CN115224066A - Image sensor and method of forming the same - Google Patents
Image sensor and method of forming the same Download PDFInfo
- Publication number
- CN115224066A CN115224066A CN202210857987.3A CN202210857987A CN115224066A CN 115224066 A CN115224066 A CN 115224066A CN 202210857987 A CN202210857987 A CN 202210857987A CN 115224066 A CN115224066 A CN 115224066A
- Authority
- CN
- China
- Prior art keywords
- epitaxial layer
- ions
- doped epitaxial
- forming
- intrinsic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 150000002500 ions Chemical class 0.000 claims abstract description 151
- 239000000758 substrate Substances 0.000 claims abstract description 78
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 238000009826 distribution Methods 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 9
- -1 boron ions Chemical class 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- 229910001449 indium ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/802—Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
一种图像传感器及其形成方法,其中形成方法包括:提供衬底,衬底包括像素区;在像素区内形成若干深沟槽;在深沟槽内形成第一掺杂外延层,第一掺杂外延层内具有第一离子;在深沟槽内形成第一本征外延层;在深沟槽内形成第二掺杂外延层,第二掺杂外延层内具有第二离子,第一离子与第二离子的电学类型不同。由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的第一掺杂外延层内的第一离子浓度分布、以及第二掺杂外延层内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成第一掺杂外延层和第二掺杂外延层不会对衬底的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。
An image sensor and a method for forming the same, wherein the forming method includes: providing a substrate, the substrate including a pixel region; forming a plurality of deep trenches in the pixel region; forming a first doped epitaxial layer in the deep trench, the first doped epitaxial layer The hetero-epitaxial layer has first ions; the first intrinsic epitaxial layer is formed in the deep trench; the second doped epitaxial layer is formed in the deep trench, and the second doped epitaxial layer has second ions and the first ions Different electrical type from the second ion. Since the thin films in the epitaxial growth process are stacked layer by layer, and ions are added to each thin film grown, the first ion concentration distribution in the first doped epitaxial layer and the second doped epitaxial layer are formed. The uniformity of the second ion concentration distribution within is greatly improved. In addition, the formation of the first doped epitaxial layer and the second doped epitaxial layer by epitaxial growth will not cause loss to the surface of the substrate, thereby effectively improving the pixel performance of the finally formed image sensor.
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种图像传感器及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular, to an image sensor and a method for forming the same.
背景技术Background technique
图像传感器是将光学图像转换成电信号的半导体器件,由于CMOS图像传感器(CMOS Image Sensor,CIS)具有低功耗和高信噪比的优点,因此在各种领域内得到了广泛应用。Image sensors are semiconductor devices that convert optical images into electrical signals. Because of the advantages of low power consumption and high signal-to-noise ratio, CMOS image sensors (CMOS Image Sensor, CIS) have been widely used in various fields.
在CMOS图像传感器中最常用的Pixel单元包含一个光电二极管PD和四个MOS管,包括转移晶体管TX、复位晶体管RST,源跟随晶体管SF和行选择晶体管RS、以及浮动扩散区FD,可以实现对光电二极管PD的选中、复位、信号输出、信号放大和读出的控制。原理为当光线照射光电二极管PD时,光电二极管PD中就会产生光生载流子的积累,然后通过外部控制电路打开转移晶体管TX,光生载流子就从光电二极管PD流到浮动扩散区FD,浮动扩散区FD既是转移晶体管TX的漏极,又是PN结电容,浮动扩散区FD将光生载流子转变为电压信号输出。The most commonly used Pixel unit in a CMOS image sensor contains a photodiode PD and four MOS transistors, including a transfer transistor TX, a reset transistor RST, a source follower transistor SF, a row select transistor RS, and a floating diffusion region FD, which can realize the photoelectric Control of selection, reset, signal output, signal amplification and readout of diode PD. The principle is that when light irradiates the photodiode PD, photo-generated carriers will accumulate in the photodiode PD, and then the transfer transistor TX is turned on through the external control circuit, and the photo-generated carriers flow from the photodiode PD to the floating diffusion area FD. The floating diffusion region FD is not only the drain of the transfer transistor TX, but also the PN junction capacitance, and the floating diffusion region FD converts photogenerated carriers into voltage signal output.
然而,现有技术的CMOS图像传感器在形成过程中仍存在诸多问题。However, there are still many problems in the formation process of the prior art CMOS image sensor.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种图像传感器及其形成方法,以提升图像传感器中像素的性能,。The technical problem solved by the present invention is to provide an image sensor and a method for forming the same, so as to improve the performance of the pixels in the image sensor.
为解决上述问题本发明技术方案中提供了一种图像传感器的形成方法,包括:提供衬底,所述衬底内具有第一离子,所述衬底包括像素区;在所述像素区内形成若干深沟槽;在所述深沟槽内形成第一掺杂外延层,第一掺杂外延层内具有所述第一离子;在所述深沟槽内形成第一本征外延层,所述第一本征外延层位于所述第一掺杂外延层上;在所述深沟槽内形成第二掺杂外延层,所述第二掺杂外延层内具有第二离子,所述第一离子与所述第二离子的电学类型不同,所述第二掺杂外延层位于所述第一本征外延层上;在所述深沟槽内形成第二本征外延层,所述第二本征外延层位于所述第二掺杂外延层上,且所述第二本征外延层填充满所述深沟槽;在形成所述第二本征外延层之后,对所述第一掺杂外延层和所述第二掺杂外延层退火处理,使得所述第一掺杂外延层内的第一离子和所述第二掺杂外延内层内的第二离子扩散至所述第一本征外延层内。In order to solve the above problems, the technical solution of the present invention provides a method for forming an image sensor, which includes: providing a substrate with first ions in the substrate, and the substrate includes a pixel area; a number of deep trenches; a first doped epitaxial layer is formed in the deep trenches, and the first doped epitaxial layer has the first ions; a first intrinsic epitaxial layer is formed in the deep trenches, so The first intrinsic epitaxial layer is located on the first doped epitaxial layer; a second doped epitaxial layer is formed in the deep trench, the second doped epitaxial layer has second ions, and the second doped epitaxial layer is formed in the deep trench. The electrical type of an ion is different from that of the second ion, the second doped epitaxial layer is located on the first intrinsic epitaxial layer; a second intrinsic epitaxial layer is formed in the deep trench, the first intrinsic epitaxial layer is formed Two intrinsic epitaxial layers are located on the second doped epitaxial layer, and the second intrinsic epitaxial layer fills the deep trench; after the second intrinsic epitaxial layer is formed, the first The doped epitaxial layer and the second doped epitaxial layer are annealed, so that the first ions in the first doped epitaxial layer and the second ions in the second doped epitaxial layer are diffused to the second doped epitaxial layer. within an intrinsic epitaxial layer.
可选的,所述第一离子为P型离子;所述第二离子为N型离子。Optionally, the first ions are P-type ions; the second ions are N-type ions.
可选的,所述第一掺杂外延层内的第一离子的掺杂浓度大于所述衬底内的第一离子的掺杂浓度;所述第二掺杂外延层内的第二离子的掺杂浓度大于所述衬底内的第一离子的掺杂浓度。Optionally, the doping concentration of the first ions in the first doped epitaxial layer is greater than the doping concentration of the first ions in the substrate; the doping concentration of the second ions in the second doped epitaxial layer The doping concentration is greater than the doping concentration of the first ions within the substrate.
可选的,所述第一掺杂外延层内的第一离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。Optionally, the doping concentration of the first ions in the first doped epitaxial layer is: 1E17 atoms/cm 3 to 3E17 atoms/cm 3 .
可选的,所述第二掺杂外延层内的第二离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。Optionally, the doping concentration of the second ions in the second doped epitaxial layer is: 1E17 atoms/cm 3 to 3E17 atoms/cm 3 .
可选的,所述第一本征外延层的厚度大于所述第一掺杂外延层的厚度;所述第一本征外延层的厚度大于所述第二掺杂外延层的厚度。Optionally, the thickness of the first intrinsic epitaxial layer is greater than the thickness of the first doped epitaxial layer; the thickness of the first intrinsic epitaxial layer is greater than the thickness of the second doped epitaxial layer.
可选的,所述第一掺杂外延层的厚度为40纳米~60纳米;所述第二掺杂外延层的厚度为40纳米~60纳米;所述第一本征外延层的厚度为90纳米~110纳米。Optionally, the thickness of the first doped epitaxial layer is 40 nm to 60 nm; the thickness of the second doped epitaxial layer is 40 nm to 60 nm; the thickness of the first intrinsic epitaxial layer is 90 nm nanometer to 110 nanometers.
可选的,所述衬底还包括:标记区;在形成所述深沟槽的过程中,还包括:在所述标记区内形成标记开口;所述标记开口具有第一深度尺寸,所述深沟槽具有第二深度尺寸,所述第二深度尺寸大于所述第一深度尺寸。Optionally, the substrate further includes: a marking area; in the process of forming the deep trench, further comprising: forming a marking opening in the marking area; the marking opening has a first depth dimension, the The deep trench has a second depth dimension that is greater than the first depth dimension.
可选的,所述标记开口和所述深沟槽的形成方法包括:在所述衬底上形成第一图形化层,所述第一图形化层暴露出部分所述衬底表面;以所述第一图形化层为掩膜刻蚀所述衬底,在所述标记区内形成所述标记开口,在所述像素区内形成初始深沟槽;去除所述第一图形化层;在所述标记开口的表面以及所述初始深沟槽的表面形成外延阻挡层;在形成所述外延阻挡层之后,在所述衬底上形成牺牲层,所述牺牲层覆盖所述标记开口;在形成所述牺牲层之后,刻蚀所述初始深沟槽以形成所述深沟槽;在形成所述深沟槽之后,去除所述牺牲层。Optionally, the method for forming the marked opening and the deep trench includes: forming a first patterned layer on the substrate, the first patterned layer exposing a part of the surface of the substrate; The first patterned layer is a mask to etch the substrate, the mark opening is formed in the mark area, and an initial deep trench is formed in the pixel area; the first patterned layer is removed; An epitaxial barrier layer is formed on the surface of the marking opening and the surface of the initial deep trench; after the epitaxial barrier layer is formed, a sacrificial layer is formed on the substrate, and the sacrificial layer covers the marking opening; After the sacrificial layer is formed, the initial deep trench is etched to form the deep trench; after the deep trench is formed, the sacrificial layer is removed.
可选的,在去除所述牺牲层之后,还包括:沿垂直于所述深沟槽侧壁方向对所述深沟槽进行扩展刻蚀处理。Optionally, after removing the sacrificial layer, the method further includes: performing an extension etching process on the deep trench along a direction perpendicular to the sidewall of the deep trench.
可选的,在形成所述第二掺杂外延层之后,且在形成所述第二本征外延层之前,还包括:去除位于所述标记开口和所述深沟槽内的外延阻挡层;在所述深沟槽内形成第二本征外延层的过程中,还包括:在所述标记开口内和所述衬底上形成所述第二本征外延层。Optionally, after forming the second doped epitaxial layer and before forming the second intrinsic epitaxial layer, further comprising: removing the epitaxial barrier layer located in the marking opening and the deep trench; The process of forming the second intrinsic epitaxial layer in the deep trench further includes: forming the second intrinsic epitaxial layer in the marking opening and on the substrate.
可选的,在对所述第一掺杂外延层和所述第二掺杂外延层退火处理之后,还包括:在所述第二本征外延层内形成第一引线区,所述第一引线区内具有所述第二离子,所述第一引线区分别与所述第一掺杂外延层、第一本征外延层以及第二掺杂外延层连接;在所述第二本征外延层和位于相邻所述深沟槽之间的衬底内形成第二引线区,所述第二引线区内具有所述第一离子。Optionally, after annealing the first doped epitaxial layer and the second doped epitaxial layer, the method further includes: forming a first lead region in the second intrinsic epitaxial layer, the first The second ions are located in the lead region, and the first lead region is respectively connected with the first doped epitaxial layer, the first intrinsic epitaxial layer and the second doped epitaxial layer; in the second intrinsic epitaxial layer A second lead region is formed within the layer and the substrate between adjacent said deep trenches, said second lead region having said first ions.
相应的,本发明技术方案中还提供一种图像传感器,包括:衬底,所述衬底内具有第一离子,所述衬底包括像素区;位于所述像素区内的若干深沟槽;位于所述深沟槽内的第一掺杂外延层,第一掺杂外延层内具有所述第一离子;位于所述深沟槽内的第一本征外延层,所述第一本征外延层位于所述第一掺杂外延层上;位于所述深沟槽内的第二掺杂外延层,所述第二掺杂外延层内具有第二离子,所述第一离子与所述第二离子的电学类型不同,所述第二掺杂外延层位于所述第一本征外延层上;位于所述深沟槽内的第二本征外延层,所述第二本征外延层位于所述第二掺杂外延层上,且所述第二本征外延层填充满所述深沟槽。Correspondingly, the technical solution of the present invention further provides an image sensor, comprising: a substrate having first ions in the substrate, the substrate including a pixel region; a plurality of deep trenches located in the pixel region; a first doped epitaxial layer located in the deep trench, the first doped epitaxial layer has the first ions; a first intrinsic epitaxial layer located in the deep trench, the first intrinsic epitaxial layer The epitaxial layer is located on the first doped epitaxial layer; the second doped epitaxial layer is located in the deep trench, and the second doped epitaxial layer has second ions, and the first ions and the The electrical types of the second ions are different, the second doped epitaxial layer is located on the first intrinsic epitaxial layer; the second intrinsic epitaxial layer located in the deep trench, the second intrinsic epitaxial layer on the second doped epitaxial layer, and the second intrinsic epitaxial layer fills the deep trench.
可选的,所述第一离子为P型离子;所述第二离子为N型离子。Optionally, the first ions are P-type ions; the second ions are N-type ions.
可选的,所述第一掺杂外延层内的第一离子的掺杂浓度大于所述衬底内的第一离子的掺杂浓度;所述第二掺杂外延层内的第二离子的掺杂浓度大于所述衬底内的第一离子的掺杂浓度。Optionally, the doping concentration of the first ions in the first doped epitaxial layer is greater than the doping concentration of the first ions in the substrate; the doping concentration of the second ions in the second doped epitaxial layer The doping concentration is greater than the doping concentration of the first ions within the substrate.
可选的,所述第一掺杂外延层内的第一离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。Optionally, the doping concentration of the first ions in the first doped epitaxial layer is: 1E17 atoms/cm 3 to 3E17 atoms/cm 3 .
可选的,所述第二掺杂外延层内的第二离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。Optionally, the doping concentration of the second ions in the second doped epitaxial layer is: 1E17 atoms/cm 3 to 3E17 atoms/cm 3 .
可选的,所述第一本征外延层的厚度大于所述第一掺杂外延层的厚度;所述第一本征外延层的厚度大于所述第二掺杂外延层的厚度。Optionally, the thickness of the first intrinsic epitaxial layer is greater than the thickness of the first doped epitaxial layer; the thickness of the first intrinsic epitaxial layer is greater than the thickness of the second doped epitaxial layer.
可选的,所述第一掺杂外延层的厚度为40纳米~60纳米;所述第二掺杂外延层的厚度为40纳米~60纳米;所述第一本征外延层的厚度为90纳米~110纳米。Optionally, the thickness of the first doped epitaxial layer is 40 nm to 60 nm; the thickness of the second doped epitaxial layer is 40 nm to 60 nm; the thickness of the first intrinsic epitaxial layer is 90 nm nanometer to 110 nanometers.
可选的,所述衬底还包括:标记区,所述标记区内具有标记开口,所述第二本征外延层还位于所述标记开口内和所述衬底上;所述标记开口具有第一深度尺寸,所述深沟槽具有第二深度尺寸,所述第二深度尺寸大于所述第一深度尺寸。Optionally, the substrate further includes: a marking area, the marking area has a marking opening, the second intrinsic epitaxial layer is also located in the marking opening and on the substrate; the marking opening has a first depth dimension, the deep trench has a second depth dimension greater than the first depth dimension.
可选的,还包括:位于所述第二本征外延层内的第一引线区,所述第一引线区内具有所述第二离子,所述第一引线区分别与所述第一掺杂外延层、第一本征外延层以及第二掺杂外延层连接;位于所述第二本征外延层和位于相邻所述深沟槽之间的衬底内的第二引线区,所述第二引线区内具有所述第一离子。Optionally, it further includes: a first lead region located in the second intrinsic epitaxial layer, the first lead region has the second ions, the first lead region is respectively connected to the first dopant The hetero-epitaxial layer, the first intrinsic epitaxial layer and the second doped epitaxial layer are connected; the second lead region located in the second intrinsic epitaxial layer and the substrate located between the adjacent deep trenches, so The second lead region has the first ions.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明技术方案的图像传感器的形成方法中,所述第一掺杂外延层和所述第二掺杂外延层的形成工艺均采用外延生长工艺,由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的所述第一掺杂外延层内的第一离子浓度分布、以及所述第二掺杂外延层内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成所述第一掺杂外延层和所述第二掺杂外延层不会对所述衬底的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。In the method for forming an image sensor according to the technical solution of the present invention, the formation process of the first doped epitaxial layer and the second doped epitaxial layer adopts an epitaxial growth process, because the thin films in the epitaxial growth process are stacked layer by layer , and ions are added to each film grown, so that the first ion concentration distribution in the formed first doped epitaxial layer and the second ion concentration distribution in the second doped epitaxial layer are different from each other. Uniformity is greatly improved. In addition, the formation of the first doped epitaxial layer and the second doped epitaxial layer by epitaxial growth will not cause loss to the surface of the substrate, thereby effectively improving the pixel performance of the finally formed image sensor.
本发明技术方案的图像传感器中,所述第一掺杂外延层和所述第二掺杂外延层的形成工艺均采用外延生长工艺,由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的所述第一掺杂外延层内的第一离子浓度分布、以及所述第二掺杂外延层内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成所述第一掺杂外延层和所述第二掺杂外延层不会对所述衬底的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。In the image sensor of the technical solution of the present invention, the formation process of the first doped epitaxial layer and the second doped epitaxial layer adopts an epitaxial growth process, because the thin films in the epitaxial growth process are stacked layer by layer, and each Growing a thin film will incorporate ions, so that the uniformity of the first ion concentration distribution in the first doped epitaxial layer and the second ion concentration distribution in the second doped epitaxial layer is greatly increased. improve. In addition, the formation of the first doped epitaxial layer and the second doped epitaxial layer by epitaxial growth will not cause loss to the surface of the substrate, thereby effectively improving the pixel performance of the finally formed image sensor.
附图说明Description of drawings
图1是一种图像传感器的形成方法各步骤结构示意图;1 is a schematic structural diagram of each step of a method for forming an image sensor;
图2至图12是本发明实施例中图像传感器的形成方法各步骤的结构示意图。2 to 12 are schematic structural diagrams of steps of a method for forming an image sensor according to an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术的CMOS图像传感器在形成过程中仍存在诸多问题。以下将结合附图进行具体说明。As described in the background art, there are still many problems in the formation process of the prior art CMOS image sensor. The following will be described in detail with reference to the accompanying drawings.
图1是一种图像传感器的形成方法各步骤结构示意图。FIG. 1 is a schematic structural diagram of each step of a method for forming an image sensor.
请参考图1,提供衬底100;采用离子注入工艺在所述衬底100内形成相互邻接的第一掺杂区101和第二掺杂区102,所述第一掺杂区101内具有第一离子,所述第二掺杂区102内具有第二离子,所述第一离子和所述第二离子的电学类型不同。Referring to FIG. 1, a
在本实施例中,由于所述第一离子和所述第二离子的电学类型不同,所述第一离子和所述第二离子在经过退火处理之后会进行一定的扩散,进而形成光电二极管结构。后续通过光线由照射所述衬底上,使所述衬底100激发出电子,所述光电二极管结构用于将激发出的电子形成电信号。In this embodiment, since the electrical types of the first ions and the second ions are different, the first ions and the second ions will diffuse to a certain extent after being annealed, thereby forming a photodiode structure . Subsequently, the
然而,由于所述第一掺杂区101和所述第二掺杂区102均由离子注入工艺形成,高能的离子注入会对所述衬底100的表面造成损伤,而且在离子注入的过程中,会使得所述第一掺杂区101和所述第二掺杂区102在纵向上的离子浓度分布不均匀,进而影响图像传感器中的像素性能。However, since both the first
在此基础上,本发明提供一种图像传感器及其形成方法,所述第一掺杂外延层和所述第二掺杂外延层的形成工艺均采用外延生长工艺,由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的所述第一掺杂外延层内的第一离子浓度分布、以及所述第二掺杂外延层内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成所述第一掺杂外延层和所述第二掺杂外延层不会对所述衬底的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。On this basis, the present invention provides an image sensor and a method for forming the same. The formation processes of the first doped epitaxial layer and the second doped epitaxial layer both adopt an epitaxial growth process. It is stacked layer by layer, and ions are added to each film grown, so that the first ion concentration distribution in the first doped epitaxial layer and the first ion concentration distribution in the second doped epitaxial layer are formed. The uniformity of diion concentration distribution is greatly improved. In addition, the formation of the first doped epitaxial layer and the second doped epitaxial layer by epitaxial growth will not cause loss to the surface of the substrate, thereby effectively improving the pixel performance of the finally formed image sensor.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细地说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图2至图12是本发明实施例中背照式图像传感器的形成方法各步骤结构示意图。2 to 12 are schematic structural diagrams of steps of a method for forming a backside illuminated image sensor according to an embodiment of the present invention.
请参考图2,提供衬底200,所述衬底200内具有第一离子,所述衬底200包括像素区I。Referring to FIG. 2 , a
在本实施例中,所述衬底200的材料为硅。In this embodiment, the material of the
在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。In other embodiments, the material of the substrate may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.
在本实施例中,所述第一离子为P型离子。In this embodiment, the first ions are P-type ions.
所述P型离子包括:硼离子或铟离子。The P-type ions include: boron ions or indium ions.
在本实施例中,所述P型离子采用硼离子。In this embodiment, boron ions are used as the P-type ions.
在本实施例中,所述衬底200还包括标记区II。所述像素区I用于形成像素单元,所述标记区II用于形成标记结构,通过所述标记结构用于在后续形成像素单元的过程中晶体管与所述像素区进行对准。In this embodiment, the
在本实施例中,在提供所述衬底200之后,还包括:在所述像素区I内形成若干深沟槽;在所述标记区II内形成标记开口;所述标记开口具有第一深度尺寸,所述深沟槽具有第二深度尺寸,所述第二深度尺寸大于所述第一深度尺寸。具体过程请参考图3至图6。In this embodiment, after the
请参考图3,在所述衬底200上形成第一图形化层(未图示),所述第一图形化层暴露出部分所述衬底200表面;以所述第一图形化层为掩膜刻蚀所述衬底200,在所述标记区II内形成所述标记开口201,在所述像素区I内形成初始深沟槽202;去除所述第一图形化层。Referring to FIG. 3, a first patterned layer (not shown) is formed on the
在本实施例中,所述标记开口201具有第一深度尺寸。In this embodiment, the marking
请参考图4,在所述标记开口201的表面以及所述初始深沟槽202的表面形成外延阻挡层203。Referring to FIG. 4 , an
在本实施例中,所述外延阻挡层203的材料采用氧化硅。In this embodiment, the material of the
在本实施例中,在所述标记开口201内形成所述外延阻挡层203的目的在于:防止后续在形成第一掺杂外延层、第一本征外延层和第二掺杂外延层的过程中,将所述标记开口201填满。In this embodiment, the purpose of forming the
请参考图5,在形成所述外延阻挡层203之后,在所述衬底200上形成牺牲层(未图示),所述牺牲层覆盖所述标记开口201;在形成所述牺牲层之后,刻蚀所述初始深沟槽202以形成所述深沟槽204;在形成所述深沟槽204之后,去除所述牺牲层。Please refer to FIG. 5 , after the
在本实施例中,由于所述标记开口201是在形成所述深沟槽204的过程中同时形成,因此能够避免再次单独采用一次光罩刻蚀形成所述标记开口201,进而能够有效减少制程步骤,且降低制作成本。In this embodiment, since the marking
在本实施例中,所述深沟槽204具有第二深度尺寸,所述第二深度尺寸大于所述第一深度尺寸。In this embodiment, the
请参考图6,在去除所述牺牲层之后,沿垂直于所述深沟槽204侧壁方向对所述深沟槽204进行扩展刻蚀处理。Referring to FIG. 6 , after the sacrificial layer is removed, the
在本实施例中,沿垂直于所述深沟槽204侧壁方向对所述深沟槽204进行扩展刻蚀处理的工艺采用湿法刻蚀工艺。In the present embodiment, a wet etching process is used to perform the extended etching process on the
请参考图7,在所述深沟槽204内形成第一掺杂外延层205,第一掺杂外延层205内具有所述第一离子。Referring to FIG. 7 , a first
在本实施例中,所述第一掺杂外延层205的形成工艺采用外延生长工艺。In this embodiment, the formation process of the first
在本实施例中,所述第一离子采用P型离子。In this embodiment, the first ions are P-type ions.
所述P型离子包括:硼离子或铟离子。The P-type ions include: boron ions or indium ions.
在本实施例中,所述P型离子采用硼离子。In this embodiment, boron ions are used as the P-type ions.
在本实施例中,所述第一掺杂外延层205内的第一离子的掺杂浓度大于所述衬底200内的第一离子的掺杂浓度。In this embodiment, the doping concentration of the first ions in the first
在本实施例中,所述第一掺杂外延层205内的第一离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。In this embodiment, the doping concentration of the first ions in the first
在本实施例中,所述第一掺杂外延层205的厚度为40纳米~60纳米。In this embodiment, the thickness of the first
请参考图8,在所述深沟槽204内形成第一本征外延层206,所述第一本征外延层206位于所述第一掺杂外延层205上。Referring to FIG. 8 , a first
在本实施例中,所述第一本征外延层206的形成工艺采用外延生长工艺。In this embodiment, the formation process of the first
在本实施例中,所述第一本征外延层206的厚度大于所述第一掺杂外延层205的厚度。In this embodiment, the thickness of the first
在本实施例中,所述第一本征外延层206的厚度为90纳米~110纳米。In this embodiment, the thickness of the first
请参考图9,在所述深沟槽204内形成第二掺杂外延层207,所述第二掺杂外延层207内具有第二离子,所述第一离子与所述第二离子的电学类型不同,所述第二掺杂外延层207位于所述第一本征外延层206上。Referring to FIG. 9 , a second
在本实施例中,所述第二掺杂外延层207的形成工艺采用外延生长工艺。In this embodiment, the formation process of the second
在本实施例中,由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的所述第一掺杂外延层205内的第一离子浓度分布、以及所述第二掺杂外延层207内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成所述第一掺杂外延层205和所述第二掺杂外延层207不会对所述衬底200的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。In this embodiment, since the thin films in the epitaxial growth process are stacked layer by layer, and ions are added to each thin film grown, the first ion concentration in the formed first doped
在本实施例中,所述第二离子采用N型离子。In this embodiment, the second ions are N-type ions.
所述N型离子包括:磷离子或砷离子。The N-type ions include: phosphorus ions or arsenic ions.
在本实施例中,所述N型离子采用磷离子。In this embodiment, phosphorus ions are used as the N-type ions.
在本实施例中,所述第二掺杂外延层207内的第二离子的掺杂浓度大于所述衬底内的第一离子的掺杂浓度。In this embodiment, the doping concentration of the second ions in the second
在本实施例中,所述第二掺杂外延层207内的第二离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。In this embodiment, the doping concentration of the second ions in the second
在本实施例中,所述第一本征外延层206的厚度大于所述第二掺杂外延层207的厚度。In this embodiment, the thickness of the first
在本实施例中,所述第二掺杂外延层207的厚度为40纳米~60纳米。In this embodiment, the thickness of the second
请参考图10,在所述深沟槽204内形成第二本征外延层208,所述第二本征外延层208位于所述第二掺杂外延层207上,且所述第二本征外延层208填充满所述深沟槽204。Referring to FIG. 10, a second
在本实施例中,所述第二本征外延层208的形成工艺采用外延生长工艺。In this embodiment, the formation process of the second
在本实施例中,在形成所述第二本征外延层208之前,还包括:去除外延阻挡层203。In this embodiment, before forming the second
在本实施例中,在所述深沟槽204内形成第二本征外延层208的过程中,还包括:在所述标记开口201内和所述衬底200上形成所述第二本征外延层208。In this embodiment, the process of forming the second
在本实施例中,形成在所述标记开口201内的所述第二本征外延层208具体位于所述标记开口201的侧壁和底部表面,因此位于所述标记开口201内的所述第二本征外延层208的表面不平坦,因此根据这一特征将作为后续的标记结构使用。In this embodiment, the second
请参考图11,在形成所述第二本征外延层208之后,对所述第一掺杂外延层205和所述第二掺杂外延层207退火处理,使得所述第一掺杂外延层205内的第一离子和所述第二掺杂外延内层207内的第二离子扩散至所述第一本征外延层206内。Referring to FIG. 11 , after the second
在本实施例中,由于所述第一离子和所述第二离子的电学类型不同,所述第一离子和所述第二离子在经过退火处理之后扩散至所述第一本征外延层206内,进而形成光电二极管结构。后续通过光线由照射所述衬底200上,使所述衬底200激发出电子,所述光电二极管结构用于将激发出的电子形成电信号。In this embodiment, since the electrical types of the first ions and the second ions are different, the first ions and the second ions diffuse into the first
请参考图12,在对所述第一掺杂外延层205和所述第二掺杂外延层207退火处理之后,在所述第二本征外延层208内形成第一引线区209,所述第一引线区209内具有所述第二离子,所述第一引线区209分别与所述第一掺杂外延层205、第一本征外延层206以及第二掺杂外延层207连接;在所述第二本征外延层208和位于相邻所述深沟槽204之间的衬底200内形成第二引线区210,所述第二引线区210内具有所述第一离子。Referring to FIG. 12 , after the first
在本实施例中,通过所述第一引线区209将形成的所述光电二极管结构引出,用于与后续形成的逻辑器件结构连接。In this embodiment, the formed photodiode structure is drawn out through the first
相应的,本发明的实施例中还提供了一种图像传感器,请继续参考图12,包括:衬底200,所述衬底200内具有第一离子,所述衬底200包括像素区I;位于所述像素区I内的若干深沟槽204;位于所述深沟槽204内的第一掺杂外延层205,第一掺杂外延层205内具有所述第一离子;位于所述深沟槽204内的第一本征外延层206,所述第一本征外延层206位于所述第一掺杂外延层205上;位于所述深沟槽204内的第二掺杂外延层207,所述第二掺杂外延层207内具有第二离子,所述第一离子与所述第二离子的电学类型不同,所述第二掺杂外延层207位于所述第一本征外延层206上;位于所述深沟槽204内的第二本征外延层208,所述第二本征外延层208位于所述第二掺杂外延层207上,且所述第二本征外延层208填充满所述深沟槽204。Correspondingly, an embodiment of the present invention also provides an image sensor, please continue to refer to FIG. 12 , including: a
在本实施例中,所述第一掺杂外延层205和所述第二掺杂外延层207的形成工艺均采用外延生长工艺,由于外延生长过程中的薄膜是逐层堆叠的,而且每生长一层薄膜均会掺入离子,进而使得形成的所述第一掺杂外延层205内的第一离子浓度分布、以及所述第二掺杂外延层207内的第二离子浓度分布的均匀性大大提高。另外,外延生长形成所述第一掺杂外延层205和所述第二掺杂外延层207不会对所述衬底200的表面造成损失,进而使得最终形成的图像传感器的像素性能有效提升。In this embodiment, the first
在本实施例中,所述第一离子为P型离子;所述第二离子为N型离子。In this embodiment, the first ions are P-type ions; the second ions are N-type ions.
在本实施例中,所述第一掺杂外延层205内的第一离子的掺杂浓度大于所述衬底200内的第一离子的掺杂浓度;所述第二掺杂外延层207内的第二离子的掺杂浓度大于所述衬底200内的第一离子的掺杂浓度。In this embodiment, the doping concentration of the first ions in the first
在本实施例中,所述第一掺杂外延层205内的第一离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。In this embodiment, the doping concentration of the first ions in the first
在本实施例中,所述第二掺杂外延层207内的第二离子的掺杂浓度为:1E17atoms/cm3~3E17atoms/cm3。In this embodiment, the doping concentration of the second ions in the second
在本实施例中,所述第一本征外延层206的厚度大于所述第一掺杂外延层205的厚度;所述第一本征外延层206的厚度大于所述第二掺杂外延层207的厚度。In this embodiment, the thickness of the first
在本实施例中,所述第一掺杂外延层205的厚度为40纳米~60纳米;所述第二掺杂外延层207的厚度为40纳米~60纳米;所述第一本征外延层206的厚度为90纳米~110纳米。In this embodiment, the thickness of the first
在本实施例中,所述衬底200还包括:标记区II,所述标记区II内具有标记开口201,所述第二本征外延层208还位于所述标记开口201内和所述衬底200上;所述标记开口201具有第一深度尺寸,所述深沟槽204具有第二深度尺寸,所述第二深度尺寸大于所述第一深度尺寸。In this embodiment, the
在本实施例中,还包括:位于所述第二本征外延层208内的第一引线区209,所述第一引线区209内具有所述第二离子,所述第一引线区209分别与所述第一掺杂外延层205、第一本征外延层206以及第二掺杂外延层207连接;位于所述第二本征外延层208和位于相邻所述深沟槽204之间的衬底200内的第二引线区210,所述第二引线区210内具有所述第一离子。In this embodiment, it further includes: a first
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210857987.3A CN115224066A (en) | 2022-07-20 | 2022-07-20 | Image sensor and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210857987.3A CN115224066A (en) | 2022-07-20 | 2022-07-20 | Image sensor and method of forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115224066A true CN115224066A (en) | 2022-10-21 |
Family
ID=83612896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210857987.3A Pending CN115224066A (en) | 2022-07-20 | 2022-07-20 | Image sensor and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115224066A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115995377A (en) * | 2023-01-10 | 2023-04-21 | 华虹半导体(无锡)有限公司 | A Pretreatment Method for Epitaxial Growth of Deep Hole Structure |
-
2022
- 2022-07-20 CN CN202210857987.3A patent/CN115224066A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115995377A (en) * | 2023-01-10 | 2023-04-21 | 华虹半导体(无锡)有限公司 | A Pretreatment Method for Epitaxial Growth of Deep Hole Structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8829636B2 (en) | Solid-state image pickup deviceand fabrication process thereof | |
JP5529304B2 (en) | Image sensor and manufacturing method thereof | |
KR100959435B1 (en) | Image sensor and its manufacturing method | |
CN103413818B (en) | Imageing sensor and preparation method thereof | |
CN107799543A (en) | The manufacture method of contact-type image sensor | |
KR100657143B1 (en) | Image sensor and its manufacturing method | |
KR100778856B1 (en) | Manufacturing Method of CMOS Image Sensor | |
US7537971B2 (en) | Method for fabricating CMOS image sensor | |
CN115224066A (en) | Image sensor and method of forming the same | |
CN115050766A (en) | Image sensor and forming method thereof | |
CN101211834A (en) | Image sensor and method of manufacturing image sensor | |
CN110176467B (en) | CMOS image sensor and its manufacturing method | |
CN104332481B (en) | Imaging sensor and forming method thereof | |
CN214542237U (en) | Image sensor with a plurality of pixels | |
JPH0730091A (en) | Manufacture of solid-state image sensing device | |
CN114388536A (en) | Image sensor forming method and image sensor | |
CN115692432A (en) | Semiconductor structure and forming method thereof | |
CN115706116A (en) | Image sensor and method of forming the same | |
CN101179051A (en) | CMOS image sensor and method for fabricating the same | |
CN114242742B (en) | Method for manufacturing CMOS image sensor | |
CN104201185B (en) | Imaging sensor and forming method thereof | |
CN105097850A (en) | Cmos image sensor and manufacturing method thereof | |
CN119486298B (en) | Image sensor and preparation method thereof | |
CN107680981A (en) | Contact-type image sensor and its manufacture method | |
US20230275164A1 (en) | Image Sensor and Method for Forming the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |