;使用低位比特数据辅助对信道接收数据采用硬判决方式进行解调,直接输出解调结果得到高位比特数据;将高位比特数据和低位比特数据进行解交织,得到解交织数据进行RS硬译码,得到RS译码结果。In
对比组1使用RS码+BCH码的级联编码方法;具体的,外码采用RS(544,514,t=15)码,即KP4 FEC方案,内码采用BCH(360,340)码。实验组和对比组1中的级联码的码率是一样的,对比组1中的PAM4调制过程中使用格雷码。对比组2使用KP4 FEC方案。The
对比实验1中的三组编码方法对应的译码性能如图10所示。其中,实验组1对应于图10中的2RS+MLC_flip3,对比组1对应于图10中的2RS+BCH360(t=2)格雷码_flip3,对比组2对应于图10中的RS(544,514)。从图10中可以看出,在输出BER(Bit Error Ratio,误码率)指标达到1E-15时,实验组和对比组1相对于对比组2的SNR(Signal-Noise Ratio,信噪比)都有1dB以上的提升,而实验组的译码性能相较于对比组1又提升了约0.05dB。其中图10中flip指BCH软译码时最不可靠位(翻转)个数。The decoding performance corresponding to the three sets of coding methods in
对比实验2对当MLC采用硬译码时,是否需要进行迭代译码进行了验证。实验组2的级联编码方法中,预设的交织深度I=4,其余的设置与对比实验1中实验组1的级联编码方法的设置一样。实验组2使用MLC硬译码+RS译码的级联译码方法。实验组3的级联编码方法同实验组2的一致,使用MLC硬译码+RS译码+MLC硬迭代译码+RS译码的迭代译码方式进行译码。
对比实验2中的两个实验组对应的译码性能如图11所示,其中,实验组2的FER(误帧率)对应于图11中FER-sim 4kp4 iter1,实验组2的BER(误码率)对应于图11中的BER-sim4kp4 iter1,实验组3的FER(Frame Error Rate,误帧率)指标对应于图11中FER-sim4kp4 iter2,实验组3的BER指标对应于图11中的BER-sim 4kp4 iter2。400Gb/s以上以太网的性能要求为在raw-BER为2E-3时输出BER为E-15。从图11中可以看出,实验组2的译码方案需要约1.8E-3的信道条件才能满足输出BER为E-15,达不到以太网的性能要求;实验组3的译码方案在约2.8E-3的信道条件即可满足要求,远远超过以太网的性能要求。The decoding performance corresponding to the two experimental groups in
从对比实验2中可以看出,当对信道传输过来的调制数据采用硬判决方式执行第一解调过程得到低位解调数据时,需要进行迭代译码的方式,得到的译码数据才能满足400Gb/s以上的以太网的性能要求。It can be seen from
对比实验3对实验组1、实验组4和实验组5以及对比组1的译码性能进行对比。实验组4的级联编码方法和实验组1一样,级联译码方法采用MLC软译码+RS译码+MLC软译码+RS译码的迭代译码方式,其中因为高位比特数据在编码时没有进行编码,因此,MLC软译码过程中的,使用低位译码结果辅助对高位进行硬判决解调,直接输出高位比特数据。实验组5的级联编码方法和实验组1一样,级联译码方法采用MLC软译码+RS译码+MLC硬迭代译码+RS译码的迭代译码方式。
对比实验3的译码性能结果如图12所示;其中,对比组1对应于图12中的2RS+BCH360(t=2)格雷码_flip3,实验组1对应于图12中的2RS+MLC_flip3,实验组4对应于图12中的2RS+MLC两次软迭代_flip3,实验组5对应于图12中的2RS+MLC软硬迭代_flip3。从图12中可以看出,当交织深度为2时,对译码性能曲线进行拟合延长,在输出BER等于1E-15时,实验组4的译码性能较之实验组1提升了0.28dB左右,实验组5的译码性能较之实验组1提升了0.12dB左右。从上述分析可以看出,可以通过迭代译码的方式增加级联译码方法的译码性能。The decoding performance results of
以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。The specific embodiments provided above are just a few examples under the general concept of the present application, and do not constitute a limitation of the protection scope of the present application. For those skilled in the art, any other implementations expanded according to the solution of the present application without creative work fall within the protection scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210192714.1A CN115225202B (en) | 2022-03-01 | 2022-03-01 | Cascade decoding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210192714.1A CN115225202B (en) | 2022-03-01 | 2022-03-01 | Cascade decoding method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115225202A true CN115225202A (en) | 2022-10-21 |
CN115225202B CN115225202B (en) | 2023-10-13 |
Family
ID=83606516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210192714.1A Active CN115225202B (en) | 2022-03-01 | 2022-03-01 | Cascade decoding method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115225202B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116015541A (en) * | 2022-12-06 | 2023-04-25 | 西北工业大学 | Interleaving BCH coding and decoding method for NOMA |
CN116961841A (en) * | 2023-09-19 | 2023-10-27 | 芯潮流(珠海)科技有限公司 | Decoding method, device and storage medium for high-speed data center |
WO2024198694A1 (en) * | 2023-03-31 | 2024-10-03 | 华为技术有限公司 | Data processing method and data processing apparatus |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007323A1 (en) * | 1998-07-30 | 2000-02-10 | Vocal Technologies, Ltd. | Forward error correcting system with encoders configured in parallel and/or series |
CN1389037A (en) * | 2000-08-18 | 2003-01-01 | 三菱电机株式会社 | Communication device and communication method |
WO2006066445A1 (en) * | 2004-12-21 | 2006-06-29 | Zte Corporation | A encoding modulation and demodulation system and its method of transmitting and receiving signal |
CN101309086A (en) * | 2008-06-27 | 2008-11-19 | 东南大学 | Systematic Decoding Method of Reed-Solomon Code Cascaded Feedback System Convolutional Code |
US20090241006A1 (en) * | 2008-03-24 | 2009-09-24 | Liikanen Bruce A | Bitwise Operations and Apparatus in a Multi-Level System |
US20100306618A1 (en) * | 2009-03-18 | 2010-12-02 | Jin Woo Kim | Transmitting/receiving system and method of processing broadcasting signal in transmitting/receiving system |
CN102148681A (en) * | 2011-05-19 | 2011-08-10 | 北京邮电大学 | System and method for realizing iterative timing synchronization of continuous phase modulation signal |
US20110280068A1 (en) * | 2010-05-17 | 2011-11-17 | Seagate Technology Llc | Joint encoding of logical pages in multi-page memory architecture |
US20110310978A1 (en) * | 2010-06-18 | 2011-12-22 | Yiyan Wu | Multilayer decoding using persistent bits |
US20120240006A1 (en) * | 2010-05-28 | 2012-09-20 | Stec, Inc. | Trellis-coded modulation in a multi-level cell flash memory device |
CN103503319A (en) * | 2013-04-03 | 2014-01-08 | 华为技术有限公司 | Deconding method, decoding device, and communication system |
WO2014138497A1 (en) * | 2013-03-08 | 2014-09-12 | Inphi Corporation | Optical communication interface utilizing quadrature amplitude modulation |
CN105144598A (en) * | 2012-12-03 | 2015-12-09 | 数字无线功率有限公司 | Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems |
CN107667494A (en) * | 2015-05-29 | 2018-02-06 | 三星电子株式会社 | Receiver and its signal processing method |
CN108111256A (en) * | 2017-11-28 | 2018-06-01 | 中国电子科技集团公司第七研究所 | Cascade Compilation Method, device, storage medium and its computer equipment |
US20200044770A1 (en) * | 2018-08-02 | 2020-02-06 | Nokia Solutions And Networks Oy | Transmission of probabilistically shaped amplitudes using partially anti-symmetric amplitude labels |
CN111654353A (en) * | 2019-03-04 | 2020-09-11 | 南京大学 | A FEC Scheme for Next Generation Ethernet and Its Decoder Hardware Architecture |
US20200373942A1 (en) * | 2018-02-14 | 2020-11-26 | Huawei Technologies Co., Ltd. | Encoding and decoding methods, apparatuses, and devices |
CN113300718A (en) * | 2021-05-20 | 2021-08-24 | 南京大学 | Encoding method, decoding method, encoding device and decoding device |
WO2021199690A1 (en) * | 2020-04-02 | 2021-10-07 | 三菱電機株式会社 | Error-correction encoding device, error-correction decoding device, control circuit, storage medium, error-correction encoding method, and error-correction decoding method |
CN113810062A (en) * | 2021-11-17 | 2021-12-17 | 南京风兴科技有限公司 | GEL coding method and device facing next generation Ethernet |
CN113949453A (en) * | 2020-07-15 | 2022-01-18 | 华为技术有限公司 | Modulation coding and demodulation decoding method, device, equipment and communication system |
-
2022
- 2022-03-01 CN CN202210192714.1A patent/CN115225202B/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007323A1 (en) * | 1998-07-30 | 2000-02-10 | Vocal Technologies, Ltd. | Forward error correcting system with encoders configured in parallel and/or series |
CN1389037A (en) * | 2000-08-18 | 2003-01-01 | 三菱电机株式会社 | Communication device and communication method |
WO2006066445A1 (en) * | 2004-12-21 | 2006-06-29 | Zte Corporation | A encoding modulation and demodulation system and its method of transmitting and receiving signal |
US20090241006A1 (en) * | 2008-03-24 | 2009-09-24 | Liikanen Bruce A | Bitwise Operations and Apparatus in a Multi-Level System |
CN101309086A (en) * | 2008-06-27 | 2008-11-19 | 东南大学 | Systematic Decoding Method of Reed-Solomon Code Cascaded Feedback System Convolutional Code |
US20100306618A1 (en) * | 2009-03-18 | 2010-12-02 | Jin Woo Kim | Transmitting/receiving system and method of processing broadcasting signal in transmitting/receiving system |
US20110280068A1 (en) * | 2010-05-17 | 2011-11-17 | Seagate Technology Llc | Joint encoding of logical pages in multi-page memory architecture |
US20120240006A1 (en) * | 2010-05-28 | 2012-09-20 | Stec, Inc. | Trellis-coded modulation in a multi-level cell flash memory device |
US20110310978A1 (en) * | 2010-06-18 | 2011-12-22 | Yiyan Wu | Multilayer decoding using persistent bits |
CN102148681A (en) * | 2011-05-19 | 2011-08-10 | 北京邮电大学 | System and method for realizing iterative timing synchronization of continuous phase modulation signal |
CN105144598A (en) * | 2012-12-03 | 2015-12-09 | 数字无线功率有限公司 | Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems |
WO2014138497A1 (en) * | 2013-03-08 | 2014-09-12 | Inphi Corporation | Optical communication interface utilizing quadrature amplitude modulation |
CN103503319A (en) * | 2013-04-03 | 2014-01-08 | 华为技术有限公司 | Deconding method, decoding device, and communication system |
CN107667494A (en) * | 2015-05-29 | 2018-02-06 | 三星电子株式会社 | Receiver and its signal processing method |
CN108111256A (en) * | 2017-11-28 | 2018-06-01 | 中国电子科技集团公司第七研究所 | Cascade Compilation Method, device, storage medium and its computer equipment |
US20200373942A1 (en) * | 2018-02-14 | 2020-11-26 | Huawei Technologies Co., Ltd. | Encoding and decoding methods, apparatuses, and devices |
US20200044770A1 (en) * | 2018-08-02 | 2020-02-06 | Nokia Solutions And Networks Oy | Transmission of probabilistically shaped amplitudes using partially anti-symmetric amplitude labels |
CN111654353A (en) * | 2019-03-04 | 2020-09-11 | 南京大学 | A FEC Scheme for Next Generation Ethernet and Its Decoder Hardware Architecture |
WO2021199690A1 (en) * | 2020-04-02 | 2021-10-07 | 三菱電機株式会社 | Error-correction encoding device, error-correction decoding device, control circuit, storage medium, error-correction encoding method, and error-correction decoding method |
CN113949453A (en) * | 2020-07-15 | 2022-01-18 | 华为技术有限公司 | Modulation coding and demodulation decoding method, device, equipment and communication system |
CN113300718A (en) * | 2021-05-20 | 2021-08-24 | 南京大学 | Encoding method, decoding method, encoding device and decoding device |
CN113810062A (en) * | 2021-11-17 | 2021-12-17 | 南京风兴科技有限公司 | GEL coding method and device facing next generation Ethernet |
Non-Patent Citations (3)
Title |
---|
ZHONGFENG WANG等: ""High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon Codes"", 《IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS》 * |
张旋;余娟;: "基于加权比特翻转的MLC型NAND闪存系统", 微电子学与计算机, no. 02 * |
许大正;刘爱军;: "DVB-S2标准中联合LDPC译码的16-APSK星座迭代软判决算法研究", 宇航学报, no. 03 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116015541A (en) * | 2022-12-06 | 2023-04-25 | 西北工业大学 | Interleaving BCH coding and decoding method for NOMA |
WO2024198694A1 (en) * | 2023-03-31 | 2024-10-03 | 华为技术有限公司 | Data processing method and data processing apparatus |
CN116961841A (en) * | 2023-09-19 | 2023-10-27 | 芯潮流(珠海)科技有限公司 | Decoding method, device and storage medium for high-speed data center |
CN116961841B (en) * | 2023-09-19 | 2023-12-26 | 芯潮流(珠海)科技有限公司 | Decoding method, device and storage medium for high-speed data center |
Also Published As
Publication number | Publication date |
---|---|
CN115225202B (en) | 2023-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115225202B (en) | Cascade decoding method | |
JP5235629B2 (en) | Encoding and modulation method and decoding method for wireless communication apparatus | |
CN109964426B (en) | Signal receiver and method for analyzing received signal, communication system | |
WO2016070573A1 (en) | Data checking method and apparatus | |
US8792469B2 (en) | Coding a control message with determined data code block repetition | |
CN108494719B (en) | A constellation mapping method and demapping method | |
US8875000B2 (en) | Methods and systems systems for encoding and decoding in trellis coded modulation systems | |
CN110311755B (en) | A method for transmitting additional information using linear block codes | |
CN101262307B (en) | A Serial Concatenated Coding and Decoding System Containing Constellation Diagram Rotating Modulation | |
US9154156B2 (en) | Ternary line code design for controlled decision feedback equalizer error propagation | |
CN102064917A (en) | Demodulation decoding method for LDPC (Low Density Parity Code) modulation system | |
CN110892658B (en) | Device and method for coding a message with a target probability distribution of coded symbols | |
KR20030036660A (en) | Method and apparatus for a complementary encoder/decoder | |
CN113507289B (en) | Encoder, decoder and code word generation method | |
WO2010030016A1 (en) | Systems and methods for providing unequal error protection using embedded coding | |
JP2004023691A (en) | Error correction encoding / decoding method, transmitting apparatus and receiving apparatus | |
CN101969309B (en) | MAP modulating and coding method of FFH communication system coded by Turbo and modulated by BFSK | |
US20230155680A1 (en) | Modulation and Encoding Method and Apparatus, Demodulation and Decoding Method and Apparatus, Device, and Communication System | |
CN109412752B (en) | Polar code incoherent detection receiver, system and method | |
CN112398580B (en) | Modulation method and device | |
CN113541871B (en) | Method for generating code words and coder-decoder | |
US8098773B1 (en) | Communication method and apparatus | |
CN114070463B (en) | Communication device and communication system for transmitting data by using multi-layer coding | |
JP5153588B2 (en) | Wireless communication device | |
JP5521063B2 (en) | Encoding and modulation method and decoding method for wireless communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |