CN115223612A - Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof - Google Patents
Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof Download PDFInfo
- Publication number
- CN115223612A CN115223612A CN202210861513.6A CN202210861513A CN115223612A CN 115223612 A CN115223612 A CN 115223612A CN 202210861513 A CN202210861513 A CN 202210861513A CN 115223612 A CN115223612 A CN 115223612A
- Authority
- CN
- China
- Prior art keywords
- layer
- spin
- electrode
- multiferroic
- ferromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/57—Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/22—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
- G11C11/225—Auxiliary circuits
- G11C11/2275—Writing or programming circuits or methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于存储器技术领域,具体涉及一种基于磁旋逻辑隧道结的算术逻辑缓存单元及其存储方法。The invention belongs to the technical field of memory, and in particular relates to an arithmetic logic cache unit based on a magnetic spin logic tunnel junction and a storage method thereof.
背景技术Background technique
在过去几十年里,基于互补型金属氧化物半导体(complementary metal oxidesemiconductor,CMOS)晶体管的超大规模集成电路芯片遵循摩尔定律(Moore’s Law),集成密度不断提高,芯片性能不断增强,奠定了信息社会的基础。然而,随着晶体管尺寸进一步微缩,量子隧穿效应日益明显,其所引起的漏电流也越来越大,带来的后果是设备待机功耗(即静态功耗)越来越大。另一方面,传统计算机基于冯诺依曼架构,其算术逻辑单元(ALU)和缓存(Cache)是分立的,两者通过总线(Bus)连接。中央处理器(CPU)在运算时,ALU需要先通过Bus从Cache中读取数据,数据在ALU中处理后,处理结果再通过Bus返回到Cache中,数据的频繁传输带来了严重的能耗(即动态功耗)和延时问题。Over the past few decades, VLSI chips based on complementary metal oxide semiconductor (CMOS) transistors have followed Moore's Law, with increasing integration density and chip performance, laying the foundation for an information society The basics. However, as the size of transistors is further reduced, the quantum tunneling effect is becoming more and more obvious, and the leakage current caused by it is also increasing. On the other hand, the traditional computer is based on the von Neumann architecture, and its arithmetic logic unit (ALU) and cache (Cache) are separate, and the two are connected by a bus (Bus). When the central processing unit (CPU) is operating, the ALU needs to read data from the Cache through the Bus first. After the data is processed in the ALU, the processing result is returned to the Cache through the Bus. The frequent transmission of data brings serious energy consumption. (ie dynamic power) and latency issues.
具备非易失性的磁随机存储器(MRAM)是解决CMOS静态功耗的可靠路径。通过使用MRAM作为缓存(Cache),设备可以实现热插拔,即关机或突然断电时设备数据不丢失,开机后状态和关机前状态完全一致。MRAM的基础单元是磁隧道结(MTJ),核心结构(不包括电极层)可以等效为三层,即铁磁层一,氧化物隔离层,铁磁层二。其中一层铁磁层的磁化相比另一层,更容易被外界磁场或电流条件调控,易于调控的铁磁层称为自由层,难于调控的铁磁层称为参考层或固定层。两层铁磁层的磁化方向可以都沿着面内,或者都沿着面外。当自由层磁化方向与参考层磁化方向相同时,MTJ电阻较小;当自由层磁化方向和参考层磁化方向相反时,MTJ电阻较大。利用高低态电阻的不同,来存储不同的数据比特(“1”和“0”),断电后电阻不变化即数据不丢失。而在传统的CMOS缓存是利用电压的高低来存储数据,断电后电压差别消失,数据丢失,因而设备不用时只能待机。利用大规模的MTJ阵列形成MRAM,可以用做计算机缓存,从而克服CMOS静态功耗。Magnetic random access memory (MRAM) with non-volatile is a reliable way to solve the static power consumption of CMOS. By using MRAM as a cache (Cache), the device can be hot-swapped, that is, the device data will not be lost when the device is powered off or suddenly powered off, and the state after power on is exactly the same as the state before power off. The basic unit of MRAM is a magnetic tunnel junction (MTJ), and the core structure (excluding the electrode layer) can be equivalent to three layers, that is, the first ferromagnetic layer, the oxide isolation layer, and the second ferromagnetic layer. The magnetization of one ferromagnetic layer is more easily regulated by external magnetic fields or current conditions than the other layer. The ferromagnetic layer that is easy to control is called the free layer, and the ferromagnetic layer that is difficult to control is called the reference layer or the fixed layer. The magnetization directions of the two ferromagnetic layers can be both in-plane or out-of-plane. When the magnetization direction of the free layer is the same as that of the reference layer, the resistance of the MTJ is small; when the magnetization direction of the free layer and the reference layer are opposite, the resistance of the MTJ is large. Different data bits ("1" and "0") are stored by using the difference of high and low state resistances, and the resistance does not change after the power is turned off, that is, the data is not lost. In the traditional CMOS cache, the voltage is used to store data. After the power is turned off, the voltage difference disappears and the data is lost, so the device can only stand by when it is not in use. Using a large-scale MTJ array to form MRAM, it can be used as a computer cache to overcome CMOS static power consumption.
首先,MTJ的输入信号(电流或磁场)和输出信号(电阻)不匹配,器件之间不能直接级联,很难直接用于算术逻辑单元(ALU)。MTJ只用于存储Memory(包括缓存Cache和闪存Flash),还是会存在动态功耗。First, the input signal (current or magnetic field) and output signal (resistance) of the MTJ do not match, and the devices cannot be directly cascaded, making it difficult to directly use the arithmetic logic unit (ALU). MTJ is only used to store memory (including cache and flash memory), and there will still be dynamic power consumption.
第二,当前MRAM作为Cache写入速度,和ALU的计算速度不匹配,带来ALU的算力浪费。Second, the current writing speed of MRAM as a Cache does not match the computing speed of ALU, resulting in a waste of computing power of ALU.
磁旋逻辑器件(MESO)具备高速、低功耗、集成密度高、可级联的特性,有望取代CMOS作为ALU的基础单元。MESO主要由两部分构成:基于磁电耦合效应的信息写入单元和基于自旋轨道耦合(SOC)的信息读取单元。磁旋逻辑器件的信息写入单元是由多铁材料(例如,BiFeO3)和纳米磁体构成,当输入电压作用于多铁材料并大于其翻转阈值时,多铁材料的铁电序和铁磁序/反铁磁序会发生翻转,纳米磁体的铁磁序和多铁材料的铁磁序/反铁磁序通过交换作用耦合在一起,因此纳米磁体的磁化方向也会一起翻转,实现信息的写入。磁旋逻辑器件的信息读取单元由强自旋轨道耦合(Spin Orbit Coupling,SOC)材料和纳米磁体构成,在纳米磁体和强SOC材料之间施加一个工作电压,携带由纳米磁体磁化方向信息的自旋流被注入强SOC材料,逆自旋霍尔效应或逆拉什巴效应将自旋流转换成电荷流,从而实现磁化方向到电荷电压的转换,完成信息的读取。MESO的写入和读取两部分有两种连接方式,即面内桥接和垂直桥接。其中垂直桥接更易于微纳加工。MESO用于ALU并没有解决CPU的动态功耗和延时问题。The magnetic spin logic device (MESO) has the characteristics of high speed, low power consumption, high integration density, and cascading, and is expected to replace CMOS as the basic unit of ALU. MESO is mainly composed of two parts: an information writing unit based on magnetoelectric coupling effect and an information reading unit based on spin-orbit coupling (SOC). The information writing unit of the magnetic spin logic device is composed of a multiferroic material (for example, BiFeO 3 ) and a nanomagnet. When the input voltage is applied to the multiferroic material and is greater than its flip threshold, the ferroelectric order and ferromagnetic properties of the multiferroic material are changed. The order/antiferromagnetic order will be reversed, and the ferromagnetic order of the nanomagnet and the ferromagnetic order/antiferromagnetic order of the multiferroic material are coupled together through the exchange interaction, so the magnetization direction of the nanomagnet will also be flipped together to realize the information transfer. write. The information reading unit of the magnetic spin logic device is composed of a strong spin-orbit coupling (SOC) material and a nanomagnet. A working voltage is applied between the nanomagnet and the strong SOC material, carrying the information of the magnetization direction of the nanomagnet. The spin current is injected into the strong SOC material, and the inverse spin Hall effect or the inverse Rushba effect converts the spin current into a charge current, thereby realizing the conversion from the magnetization direction to the charge voltage, and completing the reading of information. There are two connection modes for the write and read parts of MESO, namely in-plane bridge and vertical bridge. Among them, vertical bridging is easier for micro-nano processing. The use of MESO for ALU does not solve the dynamic power consumption and latency problems of CPU.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于磁旋逻辑隧道结的算术逻辑缓存单元及其存储方法,目的在于解决以下问题:1,MTJ不能级联因而难以用于ALU的问题;2,MTJ用于Cache架构中,动态功耗和延时问题;3,MESO用于ALU,动态功耗和延时问题;4,传统CMOS集成电路静态功耗问题。The present invention provides an arithmetic logic cache unit based on a magnetic spin logic tunnel junction and a storage method thereof, aiming at solving the following problems: 1. The problem that MTJ cannot be cascaded and thus is difficult to be used in ALU; 2, MTJ is used in the Cache architecture, The problem of dynamic power consumption and delay; 3, MESO is used for ALU, the problem of dynamic power consumption and delay; 4, the problem of static power consumption of traditional CMOS integrated circuits.
一种基于磁旋逻辑隧道结的算术逻辑缓存单元,包括一个MESO和一个MTJ;An arithmetic logic cache unit based on a magnetic spin logic tunnel junction, including a MESO and an MTJ;
水平桥接的MESO包括第一互联电极,第一互联电极上设有多铁层,第一铁磁层的一端位于多铁层上方,另一端下方依次为自旋注入层、自旋电荷转换层,自旋电荷转换层侧边为第二互联电极;The horizontally bridged MESO includes a first interconnection electrode, a multiferroic layer is arranged on the first interconnection electrode, one end of the first ferromagnetic layer is located above the multiferroic layer, and the bottom of the other end is a spin injection layer and a spin charge conversion layer in sequence, The side of the spin charge conversion layer is the second interconnection electrode;
垂直桥接的MESO包括第一互联电极,第一互联电极上设有多铁层,多铁层上方依次为第一铁磁层、自旋注入层、自旋电荷转换层,自旋电荷转换层侧边为第二互联电极;The vertically bridged MESO includes a first interconnection electrode, and a multiferroic layer is arranged on the first interconnection electrode. Above the multiferroic layer are a first ferromagnetic layer, a spin injection layer, and a spin-charge conversion layer. The spin-charge conversion layer is on the side. The side is the second interconnection electrode;
MTJ包括核心区和电极;核心区包括第一铁磁层、隧穿势垒层、第二铁磁层,电极包括:第三互联电极为顶电极,自旋注入层、自旋电荷转换层、第二互联电极共同构成底电极;The MTJ includes a core region and electrodes; the core region includes a first ferromagnetic layer, a tunneling barrier layer, a second ferromagnetic layer, and the electrodes include: the third interconnection electrode is a top electrode, a spin injection layer, a spin charge conversion layer, The second interconnection electrodes together constitute a bottom electrode;
借助MESO完成数据的运算,数据原位存储在MTJ中,从而利用单器件实现了ALU和Cache的功能。With the help of MESO, the data operation is completed, and the data is stored in the MTJ in situ, so that the functions of ALU and Cache are realized by a single device.
多铁层为单相多铁材料,或者是由压电材料和反铁磁材料组成的混合多铁材料;The multiferroic layer is a single-phase multiferroic material, or a mixed multiferroic material composed of piezoelectric materials and antiferromagnetic materials;
第一铁磁层、第二铁磁层包含以下材料中的一种或几种:铁、钴、镍、锰、铬、钌。The first ferromagnetic layer and the second ferromagnetic layer include one or more of the following materials: iron, cobalt, nickel, manganese, chromium, and ruthenium.
自旋电荷转换层包括各类强自旋轨道耦合材料,拓扑绝缘体材料,二维电子气或拉什巴表面材料,外尔半金属。The spin-charge conversion layer includes all kinds of strong spin-orbit coupling materials, topological insulator materials, two-dimensional electron gas or Rashbar surface materials, and Weyl semimetals.
隧穿势垒层包括各类半导体(如锗)、拓扑绝缘体(如碲化铋、硒化铋、锑化铋)及氧化物绝缘体(如氧化镁、氧化铝、二氧化铪、氧化钽以及二氧化硅)。The tunneling barrier layer includes various semiconductors (such as germanium), topological insulators (such as bismuth telluride, bismuth selenide, bismuth antimonide) and oxide insulators (such as magnesium oxide, aluminum oxide, hafnium dioxide, tantalum oxide, and bismuth oxide). silicon oxide).
上述一种基于磁旋逻辑隧道结的算术逻辑缓存单元的存储方法为:The storage method of the above-mentioned arithmetic logic cache unit based on the magnetic spin logic tunnel junction is:
第一互联电极、多铁层、第一铁磁层构成数据写入部分。通过在第一互联电极上施加不同的电势水平,在多铁层的两端产生正或负电压,多铁层的电极化相应发生反转,带动第一铁磁层的磁化发生反转,从而完成信息写入;The first interconnection electrode, the multiferroic layer, and the first ferromagnetic layer constitute a data writing portion. By applying different potential levels on the first interconnection electrode, positive or negative voltages are generated at both ends of the multiferroic layer, the electrical polarization of the multiferroic layer is reversed accordingly, and the magnetization of the first ferromagnetic layer is reversed, thereby complete information writing;
第一铁磁层、自旋注入层、自旋电荷转换层、第二互联电极构成数据输出部分,通过在第一铁磁层的顶端或底端注入恒定工作电流,该电流被第一铁磁层极化,并经过自旋注入层过滤形成自旋流,注入到自旋电荷转换层中,转换为电荷流,并通过第二互联电极形成电压输出。当第一铁磁层的磁化改变时,第二互联电极输出电压将反号。第二互联电极输出电压与上一步骤信息写入时多铁层两端的电压相当,因而输出电压可以直接驱动下一个MESOTJ进行信息写入。The first ferromagnetic layer, the spin injection layer, the spin charge conversion layer, and the second interconnection electrode constitute the data output part. The layer is polarized and filtered through the spin injection layer to form a spin current, which is injected into the spin charge conversion layer, converted into a charge current, and forms a voltage output through the second interconnecting electrode. When the magnetization of the first ferromagnetic layer changes, the output voltage of the second interconnection electrode will be inverted. The output voltage of the second interconnection electrode is equivalent to the voltage across the multiferroic layer when the information is written in the previous step, so the output voltage can directly drive the next MESOTJ for information writing.
第一铁磁层、氧化物隔离层、第二铁磁层构成数据存储部分,第一铁磁层的磁化改变,反映为由第一铁磁层、氧化物隔离层、第二铁磁层的MTJ电阻的变化。The first ferromagnetic layer, the oxide isolation layer, and the second ferromagnetic layer constitute the data storage part, and the change of the magnetization of the first ferromagnetic layer is reflected as the difference between the first ferromagnetic layer, the oxide isolation layer, and the second ferromagnetic layer. Changes in MTJ resistance.
本发明技术方案带来的有益效果Beneficial effects brought about by the technical solution of the present invention
MESOTJ可以直接级联,可以用于ALU;MESOTJ can be directly cascaded and can be used for ALU;
MESOTJ中利用MESO实现数据计算,数据原位存在MESOTJ的MTJ结构中,不存在传输过程,没有动态功耗和延时;MESOTJ uses MESO to realize data calculation, the data is stored in the MTJ structure of MESOTJ in situ, there is no transmission process, and there is no dynamic power consumption and delay;
数据以MTJ阻值形式存储,没有静态功耗,可以实现热插拔。The data is stored in the form of MTJ resistance value, there is no static power consumption, and hot swapping can be realized.
本发明实现了ALU和Cache的一体化,可以认为是算术逻辑存储单元(ALCU),可以仅利用ALCU作为核心器件,配合基本的辅助开关,构建CPU。The invention realizes the integration of ALU and Cache, which can be regarded as an arithmetic logic storage unit (ALCU), and can only use ALCU as a core device and cooperate with basic auxiliary switches to construct a CPU.
附图说明Description of drawings
图1为本发明的水平桥接结构示意图;1 is a schematic diagram of a horizontal bridge structure of the present invention;
图2为本发明的垂直桥接结构示意图。FIG. 2 is a schematic diagram of a vertical bridge structure of the present invention.
具体实施方式Detailed ways
结合附图说明本发明的具体技术方案。The specific technical solutions of the present invention are described with reference to the accompanying drawings.
本发明提出一种基于磁旋逻辑隧道结的算术逻辑缓存单元即MESOTJ,直接用于算术逻辑单元ALU,且具备缓存Cache的功能,称之为算术逻辑缓存单元ALCU。The present invention proposes an arithmetic logic cache unit, namely MESOTJ, based on a magnetic spin logic tunnel junction, which is directly used in the arithmetic logic unit ALU and has the function of cache, which is called the arithmetic logic cache unit ALCU.
如图1所示,水平桥接的MESO包括第一互联电极1,第一互联电极1上设有多铁层2,第一铁磁层3的一端位于多铁层2上方,另一端下方依次为自旋注入层4、自旋电荷转换层5,自旋电荷转换层5侧边为第二互联电极6;As shown in FIG. 1 , the horizontally bridged MESO includes a
如图2所示,垂直桥接的MESO包括第一互联电极1,第一互联电极1上设有多铁层2,多铁层2上方依次为第一铁磁层3、自旋注入层4、自旋电荷转换层5,自旋电荷转换层5侧边为第二互联电极6;As shown in FIG. 2 , the vertically bridged MESO includes a
如图1和图2所示,MTJ包括核心区和电极;核心区包括第一铁磁3、隧穿势垒层7、第二铁磁层8,电极包括:第三互联电极9为顶电极,自旋注入层4、自旋电荷转换层5、第二互联电极6共同构成底电极。As shown in FIG. 1 and FIG. 2, the MTJ includes a core region and electrodes; the core region includes a first
在MESOTJ中,可以借助MESO完成数据的运算,数据原位存储在MTJ中,从而利用单器件实现了ALU和Cache的功能。In MESOTJ, the operation of data can be completed with the help of MESO, and the data is stored in the MTJ in situ, thus realizing the functions of ALU and Cache by using a single device.
第一互联电极1、第二互联电极6、第三互联电极9可以是任何适用超大规模集成电路互联工艺的材料,如铝(Al)、铜(Cu)、金(Au)、钛(Ti)、钼(Mo)等,可以包含其中的一种或几种。The
多铁层2可以是单相多铁材料,包括但不限于铁酸铋(BiFeO3),各种元素(例如镧元素)掺杂后的铁酸铋(BiFeO3)、锰酸铽(TbMnO3)、六角铁氧体、氧化铪(HfOx)、氧化铬(Cr2O3)等材料;或者是由压电材料(如铌镁酸-钛酸铅PMN-PT、锆钛酸铅PZT等)和反铁磁材料(铱锰IrMn、铂锰PtMn、锰金Mn2Au、锰锡Mn3Sn、锰镓Mn3Ga等)组成的混合多铁材料,如、PMN-PT/PtMn、PMN-PT/Mn2Au等。The
第一铁磁层3、第二铁磁层8包含以下材料中的一种或几种:铁(Fe)、钴(Co)、镍(Ni)、锰(Mn)、铬(Cr)、钌(Ru)。The first
自旋注入层4可以有也可以没有。其材料包括金属材料如铜Cu、铝Al、银Ag;氧化物材料如氧化镁MgO、氧化铝Al2O3、二氧化铪HfO2、氧化钽TaOx以及二氧化硅SiO2等。The
自旋电荷转换层5包括各类强自旋轨道耦合材料,如重金属材料铂Pt、钽Ta、钨W等及种种树材料合金;拓扑绝缘体材料如碲化铋Bi2Te3及掺锑的碲化铋((Bi,Sb)2Te3)、硒化铋Bi2Se3等、α相的锡(α-Sn);二维电子气或拉什巴表面材料如铝酸铼(LaAlO3)/钛酸锶(SrTiO3)、氧化铝(Al2O3)/碳酸钾(KTaO3)、铋(Bi)/银(Ag)等;外尔半金属如碲化钨(WTe2)等。The spin
隧穿势垒层7包括但不限于锗(Ge)、碲化铋(Bi2Te3)、硒化铋(Bi2Se3)、锑化铋(BiSb)、氧化镁(MgO)、氧化铝(Al2O3)、二氧化铪(HfO2)、氧化钽(TaOx)以及二氧化硅(SiO2)等。The
第一互联电极1、多铁层2、第一铁磁层3构成数据写入部分。通过在第一互联电极1上施加不同的电势水平,在多铁层2的两端产生正或负电压,多铁层2的电极化相应发生反转,带动第一铁磁层3的磁化发生反转,从而完成信息写入。The
第一铁磁层3、自旋注入层4、自旋电荷转换层5、第二互联电极6构成数据输出部分,通过在第一铁磁层3的顶端(或底端)注入恒定工作电流,该电流被第一铁磁层3极化,并经过自旋注入层过滤形成自旋流,注入到自旋电荷转换层5中,转换为电荷流,并通过第二互联电极6形成电压输出。当第一铁磁层3的磁化改变时,第二互联电极6输出电压将反号。第二互联电极6输出电压与上一步骤信息写入时多铁层2两端的电压相当,因而输出电压可以直接驱动下一个MESOTJ进行信息写入。The first
第一铁磁层3、氧化物隔离层7、第二铁磁层8构成数据存储部分,第一铁磁层3的磁化改变,反映为由第一铁磁层3、氧化物隔离层7、第二铁磁层8的MTJ电阻的变化。The first
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210861513.6A CN115223612B (en) | 2022-07-20 | 2022-07-20 | Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210861513.6A CN115223612B (en) | 2022-07-20 | 2022-07-20 | Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115223612A true CN115223612A (en) | 2022-10-21 |
CN115223612B CN115223612B (en) | 2025-04-01 |
Family
ID=83614692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210861513.6A Active CN115223612B (en) | 2022-07-20 | 2022-07-20 | Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115223612B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120155159A1 (en) * | 2010-12-16 | 2012-06-21 | Crocus Technology Sa | Multibit magnetic random access memory cell with improved read margin |
KR20200132623A (en) * | 2019-05-17 | 2020-11-25 | 연세대학교 산학협력단 | Spin Logic Device Based on Spin-Charge Conversion and Method of Operation Thereof |
CN112466359A (en) * | 2020-12-04 | 2021-03-09 | 首都师范大学 | Full voltage regulation and control logic device based on spin orbit coupling effect |
CN113611795A (en) * | 2021-06-15 | 2021-11-05 | 北京航空航天大学 | Vertically-stacked magnetic rotation logic device and method for realizing information access |
US20220115438A1 (en) * | 2020-10-14 | 2022-04-14 | Intel Corporation | Differential magnetoelectric spin orbit logic |
-
2022
- 2022-07-20 CN CN202210861513.6A patent/CN115223612B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120155159A1 (en) * | 2010-12-16 | 2012-06-21 | Crocus Technology Sa | Multibit magnetic random access memory cell with improved read margin |
KR20200132623A (en) * | 2019-05-17 | 2020-11-25 | 연세대학교 산학협력단 | Spin Logic Device Based on Spin-Charge Conversion and Method of Operation Thereof |
US20220115438A1 (en) * | 2020-10-14 | 2022-04-14 | Intel Corporation | Differential magnetoelectric spin orbit logic |
CN112466359A (en) * | 2020-12-04 | 2021-03-09 | 首都师范大学 | Full voltage regulation and control logic device based on spin orbit coupling effect |
CN113611795A (en) * | 2021-06-15 | 2021-11-05 | 北京航空航天大学 | Vertically-stacked magnetic rotation logic device and method for realizing information access |
Non-Patent Citations (1)
Title |
---|
王天宇;宋琪;韩伟;: "自旋轨道转矩", 物理, no. 05, 12 May 2017 (2017-05-12) * |
Also Published As
Publication number | Publication date |
---|---|
CN115223612B (en) | 2025-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107658382B (en) | A Magnetic Random Access Memory Based on Spin Hall Effect | |
CN102800803B (en) | Memory element and storage device | |
CN100454599C (en) | Spin Injection Field Effect Transistors, Magnetic Random Access Memory, and Reconfigurable Logic Circuits | |
US11600659B2 (en) | Cross-point magnetic random access memory with piezoelectric selector | |
JP7272677B2 (en) | Spintronics element and magnetic memory device | |
CN103490006B (en) | The method of magnetic cell and programming magnetic memory | |
US20160064650A1 (en) | Spin-orbitronics device and applications thereof | |
JP5782715B2 (en) | Storage element and storage device | |
US10964366B2 (en) | Magnetic memory, recording method of magnetic memory, and reading method of magnetic memory | |
US10355046B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) | |
EP3306688B1 (en) | Magnetoresistive element and storage circuit | |
WO2021189295A1 (en) | Magnetic random access memory and data writing method therefor | |
WO2020215610A1 (en) | Magnetic tunnel junction device of magnetic random access memory | |
KR20170066320A (en) | Magnetic diffusion barriers and filter in psttm mtj construction | |
US20180301619A1 (en) | Perpendicular magnetic memory with reduced switching current | |
CN111279489B (en) | Spin orbit torque type magneto-resistance effect element and magnetic memory | |
CN111554809A (en) | Two-dimensional material-based gate, memory cell, array and method of operation thereof | |
Fukami et al. | Scalability prospect of three-terminal magnetic domain-wall motion device | |
CN116472797A (en) | High Density Spin Orbit Moment Magnetic Random Access Memory | |
CN115223612B (en) | Arithmetic logic cache unit based on magnetic rotation logic tunnel junction and storage method thereof | |
CN113206190B (en) | Magnetoelectric coupling device with magnetization reversal, memory cell, memory array and memory | |
CN113611795B (en) | Vertical structure stacked magnetic spin logic device and method for realizing information access | |
CN116096213A (en) | Spin wave devices and memories | |
CN117580440A (en) | Magnetic random access memory and electronic devices based on spin Hall effect materials | |
US10243021B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |