[go: up one dir, main page]

CN115219815A - Waveguide port S parameter calibration method and device based on inscribed circle center - Google Patents

Waveguide port S parameter calibration method and device based on inscribed circle center Download PDF

Info

Publication number
CN115219815A
CN115219815A CN202210743203.4A CN202210743203A CN115219815A CN 115219815 A CN115219815 A CN 115219815A CN 202210743203 A CN202210743203 A CN 202210743203A CN 115219815 A CN115219815 A CN 115219815A
Authority
CN
China
Prior art keywords
reflection coefficient
load
calibration
network analyzer
vector network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210743203.4A
Other languages
Chinese (zh)
Other versions
CN115219815B (en
Inventor
刘晨
栾鹏
孙静
王维
王一帮
霍晔
吴爱华
陈晓华
李彦丽
丁立强
蒋赞勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN202210743203.4A priority Critical patent/CN115219815B/en
Priority claimed from CN202210743203.4A external-priority patent/CN115219815B/en
Publication of CN115219815A publication Critical patent/CN115219815A/en
Application granted granted Critical
Publication of CN115219815B publication Critical patent/CN115219815B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明提供一种基于内切圆心的波导端口S参数校准方法及装置。该方法包括:获取负载校准件第一反射系数。获取负载校准件在第一相位偏置下的第二反射系数。获取负载校准件在第二相位偏置下的第三反射系数。计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。根据修正后的反射系数校准矢量网络分析仪波导端口的S参数。本发明能够通过负载校准件在不同相位偏置下的反射系数获得修正值,以修正值作为负载校准件实际反射系数为0时测得的反射系数,修正波导端口校准过程中由于负载校准件的反射系数不是理想的0带来的校准误差,得到更准确的波导端口S参数测量结果。

Figure 202210743203

The invention provides a method and device for calibrating S parameters of a waveguide port based on the inscribed circle center. The method includes: acquiring a first reflection coefficient of a load calibration piece. Obtain the second reflection coefficient of the load calibration element under the first phase offset. Obtain the third reflection coefficient of the load calibration piece at the second phase offset. The coordinates of the inscribed circle center of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart are calculated as the corrected reflection coefficient of the load calibration piece. The S-parameters of the VNA waveguide ports are calibrated based on the corrected reflection coefficients. The present invention can obtain the correction value through the reflection coefficient of the load calibration piece under different phase offsets, and use the correction value as the reflection coefficient measured when the actual reflection coefficient of the load calibration piece is 0. The calibration error caused by the reflection coefficient is not ideal 0, and a more accurate measurement result of the S-parameter of the waveguide port is obtained.

Figure 202210743203

Description

一种基于内切圆心的波导端口S参数校准方法及装置A method and device for calibrating S-parameters of waveguide ports based on inscribed circle center

技术领域technical field

本发明涉及矢量网络分析仪校准技术领域,尤其涉及一种基于内切圆心的波导端口S参数校准方法及装置。The invention relates to the technical field of vector network analyzer calibration, in particular to a method and device for calibrating S-parameters of a waveguide port based on an inscribed circle center.

背景技术Background technique

随着高功率微波技术的发展,承受功率大的波导器件应用广泛。矢量网络分析仪用于测量波导器件的网络参数,例如S参数。在测量前需要根据待测波导器件的端口类型对矢量网络分析仪进行系统校准,目的是消除矢量网络分析仪自身的系统误差。波导器件传输不同频率电磁波的波导尺寸不同。为精确测量波导器件的网络参数,需要针对相应频段进行波导校准。对于波导二端口的矢量网络分析仪,通常使用短路校准件、λ/4偏置短路校准件、负载校准件和直通校准件进行校准。根据各校准件的测量结果,基于十二项误差模型对矢量网络分析仪进行校准,其中在校准过程中,所使用的校准件的S参数必须是已知的。通常,短路校准件的反射系数Γ(即S11参数)定义为-1;负载校准件的反射系数Γ定义为0;直通校准件的S11参数和S22参数定义为0,S21参数和S12参数定义为1;λ/4偏置短路校准件的定义随频率的变化定义为不同的数据。With the development of high-power microwave technology, waveguide devices that can withstand high power are widely used. Vector network analyzers are used to measure network parameters of waveguide devices, such as S-parameters. Before measurement, the vector network analyzer needs to be systematically calibrated according to the port type of the waveguide device to be tested, in order to eliminate the system error of the vector network analyzer itself. Waveguide devices have different waveguide sizes for transmitting electromagnetic waves of different frequencies. In order to accurately measure the network parameters of the waveguide device, it is necessary to perform waveguide calibration for the corresponding frequency band. For waveguide two-port vector network analyzers, short-circuit calibration, λ/4 offset short-circuit calibration, load calibration and thru calibration are usually used for calibration. According to the measurement results of each calibration piece, the vector network analyzer is calibrated based on a twelve-term error model, wherein during the calibration process, the S-parameters of the used calibration piece must be known. Usually, the reflection coefficient Γ (ie, the S11 parameter) of the short-circuit calibration piece is defined as -1; the reflection coefficient Γ of the load calibration piece is defined as 0; the S11 parameter and the S22 parameter of the straight-through calibration piece are defined as 0, the S21 parameter and The S 12 parameter is defined as 1; the definition of the λ/4 bias short-circuit calibration piece is defined as different data as a function of frequency.

单端口负载校准时,将负载校准件连接矢量网络分析仪的某一端口,测量反射系数。在校准时负载校准件的理论反射系数通常定义为0。负载校准件是通过在波导腔内插入尖劈吸波材料而制成。由于吸波材料本身吸收性能的不理想、制造和装配中存在偏差等因素,导致负载校准件的实际反射系数不是理想的0,而是某个很小的数值。负载校准件的实际反射系数与理论反射系数存在偏差。以负载校准件实际反射系数不为0时测得的反射系数,作为负载校准件实际反射系数为0时测得的反射系数校准矢量网络分析仪,影响矢量网络分析仪的校准精度,从而影响后续使用中S参数测量结果的准确度。During single-port load calibration, connect the load calibration component to a port of the vector network analyzer to measure the reflection coefficient. The theoretical reflection coefficient of the load calibration piece is usually defined as 0 during calibration. The load calibration piece is made by inserting the wedge absorbing material into the waveguide cavity. Due to factors such as the unsatisfactory absorption performance of the absorbing material itself, and the deviation in manufacturing and assembly, the actual reflection coefficient of the load calibration piece is not an ideal 0, but a very small value. The actual reflection coefficient of the load calibration piece deviates from the theoretical reflection coefficient. The reflection coefficient measured when the actual reflection coefficient of the load calibration part is not 0 is used as the reflection coefficient measured when the actual reflection coefficient of the load calibration part is 0 to calibrate the vector network analyzer, which affects the calibration accuracy of the vector network analyzer and thus affects the subsequent The accuracy of the S-parameter measurements in use.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种基于内切圆心的波导端口S参数校准方法及装置,以解决负载校准件的实际反射系数与理论反射系数的偏差影响矢量网络分析仪校准精度的问题。Embodiments of the present invention provide a method and device for calibrating S-parameters of a waveguide port based on the inscribed circle center to solve the problem that the deviation between the actual reflection coefficient of the load calibration piece and the theoretical reflection coefficient affects the calibration accuracy of the vector network analyzer.

第一方面,本发明实施例提供了一种基于内切圆心的波导端口S参数校准方法,包括:In a first aspect, an embodiment of the present invention provides a method for calibrating an S-parameter of a waveguide port based on an inscribed circle center, including:

获取由矢量网络分析仪测量得到的负载校准件在无相位偏置下的第一反射系数。Obtain the first reflection coefficient of the load calibration piece measured by the vector network analyzer without phase offset.

获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数。Obtain the second reflection coefficient of the load calibration element measured by the vector network analyzer under the first phase offset.

获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,其中第二相位偏置不等于第一相位偏置。Obtain the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset, wherein the second phase offset is not equal to the first phase offset.

计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。The center coordinates of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart are calculated as the corrected reflection coefficient of the load calibration piece.

根据所述负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数。The S-parameters of the waveguide port of the vector network analyzer are calibrated according to the corrected reflection coefficient of the load calibration piece.

在一种可能的实现方式中,所述计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数,包括:In a possible implementation manner, the calculation of the coordinates of the inscribed circle center of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart is used as the corrected reflection of the load calibration piece coefficients, including:

计算calculate

Figure BDA0003716237200000021
Figure BDA0003716237200000021

Figure BDA0003716237200000022
Figure BDA0003716237200000022

Figure BDA0003716237200000031
Figure BDA0003716237200000031

Figure BDA0003716237200000032
Figure BDA0003716237200000032

Figure BDA0003716237200000033
Figure BDA0003716237200000033

ΓLoad_M=eLoad_M+mLoad_ Γ Load_M = e Load_M +m Load_

ΓLoad_M作为负载校准件修正后的反射系数,其中,ReLoad_M为修正后的反射系数的实部,ImLoad_为修正后的反射系数的虚部,ReLoad_M1为第一反射系数的实部,ImLoad_M1为第一反射系数的虚部,ReLoad_M2为第二反射系数的实部,ImLoad_M2为第二反射系数的虚部,ReLoad_M3为第三反射系数的实部,ImLoad_M3为第三反射系数的虚部。Γ Load_M is the corrected reflection coefficient of the load calibration element, wherein Re Load_M is the real part of the corrected reflection coefficient, Im Load_ is the imaginary part of the corrected reflection coefficient, Re Load_M1 is the real part of the first reflection coefficient, Im Load_M1 is the imaginary part of the first reflection coefficient, Re Load_M2 is the real part of the second reflection coefficient, Im Load_M2 is the imaginary part of the second reflection coefficient, Re Load_M3 is the real part of the third reflection coefficient, Im Load_M3 is the third reflection coefficient the imaginary part of .

在一种可能的实现方式中,所述第一相位偏置为λ/6,所述第二相位偏置为λ/3,其中λ为波导端口S参数校准频段的中心频率对应的波长。In a possible implementation manner, the first phase offset is λ/6, and the second phase offset is λ/3, where λ is the wavelength corresponding to the center frequency of the S-parameter calibration frequency band of the waveguide port.

在一种可能的实现方式中,所述获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数,包括:In a possible implementation manner, the acquiring the second reflection coefficient of the load calibration element under the first phase offset measured by the vector network analyzer includes:

通过矢量网络分析仪测量级联有λ/6波导传输线的负载校准件,获取负载校准件在第一相位偏置下的第二反射系数。The load calibration element cascaded with the λ/6 waveguide transmission line is measured by a vector network analyzer, and the second reflection coefficient of the load calibration element under the first phase offset is obtained.

所述获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,包括:The acquiring the third reflection coefficient of the load calibration element under the second phase offset measured by the vector network analyzer includes:

通过矢量网络分析仪测量级联有λ/3波导传输线的负载校准件,获取负载校准件在第二相位偏置下的第三反射系数。Measure the load calibration piece cascaded with the λ/3 waveguide transmission line by a vector network analyzer, and obtain the third reflection coefficient of the load calibration piece under the second phase offset.

在一种可能的实现方式中,所述根据所述负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数,包括:In a possible implementation manner, the calibration of the S-parameters of the waveguide port of the vector network analyzer according to the corrected reflection coefficient of the load calibration component includes:

获取由矢量网络分析仪测量得到的短路校准件的短路反射系数。Obtain the short-circuit reflection coefficient of the short-circuit calibration piece measured by a vector network analyzer.

获取由矢量网络分析仪测量得到的λ/4偏置短路校准件的λ/4偏置短路反射系数。Obtain the λ/4 bias short-circuit reflection coefficient of the λ/4 bias short-circuit calibration piece measured by a vector network analyzer.

根据所述负载校准件修正后的反射系数、短路反射系数和λ/4偏置短路反射系数,获得矢量网络分析仪波导端口的方向性误差、源匹配误差和反射跟踪误差。According to the corrected reflection coefficient, short-circuit reflection coefficient and λ/4 bias short-circuit reflection coefficient of the load calibration piece, the directivity error, source matching error and reflection tracking error of the waveguide port of the vector network analyzer are obtained.

根据所述方向性误差、源匹配误差和反射跟踪误差校准矢量网络分析仪波导端口的S参数。The S-parameters of the waveguide ports of the vector network analyzer are calibrated based on the directivity error, source matching error and reflection tracking error.

第二方面,本发明实施例提供了一种基于内切圆心的波导端口S参数校准装置,包括:In a second aspect, an embodiment of the present invention provides a device for calibrating the S-parameter of a waveguide port based on an inscribed circle center, including:

第一获取模块,用于获取由矢量网络分析仪测量得到的负载校准件在无相位偏置下的第一反射系数。The first acquisition module is configured to acquire the first reflection coefficient of the load calibration element measured by the vector network analyzer without phase offset.

第二获取模块,用于获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数。The second acquisition module is configured to acquire the second reflection coefficient of the load calibration element measured by the vector network analyzer under the first phase offset.

第三获取模块,用于获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,其中第二相位偏置不等于第一相位偏置。The third acquisition module is configured to acquire the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset, wherein the second phase offset is not equal to the first phase offset.

计算模块,用于计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。The calculation module is used to calculate the center coordinates of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart, as the reflection coefficient after the correction of the load calibration piece.

校准模块,用于根据所述负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数。The calibration module is used for calibrating the S-parameters of the waveguide port of the vector network analyzer according to the corrected reflection coefficient of the load calibration piece.

在一种可能的实现方式中,所述计算模块具体用于计算In a possible implementation manner, the computing module is specifically used for computing

Figure BDA0003716237200000041
Figure BDA0003716237200000041

Figure BDA0003716237200000042
Figure BDA0003716237200000042

Figure BDA0003716237200000043
Figure BDA0003716237200000043

Figure BDA0003716237200000051
Figure BDA0003716237200000051

Figure BDA0003716237200000052
Figure BDA0003716237200000052

ΓLoad_M=eLoad_M+mLoad_ Γ Load_M = e Load_M +m Load_

ΓLoad_M作为负载校准件修正后的反射系数,其中,ReLoad_M为修正后的反射系数的实部,ImLoad_为修正后的反射系数的虚部,ReLoad_M1为第一反射系数的实部,ImLoad_M1为第一反射系数的虚部,ReLoad_M2为第二反射系数的实部,ImLoad_M2为第二反射系数的虚部,ReLoad_M3为第三反射系数的实部,ImLoad_M3为第三反射系数的虚部。Γ Load_M is the corrected reflection coefficient of the load calibration element, wherein Re Load_M is the real part of the corrected reflection coefficient, Im Load_ is the imaginary part of the corrected reflection coefficient, Re Load_M1 is the real part of the first reflection coefficient, Im Load_M1 is the imaginary part of the first reflection coefficient, Re Load_M2 is the real part of the second reflection coefficient, Im Load_M2 is the imaginary part of the second reflection coefficient, Re Load_M3 is the real part of the third reflection coefficient, Im Load_M3 is the third reflection coefficient the imaginary part of .

在一种可能的实现方式中,所述第一相位偏置为λ/6,所述第二相位偏置为λ/3,其中λ为波导端口S参数校准频段的中心频率对应的波长。In a possible implementation manner, the first phase offset is λ/6, and the second phase offset is λ/3, where λ is the wavelength corresponding to the center frequency of the S-parameter calibration frequency band of the waveguide port.

在一种可能的实现方式中,所述第二获取模块,具体用于通过矢量网络分析仪测量级联有λ/6波导传输线的负载校准件,获取负载校准件在第一相位偏置下的第二反射系数。In a possible implementation manner, the second acquisition module is specifically configured to measure the load calibration part cascaded with the λ/6 waveguide transmission line through a vector network analyzer, and obtain the load calibration part under the first phase offset. second reflection coefficient.

所述第三获取模块,具体用于通过矢量网络分析仪测量级联有λ/3波导传输线的负载校准件,获取负载校准件在第二相位偏置下的第三反射系数。The third acquisition module is specifically configured to measure the load calibration element cascaded with the λ/3 waveguide transmission line through a vector network analyzer, and obtain the third reflection coefficient of the load calibration element under the second phase offset.

在一种可能的实现方式中,所述校准模块包括In a possible implementation, the calibration module includes

短路反射系数获取单元,用于获取由矢量网络分析仪测量得到的短路校准件的短路反射系数。The short-circuit reflection coefficient acquiring unit is used to acquire the short-circuit reflection coefficient of the short-circuit calibration piece measured by the vector network analyzer.

λ/4偏置短路反射系数获取单元,用于获取由矢量网络分析仪测量得到的λ/4偏置短路校准件的λ/4偏置短路反射系数。The λ/4 offset short-circuit reflection coefficient acquisition unit is used to obtain the λ/4 offset short-circuit reflection coefficient of the λ/4 offset short-circuit calibration piece measured by the vector network analyzer.

误差计算单元,用于根据所述负载校准件修正后的反射系数、短路反射系数和λ/4偏置短路反射系数,获得矢量网络分析仪波导端口的方向性误差、源匹配误差和反射跟踪误差。An error calculation unit, configured to obtain the directivity error, source matching error and reflection tracking error of the waveguide port of the vector network analyzer according to the corrected reflection coefficient, short-circuit reflection coefficient and λ/4 bias short-circuit reflection coefficient of the load calibration piece .

校准单元,用于根据所述方向性误差、源匹配误差和反射跟踪误差校准矢量网络分析仪波导端口的S参数。The calibration unit is used for calibrating the S-parameters of the waveguide port of the vector network analyzer according to the directivity error, source matching error and reflection tracking error.

第三方面,本发明实施例提供了一种校准装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面或第一方面的任一种可能的实现方式所述基于内切圆心的波导端口S参数校准方法的步骤。In a third aspect, an embodiment of the present invention provides a calibration apparatus, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program Implement the steps of the method for calibrating the S-parameters of the waveguide port based on the inscribed circle center as described in the first aspect or any possible implementation manner of the first aspect.

第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面或第一方面的任一种可能的实现方式所述基于内切圆心的波导端口S参数校准方法的步骤。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the first aspect or any of the first aspect above. A possible implementation means the steps of the method for calibrating the S-parameters of the waveguide port based on the inscribed circle center.

本发明实施例提供一种基于内切圆心的波导端口S参数校准方法及装置,该方法包括获取由矢量网络分析仪测量得到的负载校准件在无相位偏置下的第一反射系数。获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数。获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,其中第二相位偏置不等于第一相位偏置。计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。根据负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数。通过测量负载校准件在不同相位偏置下的反射系数,以各反射系数构成的三角形的内切圆圆心坐标为修正值,以修正值作为负载校准件实际反射系数为0时测得的反射系数,修正现有技术波导端口校准过程中由于负载校准件的反射系数不是理想的0带来的校准误差,从而得到更加准确的波导端口S参数测量结果。Embodiments of the present invention provide a method and device for calibrating S-parameters of a waveguide port based on the inscribed circle center. The method includes acquiring a first reflection coefficient of a load calibration element measured by a vector network analyzer without phase offset. Obtain the second reflection coefficient of the load calibration element measured by the vector network analyzer under the first phase offset. Obtain the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset, wherein the second phase offset is not equal to the first phase offset. The center coordinates of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart are calculated as the corrected reflection coefficient of the load calibration piece. The S-parameters of the waveguide port of the vector network analyzer are calibrated according to the corrected reflection coefficient of the load calibration piece. By measuring the reflection coefficients of the load calibration piece under different phase offsets, the coordinates of the center of the inscribed circle of the triangle formed by each reflection coefficient are taken as the correction value, and the correction value is taken as the reflection coefficient measured when the actual reflection coefficient of the load calibration piece is 0 , to correct the calibration error caused by the fact that the reflection coefficient of the load calibration element is not ideal 0 during the waveguide port calibration process in the prior art, so as to obtain more accurate waveguide port S-parameter measurement results.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1是十二项误差模型的正向传输误差模型示意图;Fig. 1 is the schematic diagram of the forward transmission error model of the twelve-term error model;

图2是十二项误差模型的反向传输误差模型示意图;Fig. 2 is the schematic diagram of the reverse transmission error model of the twelve-term error model;

图3是矢量网络分析仪波导端口隔离校准示意图;Fig. 3 is a schematic diagram of the isolation calibration of the waveguide port of the vector network analyzer;

图4是矢量网络分析仪波导端口直通校准示意图;Fig. 4 is a schematic diagram of the straight-through calibration of the waveguide port of the vector network analyzer;

图5是矢量网络分析仪测量DUT的示意图;Fig. 5 is the schematic diagram of vector network analyzer measuring DUT;

图6是负载校准件的内部结构示意图;6 is a schematic diagram of the internal structure of the load calibration piece;

图7是本发明实施例提供的一种基于内切圆心的波导端口S参数校准方法的实现流程图;7 is an implementation flow chart of a method for calibrating the S-parameters of a waveguide port based on an inscribed circle center provided by an embodiment of the present invention;

图8是本发明实施例提供的矢量网络分析仪波导端口单端口负载校准示意图;8 is a schematic diagram of a single-port load calibration of a waveguide port of a vector network analyzer provided by an embodiment of the present invention;

图9是本发明实施例提供的波导传输线的结构示意图;9 is a schematic structural diagram of a waveguide transmission line provided by an embodiment of the present invention;

图10是本发明实施例提供的史密斯圆图上ΓLoad_M的获得方法示意图;Fig. 10 is the schematic diagram of the obtaining method of Γ Load_M on the Smith chart provided by the embodiment of the present invention;

图11是本发明实施例提供的短路校准件的结构示意图;11 is a schematic structural diagram of a short-circuit calibration member provided by an embodiment of the present invention;

图12是本发明实施例提供的矢量网络分析仪波导端口单端口短路校准示意图;12 is a schematic diagram of a single-port short-circuit calibration of a waveguide port of a vector network analyzer according to an embodiment of the present invention;

图13是本发明实施例提供的矢量网络分析仪波导端口单端口λ/4偏置短路校准示意图;13 is a schematic diagram of a single-port λ/4 bias short-circuit calibration of a waveguide port of a vector network analyzer according to an embodiment of the present invention;

图14是本发明实施例提供的一种基于内切圆心的波导端口S参数校准装置的结构示意图;14 is a schematic structural diagram of an apparatus for calibrating the S-parameter of a waveguide port based on an inscribed circle center provided by an embodiment of the present invention;

图15是本发明实施例提供的校准装置的示意图。FIG. 15 is a schematic diagram of a calibration apparatus provided by an embodiment of the present invention.

具体实施方式Detailed ways

以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as specific system structures and technologies are set forth in order to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the following descriptions will be given through specific embodiments in conjunction with the accompanying drawings.

随着高功率微波技术的发展,承受功率大的波导器件应用广泛。矢量网络分析仪用于测量波导器件的网络参数,例如S参数。在测量前需要根据待测波导器件的端口类型对矢量网络分析仪进行系统校准,目的是消除矢量网络分析仪自身的系统误差。波导器件传输不同频率电磁波的波导尺寸不同。实际应用中很难实现配置全部频段的波导校准件和相应的校准程序。同时,波导器件工作频带越低,波导尺寸越大,可操作性越差。为精确测量波导器件的网络参数,需要针对矢量网络分析仪的相应频段进行波导校准。With the development of high-power microwave technology, waveguide devices that can withstand high power are widely used. Vector network analyzers are used to measure network parameters of waveguide devices, such as S-parameters. Before the measurement, the vector network analyzer needs to be systematically calibrated according to the port type of the waveguide device to be tested, in order to eliminate the system error of the vector network analyzer itself. Waveguide devices have different waveguide sizes for transmitting electromagnetic waves of different frequencies. In practical applications, it is difficult to realize the configuration of waveguide calibration parts and corresponding calibration procedures for all frequency bands. At the same time, the lower the operating frequency band of the waveguide device, the larger the size of the waveguide, and the worse the operability. In order to accurately measure the network parameters of the waveguide device, it is necessary to perform the waveguide calibration for the corresponding frequency band of the vector network analyzer.

不同于对同轴矢量网络分析仪校准,对于波导二端口的矢量网络分析仪,通常使用短路校准件、λ/4偏置短路校准件(λ/4传输线级联短路校准件)、负载校准件和直通校准件进行校准。其中在校准过程中,所使用的校准件的S参数必须是已知的。通常,短路校准件的反射系数Γ,即S11,定义为-1;负载校准件的反射系数Γ,即S11,定义为0;直通校准件两个端口直接相连的S11和S22定义为0,S21和S12定义为1;λ/4偏置短路校准件的定义随频率变化定义为不同的数据。根据各校准件的测量结果,基于十二项误差模型对矢量网络分析仪进行校准。Different from the calibration of coaxial vector network analyzers, for waveguide two-port vector network analyzers, short-circuit calibration parts, λ/4 offset short-circuit calibration parts (λ/4 transmission line cascade short-circuit calibration parts), and load calibration parts are usually used. Calibrate with thru calibration. In the calibration process, the S-parameters of the calibration piece used must be known. Usually, the reflection coefficient Γ of the short-circuit calibration piece, namely S 11 , is defined as -1; the reflection coefficient Γ of the load calibration piece, namely S 11 , is defined as 0; the two ports of the straight-through calibration piece are directly connected to S 11 and S 22 are defined is 0, S 21 and S 12 are defined as 1; the definition of the λ/4 bias short-circuit calibration piece is defined as different data as the frequency changes. According to the measurement results of each calibration piece, the vector network analyzer is calibrated based on the twelve-term error model.

图1是十二项误差模型的正向传输误差模型示意图。图2是十二项误差模型的反向传输误差模型示意图。参照图1和图2:FIG. 1 is a schematic diagram of the forward transmission error model of the twelve-term error model. FIG. 2 is a schematic diagram of the reverse transmission error model of the twelve-term error model. Referring to Figures 1 and 2:

正向传输误差模型包括6个误差项,分别为:正向方向性误差(EDF)、正向源匹配误差(ESF)、正向反射跟踪误差(ERF)、正向隔离误差(EXF)、正向负载匹配误差(ELF)和正向传输跟踪误差(ETF)。反向传输误差模型包括6个误差项,分别为:反向方向性误差EDR、反向源匹配误差ESR、反向反射跟踪误差ERR、反向隔离误差EXR、反向负载匹配误差ELR和反向传输跟踪误差ETR。通过矢量网络分析仪波导端口测量校准件,根据测量结果获得十二项误差。矢量网络分析仪波导端口测量校准件包括单端口校准、隔离校准和直通校准。The forward transmission error model includes 6 error terms, namely: forward directivity error (EDF), forward source matching error (ESF), forward reflection tracking error (ERF), forward isolation error (EXF), forward error Forward Load Matching Error (ELF) and Forward Transmission Tracking Error (ETF). The reverse transmission error model includes 6 error terms, namely: reverse directivity error EDR, reverse source matching error ESR, reverse reflection tracking error ERR, reverse isolation error EXR, reverse load matching error ELR and reverse Transmission tracking error ETR. The calibration piece is measured through the waveguide port of the vector network analyzer, and twelve errors are obtained according to the measurement results. Vector network analyzer waveguide port measurement calibration kits include single port calibration, isolation calibration and thru calibration.

通过单端口校准获得正向方向性误差EDF、正向源匹配误差ESF、正向反射跟踪误差ERF、反向方向性误差EDR、反向源匹配误差ESR和反向反射跟踪误差ERR。Forward directionality error EDF, forward source matching error ESF, forward reflection tracking error ERF, reverse directionality error EDR, backward source matching error ESR, and backward reflection tracking error ERR are obtained through single-port calibration.

以正向传输为例,在第1端口分别连接三个单端口校准件,即短路校准件、λ/4偏置短路校准件和负载校准件。分别测量三个单端口校准件得到三个反射系数Γ,即S11,即短路反射系数ΓShort_M、λ/4偏置短路反射系数ΓOffsetShort_M和负载反射系数ΓLoad_M。而短路校准件、λ/4偏置短路校准件和负载校准件实际的反射系数Γ值分别为提前已知,对应记为ΓShort_A、ΓOffsetShort_A和ΓLoad_A。通过如下公式,即可求得正向传输误差模型中的正向方向性误差EDF、正向源匹配误差ESF和正向反射跟踪误差ERF。Taking forward transmission as an example, three single-port calibration parts are respectively connected to the first port, that is, a short-circuit calibration part, a λ/4 offset short-circuit calibration part, and a load calibration part. Three single-port calibration pieces are respectively measured to obtain three reflection coefficients Γ, namely S 11 , namely short-circuit reflection coefficient Γ Short_M , λ/4 offset short-circuit reflection coefficient Γ OffsetShort_M and load reflection coefficient Γ Load_M . The actual reflection coefficient Γ values of the short-circuit calibration part, the λ/4 offset short-circuit calibration part and the load calibration part are known in advance, respectively, and are correspondingly recorded as Γ Short_A , Γ OffsetShort_A and Γ Load_A . The forward directivity error EDF, the forward source matching error ESF and the forward reflection tracking error ERF in the forward transmission error model can be obtained by the following formula.

Figure BDA0003716237200000091
Figure BDA0003716237200000091

以反向传输为例,在第2端口分别连接三个单端口校准件,即短路校准件、λ/4偏置短路校准件和负载校准件,测量相应的反射系数,利用与上述相同的计算方法即可得到反向传输误差模型中的反向方向性误差EDR、反向源匹配误差ESR和反向反射跟踪误差ERR。Taking the reverse transmission as an example, connect three single-port calibration parts to the second port respectively, namely the short-circuit calibration part, the λ/4 bias short-circuit calibration part and the load calibration part, measure the corresponding reflection coefficient, and use the same calculation as above. The method can obtain the reverse directivity error EDR, the reverse source matching error ESR and the reverse reflection tracking error ERR in the reverse transmission error model.

通过隔离校准获得误差EXF和误差EXR。图3是矢量网络分析仪波导端口隔离校准示意图。参照图3:在矢量网络分析仪第1端口和第2端口同时连接负载校准件,此时通过测量得到的传输系数S21和S12分别记为S21 Load和S12 Load。可以根据下面公式得到EXF和EXR。Error EXF and Error EXR are obtained by isolating calibration. Figure 3 is a schematic diagram of a vector network analyzer waveguide port isolation calibration. Referring to Figure 3: the first port and the second port of the vector network analyzer are connected to the load calibration element at the same time, and the transmission coefficients S 21 and S 12 obtained by measurement at this time are respectively recorded as S 21 Load and S 12 Load . EXF and EXR can be obtained according to the following formulas.

EXF=S21Load_M EXF=S 21Load_M

EXR=S12Load_M EXR=S 12Load_M

另外一种简化方法是,通常情况下由于EXF和EXR很小,可以忽略不计,因此EXF和EXR可以直接认为是0,而不通过上述测量得到。Another simplification method is that, because EXF and EXR are usually small and negligible, EXF and EXR can be directly considered to be 0 without being obtained by the above measurement.

通过直通校准获得正向传输误差模型中的ELF、ETF和反向传输误差模型中的ELR、ETR。图4是矢量网络分析仪波导端口直通校准示意图。参照图4:将矢量网络分析仪的第1端口和第2端口通过直通校准件直接相互连接。矢量网络分析仪测量得到的S参数记为SThru_M,包括S11 Thru_M、S21 Thru_M、S12 Thru_M和S22 Thru_M四个S参数。通过如下公式,即可求得正向传输误差模型中的ELF、ETF和反向传输误差模型中的ELR、ETR。The ELF and ETF in the forward transmission error model and the ELR and ETR in the reverse transmission error model are obtained through the pass-through calibration. Figure 4 is a schematic diagram of a vector network analyzer waveguide port through calibration. Referring to Figure 4: Connect the first port and the second port of the vector network analyzer directly to each other through a thru-calibrator. The S-parameters measured by the vector network analyzer are denoted as S Thru_M , including four S-parameters, S 11 Thru_M , S 21 Thru_M , S 12 Thru_M and S 22 Thru_M . ELF and ETF in the forward transmission error model and ELR and ETR in the reverse transmission error model can be obtained by the following formula.

Figure BDA0003716237200000101
Figure BDA0003716237200000101

ETF=(S21Thru_M-EXF)(1-ESF·ELF)ETF=(S 21Thru_M -EXF)(1-ESF·ELF)

Figure BDA0003716237200000102
Figure BDA0003716237200000102

ETR=(S12Thru_M-EXR)(1-ESR·ELR)ETR=(S 12Thru_M -EXR)(1-ESR·ELR)

通过上述单端口校准、隔离校准和直通校准过程,得到了正向传输误差模型和反向传输误差模型中的所有十二项误差的数值。这十二项误差数值即为矢量网络分析仪的十二项系统误差。Through the single-port calibration, isolation calibration, and shoot-through calibration procedures described above, the values of all twelve-term errors in the forward transmission error model and the reverse transmission error model are obtained. These twelve error values are the twelve systematic errors of the vector network analyzer.

通过上述十二项系统误差结合十二项误差模型,修正被测件的测量值,获得修正后被测件的真实值。图5是矢量网络分析仪测量DUT的示意图。参照图5:在矢量网络分析仪的第1端口和第2端口连接被测件DUT(被测件,Device Under Test,简称DUT)。可以通过测量得到DUT的S参数原始数据,即未修正的DUT的S参数,记为SM。DUT真实的S参数,即修正后的DUT的S参数,记为SA,可通过如下公式得到DUT真实的S参数:Through the above twelve systematic errors combined with twelve error models, the measured value of the DUT is corrected to obtain the true value of the DUT after correction. Figure 5 is a schematic diagram of a vector network analyzer measuring DUT. Referring to Figure 5: Connect the DUT (Device Under Test, DUT for short) to the first port and the second port of the vector network analyzer. The original data of the S-parameters of the DUT can be obtained by measurement, that is, the S-parameters of the uncorrected DUT, which are denoted as S M . The real S parameter of the DUT, that is, the S parameter of the modified DUT, is denoted as S A , and the real S parameter of the DUT can be obtained by the following formula:

Figure BDA0003716237200000103
Figure BDA0003716237200000103

Figure BDA0003716237200000104
Figure BDA0003716237200000104

Figure BDA0003716237200000111
Figure BDA0003716237200000111

Figure BDA0003716237200000112
Figure BDA0003716237200000112

其中,in,

Figure BDA0003716237200000113
Figure BDA0003716237200000113

Figure BDA0003716237200000114
Figure BDA0003716237200000114

Figure BDA0003716237200000115
Figure BDA0003716237200000115

Figure BDA0003716237200000116
Figure BDA0003716237200000116

D=(1+S11N·ESF)(1+S22N·ESR)-ELF·ELR·S21N·S12N D=(1+S 11N ·ESF)(1+S 22N ·ESR)-ELF·ELR·S 21N ·S 12N

在上述校准方法中,由于负载校准件的实际反射系数不是理想的0,影响校准精度。图6是负载校准件的内部结构示意图。参照图6:负载校准件是通过在波导腔11内插入尖劈形吸波材料12而制成。负载校准件波导腔11的一端封闭。单端口负载校准时,将负载校准件未封闭的一端连接矢量网络分析仪的某一端口,测量反射系数。在校准时负载校准件的理论反射系数通常定义为0。由于吸波材料12本身吸收性能的不理想、制造和装配中存在偏差等因素,导致负载校准件的实际反射系数不是理想的0,而是某个很小的数值。负载校准件的实际反射系数与理论反射系数存在偏差。以负载校准件实际反射系数不为0时测得的反射系数,作为负载校准件实际反射系数为0时测得的反射系数校准矢量网络分析仪,影响矢量网络分析仪的校准精度,从而影响后续使用中S参数测量结果的准确度。In the above calibration method, since the actual reflection coefficient of the load calibration piece is not ideally 0, the calibration accuracy is affected. FIG. 6 is a schematic diagram of the internal structure of the load calibration element. Referring to FIG. 6 : the load calibration element is made by inserting the wedge-shaped wave absorbing material 12 into the waveguide cavity 11 . One end of the load calibration piece waveguide cavity 11 is closed. During single-port load calibration, connect the unclosed end of the load calibration piece to a port of the vector network analyzer, and measure the reflection coefficient. The theoretical reflection coefficient of the load calibration piece is usually defined as 0 during calibration. Due to factors such as unsatisfactory absorption performance of the wave absorbing material 12 itself, and deviations in manufacturing and assembly, the actual reflection coefficient of the load calibration element is not ideally 0, but rather a small value. The actual reflection coefficient of the load calibration piece deviates from the theoretical reflection coefficient. The reflection coefficient measured when the actual reflection coefficient of the load calibration part is not 0 is used as the reflection coefficient measured when the actual reflection coefficient of the load calibration part is 0 to calibrate the vector network analyzer, which affects the calibration accuracy of the vector network analyzer and thus affects the subsequent The accuracy of the S-parameter measurements in use.

本发明实施例提供了一种基于内切圆心的波导端口S参数校准方法,以解决负载校准件的实际反射系数与理论反射系数的偏差影响矢量网络分析仪校准精度的问题。The embodiment of the present invention provides a waveguide port S parameter calibration method based on the inscribed circle center, so as to solve the problem that the deviation between the actual reflection coefficient of the load calibration piece and the theoretical reflection coefficient affects the calibration accuracy of the vector network analyzer.

图7是本发明实施例提供的一种基于内切圆心的波导端口S参数校准方法的实现流程图。参照图7:校准方法包括:FIG. 7 is an implementation flowchart of a method for calibrating the S-parameter of a waveguide port based on the inscribed circle center provided by an embodiment of the present invention. Referring to Figure 7: The calibration method includes:

在步骤S1中、获取由矢量网络分析仪测量得到的负载校准件在无相位偏置下的第一反射系数。In step S1, the first reflection coefficient of the load calibration element measured by the vector network analyzer without phase offset is obtained.

测量负载校准件在无相位偏置下的第一反射系数,即直接将负载校准件连接矢量网络分析仪的某一波导端口进行测量。负载校准件的一端封闭、另一端设有波导端口,内部设有吸波材料12。单端口校准时,矢量网络分析仪的某一波导端口连接负载校准件的波导端口。图8是本发明实施例提供的矢量网络分析仪波导端口单端口负载校准示意图。参照图8:矢量网络分析仪的波导端口发出电磁波,输入负载校准件的波导端口。电磁波经吸波材料12吸收后在负载校准件的封闭端反射,再次经吸波材料12吸收后反射回矢量网络分析仪的波导端口。To measure the first reflection coefficient of the load calibration part without phase offset, directly connect the load calibration part to a certain waveguide port of the vector network analyzer for measurement. One end of the load calibration piece is closed, the other end is provided with a waveguide port, and a wave absorbing material 12 is provided inside. During single-port calibration, a waveguide port of the vector network analyzer is connected to the waveguide port of the load calibration element. FIG. 8 is a schematic diagram of a single-port load calibration of a waveguide port of a vector network analyzer according to an embodiment of the present invention. Referring to Figure 8: The wave guide port of the vector network analyzer emits electromagnetic waves and enters the wave guide port of the load calibration element. The electromagnetic wave is absorbed by the wave absorbing material 12 and then reflected at the closed end of the load calibration piece, and is again absorbed by the wave absorbing material 12 and then reflected back to the waveguide port of the vector network analyzer.

反射系数是反射波振幅与入射波振幅的复数比。入射波振幅即负载校准件接收的到来自矢量网络分析仪波导端口的入射波振幅。反射波振幅即经负载校准件吸收反射回的反射波振幅。理论上反射波振幅为0,即电磁波被吸波材料12全部吸收。实际上因负载校准件不理想,电磁波未被全部吸收。The reflection coefficient is the complex ratio of the reflected wave amplitude to the incident wave amplitude. The incident wave amplitude is the amplitude of the incident wave received by the load calibration element from the waveguide port of the vector network analyzer. The reflected wave amplitude is the reflected wave amplitude that is absorbed and reflected by the load calibration element. Theoretically, the amplitude of the reflected wave is 0, that is, the electromagnetic wave is completely absorbed by the wave absorbing material 12 . In fact, due to the unsatisfactory load calibration element, the electromagnetic wave is not completely absorbed.

在步骤S2中、获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数。示例性的,第一相位偏置不为0。In step S2, the second reflection coefficient of the load calibration element measured by the vector network analyzer under the first phase offset is obtained. Exemplarily, the first phase offset is not 0.

在步骤S3中、获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,其中第二相位偏置不等于第一相位偏置。示例性的,第二相位偏置不为0。In step S3, the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset is obtained, wherein the second phase offset is not equal to the first phase offset. Exemplarily, the second phase offset is not 0.

示例性的,通过在负载校准件与矢量网络分析仪之间增加波导传输线实现相位偏置。图9是本发明实施例提供的波导传输线的结构示意图。参照图9:图中a和b为不同长度的波导传输线,c为负载校准件。波导传输线的端口与负载校准件、矢量网络分析仪的波导端口规格一致。测量时,将负载校准件、波导传输线和矢量网络分析仪依次连接。波导传输线在传输方向上的长度与校准频段的中心频率对应。Illustratively, the phase offset is achieved by adding a waveguide transmission line between the load calibration element and the vector network analyzer. FIG. 9 is a schematic structural diagram of a waveguide transmission line provided by an embodiment of the present invention. Referring to Figure 9: a and b in the figure are waveguide transmission lines of different lengths, and c is a load calibration piece. The port of the waveguide transmission line is the same as that of the load calibration piece and the waveguide port of the vector network analyzer. When measuring, connect the load calibration piece, the waveguide transmission line and the vector network analyzer in sequence. The length of the waveguide transmission line in the transmission direction corresponds to the center frequency of the calibration band.

示例性的,第一相位偏置大于0、小于λ/2,第二相位偏置大于0、小于λ/2。示例性的,第一相位偏置为λ/4,第二相位偏置为λ3/8。示例性的,第一相位偏置为λ/8,第二相位偏置为λ3/8。Exemplarily, the first phase offset is greater than 0 and less than λ/2, and the second phase offset is greater than 0 and less than λ/2. Exemplarily, the first phase offset is λ/4, and the second phase offset is λ3/8. Exemplarily, the first phase offset is λ/8, and the second phase offset is λ3/8.

在一种可能的实现方式中,第一相位偏置为λ/6,第二相位偏置为λ/3,其中λ为波导端口S参数校准频段的中心频率对应的波长。In a possible implementation manner, the first phase offset is λ/6, and the second phase offset is λ/3, where λ is the wavelength corresponding to the center frequency of the S-parameter calibration frequency band of the waveguide port.

在一种可能的实现方式中,获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数,包括:In a possible implementation manner, acquiring the second reflection coefficient of the load calibration element under the first phase offset measured by the vector network analyzer includes:

通过矢量网络分析仪测量级联有λ/6波导传输线的负载校准件,获取负载校准件在第一相位偏置下的第二反射系数。The load calibration element cascaded with the λ/6 waveguide transmission line is measured by a vector network analyzer, and the second reflection coefficient of the load calibration element under the first phase offset is obtained.

获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,包括:Obtain the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset, including:

通过矢量网络分析仪测量级联有λ/3波导传输线的负载校准件,获取负载校准件在第二相位偏置下的第三反射系数。Measure the load calibration piece cascaded with the λ/3 waveguide transmission line by a vector network analyzer, and obtain the third reflection coefficient of the load calibration piece under the second phase offset.

示例性的,根据波导端口的规格和校准频段的中心频率,获得λ/3波导传输线、λ/6波导传输线的规格。示例性的,波导端口采用WR-10规格的矩形方波导,校准频率范围为75GHz~110GHz,该波导端口波导腔11的内腔截面尺寸为0.1in×0.05in,即2.54mm×1.27mm。在ADS软件中利用LineCalc工具,计算得到该规格矩形方波导λ/3波导传输线、λ/6波导传输线长度分别为1.5mm和0.75mm。Exemplarily, according to the specifications of the waveguide ports and the center frequency of the calibration frequency band, the specifications of the λ/3 waveguide transmission line and the λ/6 waveguide transmission line are obtained. Exemplarily, the waveguide port adopts a rectangular square waveguide of WR-10 specification, the calibration frequency range is 75GHz-110GHz, and the cross-sectional size of the inner cavity of the waveguide cavity 11 of the waveguide port is 0.1in×0.05in, that is, 2.54mm×1.27mm. Using the LineCalc tool in the ADS software, the lengths of the λ/3 waveguide transmission line and the λ/6 waveguide transmission line with the rectangular square waveguide of this specification are calculated to be 1.5mm and 0.75mm, respectively.

在步骤S4中、计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。In step S4, the center coordinates of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart are calculated as the reflection coefficient after correction of the load calibration element.

史密斯圆图又称为阻抗圆图,将归一化等电阻圆,归一化的等电抗圆叠画在反射系数复数平面上而形成的。史密斯圆图中包含了复数平面。反射系数是复数,对应复数平面中的某个点的坐标。反射系数的实部对应复数平面的横轴,反射系数的虚部对应复数平面的纵轴。图10是本发明实施例提供的史密斯圆图上ΓLoad_M的获得方法示意图。参照图10:三个不相同的反射系数对应复数平面中三个点,构成一个三角形。三角形内切圆圆心的坐标对应的反射系数作为负载校准件修正后的反射系数。示例性的,负载校准件修正后的反射系数用于参与十二项误差模型的误差项求解计算。示例性的,负载校准件修正后的反射系数用于参与十二项误差模型中方向性误差、源匹配误差和反射跟踪误差的求解计算。The Smith chart, also known as the impedance circle, is formed by superimposing the normalized equal-resistance circle and the normalized equal-reactance circle on the complex plane of reflection coefficients. The Smith chart contains complex planes. The reflection coefficients are complex numbers that correspond to the coordinates of a point in the complex plane. The real part of the reflection coefficient corresponds to the horizontal axis of the complex number plane, and the imaginary part of the reflection coefficient corresponds to the vertical axis of the complex number plane. 10 is a schematic diagram of a method for obtaining Γ Load_M on a Smith chart provided by an embodiment of the present invention. Referring to Figure 10: Three different reflection coefficients correspond to three points in the complex plane, forming a triangle. The reflection coefficient corresponding to the coordinates of the center of the inscribed circle of the triangle is taken as the corrected reflection coefficient of the load calibration piece. Exemplarily, the corrected reflection coefficient of the load calibration element is used to participate in the calculation of the error term of the twelve-term error model. Exemplarily, the corrected reflection coefficient of the load calibration element is used to participate in the calculation of the directional error, the source matching error and the reflection tracking error in the twelve-term error model.

在一种可能的实现方式中,计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数,包括:计算In a possible implementation manner, the coordinates of the inscribed circle center of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart are calculated as the reflection coefficient after correction of the load calibration piece, Include: Computing

Figure BDA0003716237200000141
Figure BDA0003716237200000141

Figure BDA0003716237200000142
Figure BDA0003716237200000142

Figure BDA0003716237200000143
Figure BDA0003716237200000143

Figure BDA0003716237200000144
Figure BDA0003716237200000144

Figure BDA0003716237200000145
Figure BDA0003716237200000145

ΓLoad_M=ReLoad_M+ImLoad_M Γ Load_M =Re Load_M +Im Load_M

ΓLoad_M作为负载校准件修正后的反射系数,其中,ReLoad_M为修正后的反射系数的实部,ImLoad_M为修正后的反射系数的虚部,ReLoad_M1为第一反射系数的实部,ImLoad_M1为第一反射系数的虚部,ReLoad_M2为第二反射系数的实部,ImLoad_M2为第二反射系数的虚部,ReLoad_M3为第三反射系数的实部,ImLoad_M3为第三反射系数的虚部。Γ Load_M is the corrected reflection coefficient of the load calibration element, wherein Re Load_M is the real part of the corrected reflection coefficient, Im Load_M is the imaginary part of the corrected reflection coefficient, Re Load_M1 is the real part of the first reflection coefficient, Im Load_M1 is the imaginary part of the first reflection coefficient, Re Load_M2 is the real part of the second reflection coefficient, Im Load_M2 is the imaginary part of the second reflection coefficient, Re Load_M3 is the real part of the third reflection coefficient, Im Load_M3 is the third reflection coefficient the imaginary part of .

在步骤S5中、根据负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数。In step S5, the S-parameters of the waveguide port of the vector network analyzer are calibrated according to the corrected reflection coefficient of the load calibration element.

在一种可能的实现方式中,根据负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数,包括:In a possible implementation manner, the S-parameter of the waveguide port of the vector network analyzer is calibrated according to the reflection coefficient corrected by the load calibration element, including:

获取由矢量网络分析仪测量得到的短路校准件的短路反射系数。图11是本发明实施例提供的短路校准件的结构示意图。图11中d为本发明实施例提供的短路校准件的结构示意图。图12是本发明实施例提供的矢量网络分析仪波导端口单端口短路校准示意图。图12中,示例性的,将短路校准件与矢量网络分析仪的波导端口连接,测量得到短路反射系数。Obtain the short-circuit reflection coefficient of the short-circuit calibration piece measured by a vector network analyzer. FIG. 11 is a schematic structural diagram of a short-circuit calibration member provided by an embodiment of the present invention. In FIG. 11 , d is a schematic structural diagram of a short-circuit calibration member provided by an embodiment of the present invention. FIG. 12 is a schematic diagram of a single-port short-circuit calibration of a waveguide port of a vector network analyzer according to an embodiment of the present invention. In FIG. 12, exemplarily, the short-circuit calibration element is connected to the waveguide port of the vector network analyzer, and the short-circuit reflection coefficient is obtained by measurement.

获取由矢量网络分析仪测量得到的λ/4偏置短路校准件的λ/4偏置短路反射系数。图11中e为本发明实施例提供的λ/4偏置波导传输线结构示意图。图13是本发明实施例提供的矢量网络分析仪波导端口单端口λ/4偏置短路校准示意图。图13中,示例性的,将短路校准件与λ/4偏置波导传输线连接后形成λ/4偏置短路校准件。λ/4偏置短路校准件再和矢量网络分析仪的波导端口连接,测量获得λ/4偏置短路反射系数。Obtain the λ/4 bias short-circuit reflection coefficient of the λ/4 bias short-circuit calibration piece measured by a vector network analyzer. e in FIG. 11 is a schematic structural diagram of a λ/4 biased waveguide transmission line provided by an embodiment of the present invention. 13 is a schematic diagram of a single-port λ/4 bias short-circuit calibration of a waveguide port of a vector network analyzer according to an embodiment of the present invention. In FIG. 13 , exemplarily, the short-circuit calibration member is formed by connecting the short-circuit calibration member to the λ/4 biased waveguide transmission line to form the λ/4-biased short-circuit calibration member. The λ/4 offset short-circuit calibration piece is then connected to the waveguide port of the vector network analyzer, and the λ/4 offset short-circuit reflection coefficient is obtained by measurement.

根据上述修正后的反射系数、短路反射系数和λ/4偏置短路反射系数,获得矢量网络分析仪波导端口的方向性误差、源匹配误差和反射跟踪误差。According to the above corrected reflection coefficient, short-circuit reflection coefficient and λ/4 bias short-circuit reflection coefficient, the directivity error, source matching error and reflection tracking error of the waveguide port of the vector network analyzer are obtained.

根据方向性误差、源匹配误差和反射跟踪误差校准矢量网络分析仪波导端口的S参数。Calibrate the S-parameters of the VNA waveguide port based on the directivity error, source matching error, and reflection tracking error.

本发明实施例提供的一种基于内切圆心的波导端口S参数校准方法,通过测量负载校准件在不同相位偏置下的反射系数,以各反射系数构成的三角形的内切圆圆心坐标为修正值,以修正值作为负载校准件实际反射系数为0时测得的反射系数,修正现有技术波导端口校准过程中由于负载校准件的反射系数不是理想的0带来的校准误差,实现更加准确的校准,提高波导端口S参数测量准确度,从而得到更加准确的波导端口S参数测量结果。The embodiment of the present invention provides a method for calibrating the S-parameter of a waveguide port based on the inscribed circle center. By measuring the reflection coefficients of the load calibration element under different phase offsets, the inscribed circle center coordinates of the triangle formed by each reflection coefficient are used as the correction. The correction value is taken as the reflection coefficient measured when the actual reflection coefficient of the load calibration piece is 0 to correct the calibration error caused by the fact that the reflection coefficient of the load calibration piece is not ideal 0 during the calibration process of the waveguide port in the prior art, so as to achieve more accurate The calibration can improve the accuracy of the S-parameter measurement of the waveguide port, so as to obtain more accurate measurement results of the S-parameter of the waveguide port.

应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in the above embodiments does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present invention.

以下为本发明的装置实施例,对于其中未详尽描述的细节,可以参考上述对应的方法实施例。The following are apparatus embodiments of the present invention, and for details that are not described in detail, reference may be made to the above-mentioned corresponding method embodiments.

图14是本发明实施例提供的一种基于内切圆心的波导端口S参数校准装置的结构示意图。为了便于说明,仅示出了与本发明实施例相关的部分,参照图14:本发明实施例提供了一种基于内切圆心的波导端口S参数校准装置2,包括:FIG. 14 is a schematic structural diagram of an apparatus for calibrating an S-parameter of a waveguide port based on an inscribed circle center provided by an embodiment of the present invention. For the convenience of description, only the part related to the embodiment of the present invention is shown. Referring to FIG. 14 : an embodiment of the present invention provides a waveguide port S-parameter calibration device 2 based on the inscribed circle center, including:

第一获取模块21,用于获取由矢量网络分析仪测量得到的负载校准件在无相位偏置下的第一反射系数。The first acquisition module 21 is configured to acquire the first reflection coefficient of the load calibration element measured by the vector network analyzer without phase offset.

第二获取模块22,用于获取由矢量网络分析仪测量得到的负载校准件在第一相位偏置下的第二反射系数。The second acquisition module 22 is configured to acquire the second reflection coefficient of the load calibration element measured by the vector network analyzer under the first phase offset.

第三获取模块23,用于获取由矢量网络分析仪测量得到的负载校准件在第二相位偏置下的第三反射系数,其中第二相位偏置不等于第一相位偏置。The third obtaining module 23 is configured to obtain the third reflection coefficient of the load calibration element measured by the vector network analyzer under the second phase offset, wherein the second phase offset is not equal to the first phase offset.

计算模块24,用于计算由第一反射系数、第二反射系数和第三反射系数在史密斯圆图中构成的三角形的内切圆圆心坐标,作为负载校准件修正后的反射系数。The calculation module 24 is configured to calculate the center coordinates of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the Smith chart, as the reflection coefficient after the correction of the load calibration piece.

校准模块25,用于根据负载校准件修正后的反射系数校准矢量网络分析仪波导端口的S参数。The calibration module 25 is used for calibrating the S-parameters of the waveguide port of the vector network analyzer according to the reflection coefficient corrected by the load calibration element.

在一种可能的实现方式中,计算模块24具体用于计算In a possible implementation, the calculation module 24 is specifically used to calculate

Figure BDA0003716237200000161
Figure BDA0003716237200000161

Figure BDA0003716237200000162
Figure BDA0003716237200000162

Figure BDA0003716237200000163
Figure BDA0003716237200000163

Figure BDA0003716237200000164
Figure BDA0003716237200000164

Figure BDA0003716237200000171
Figure BDA0003716237200000171

ΓLoad_M=ReLoad_M+ImLoad_M Γ Load_M =Re Load_M +Im Load_M

ΓLoad_M作为负载校准件修正后的反射系数,其中,ReLoad_M为修正后的反射系数的实部,ImLoad_M为修正后的反射系数的虚部,ReLoad_M1为第一反射系数的实部,ImLoad_M1为第一反射系数的虚部,ReLoad_M2为第二反射系数的实部,ImLoad_M2为第二反射系数的虚部,ReLoad_M3为第三反射系数的实部,ImLoad_M3为第三反射系数的虚部。Γ Load_M is the corrected reflection coefficient of the load calibration element, wherein Re Load_M is the real part of the corrected reflection coefficient, Im Load_M is the imaginary part of the corrected reflection coefficient, Re Load_M1 is the real part of the first reflection coefficient, Im Load_M1 is the imaginary part of the first reflection coefficient, Re Load_M2 is the real part of the second reflection coefficient, Im Load_M2 is the imaginary part of the second reflection coefficient, Re Load_M3 is the real part of the third reflection coefficient, Im Load_M3 is the third reflection coefficient the imaginary part of .

在一种可能的实现方式中,第一相位偏置为λ/6,第二相位偏置为λ/3,其中λ为波导端口S参数校准频段的中心频率对应的波长。In a possible implementation manner, the first phase offset is λ/6, and the second phase offset is λ/3, where λ is the wavelength corresponding to the center frequency of the S-parameter calibration frequency band of the waveguide port.

在一种可能的实现方式中,第二获取模块22,具体用于通过矢量网络分析仪测量级联有λ/6波导传输线的负载校准件,获取负载校准件在第一相位偏置下的第二反射系数。In a possible implementation manner, the second acquisition module 22 is specifically configured to measure the load calibration piece cascaded with the λ/6 waveguide transmission line by using a vector network analyzer, and obtain the first phase offset of the load calibration piece under the first phase offset. Two reflection coefficients.

第三获取模块23,具体用于通过矢量网络分析仪测量级联有λ/3波导传输线的负载校准件,获取负载校准件在第二相位偏置下的第三反射系数。The third acquisition module 23 is specifically configured to measure the load calibration part with the λ/3 waveguide transmission line cascaded with the vector network analyzer, and obtain the third reflection coefficient of the load calibration part under the second phase offset.

在一种可能的实现方式中,校准模块25包括In one possible implementation, the calibration module 25 includes

短路反射系数获取单元,用于获取由矢量网络分析仪测量得到的短路校准件的短路反射系数。The short-circuit reflection coefficient acquiring unit is used to acquire the short-circuit reflection coefficient of the short-circuit calibration piece measured by the vector network analyzer.

λ/4偏置短路反射系数获取单元,用于获取由矢量网络分析仪测量得到的λ/4偏置短路校准件的λ/4偏置短路反射系数。The λ/4 offset short-circuit reflection coefficient acquisition unit is used to obtain the λ/4 offset short-circuit reflection coefficient of the λ/4 offset short-circuit calibration piece measured by the vector network analyzer.

误差计算单元,用于根据负载校准件修正后的反射系数、短路反射系数和λ/4偏置短路反射系数,获得矢量网络分析仪波导端口的方向性误差、源匹配误差和反射跟踪误差。The error calculation unit is used to obtain the directivity error, source matching error and reflection tracking error of the waveguide port of the vector network analyzer according to the corrected reflection coefficient, short-circuit reflection coefficient and λ/4 bias short-circuit reflection coefficient of the load calibration element.

校准单元,用于根据方向性误差、源匹配误差和反射跟踪误差校准矢量网络分析仪波导端口的S参数。A calibration unit for calibrating the S-parameters of the waveguide port of the vector network analyzer according to the directivity error, source matching error and reflection tracking error.

图15是本发明实施例提供的校准装置的示意图。如图15所示,该实施例的校准装置3包括:处理器30、存储器31以及存储在所述存储器31中并可在所述处理器30上运行的计算机程序32。所述处理器30执行所述计算机程序32时实现上述各个基于内切圆心的波导端口S参数校准方法实施例中的步骤,例如图7所示的步骤S1至步骤S5。或者,所述处理器30执行所述计算机程序32时实现上述各装置实施例中各模块/单元的功能,例如图11所示模块21至25的功能。FIG. 15 is a schematic diagram of a calibration apparatus provided by an embodiment of the present invention. As shown in FIG. 15 , the calibration apparatus 3 of this embodiment includes: a processor 30 , a memory 31 , and a computer program 32 stored in the memory 31 and executable on the processor 30 . When the processor 30 executes the computer program 32 , the steps in each of the above-mentioned embodiments of the method for calibrating the S-parameter of the waveguide port based on the inscribed circle center are implemented, for example, the steps S1 to S5 shown in FIG. 7 . Alternatively, when the processor 30 executes the computer program 32, the functions of the modules/units in each of the foregoing apparatus embodiments, for example, the functions of the modules 21 to 25 shown in FIG. 11, are implemented.

示例性的,所述计算机程序32可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器31中,并由所述处理器30执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序32在所述校准装置3中的执行过程。例如,所述计算机程序32可以被分割成图11所示的模块21至25。Exemplarily, the computer program 32 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 31 and executed by the processor 30 to complete the this invention. The one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 32 in the calibration device 3 . For example, the computer program 32 may be divided into modules 21 to 25 shown in FIG. 11 .

所述校准装置3可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述校准装置3可包括,但不仅限于,处理器30、存储器31。本领域技术人员可以理解,图15仅仅是校准装置3的示例,并不构成对校准装置3的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述校准装置还可以包括输入输出设备、网络接入设备、总线等。The calibration device 3 may be a computing device such as a desktop computer, a notebook, a handheld computer, and a cloud server. The calibration device 3 may include, but is not limited to, a processor 30 and a memory 31 . Those skilled in the art can understand that FIG. 15 is only an example of the calibration device 3, and does not constitute a limitation to the calibration device 3, and may include more or less components than the one shown, or combine some components, or different components For example, the calibration apparatus may further include an input and output device, a network access device, a bus, and the like.

所称处理器30可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called processor 30 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.

所述存储器31可以是所述校准装置3的内部存储单元,例如校准装置3的硬盘或内存。所述存储器31也可以是所述校准装置3的外部存储设备,例如所述校准装置3上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器31还可以既包括所述校准装置3的内部存储单元也包括外部存储设备。所述存储器31用于存储所述计算机程序以及所述校准装置所需的其他程序和数据。所述存储器31还可以用于暂时地存储已经输出或者将要输出的数据。The memory 31 may be an internal storage unit of the calibration device 3 , such as a hard disk or a memory of the calibration device 3 . The memory 31 may also be an external storage device of the calibration device 3, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the calibration device 3 card, flash card (Flash Card) and so on. Further, the memory 31 may also include both an internal storage unit of the calibration apparatus 3 and an external storage device. The memory 31 is used to store the computer program and other programs and data required by the calibration device. The memory 31 can also be used to temporarily store data that has been output or will be output.

所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example for illustration. In practical applications, the above-mentioned functions can be allocated to different functional units, Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.

在本发明所提供的实施例中,应该理解到,所揭露的装置/校准装置和方法,可以通过其它的方式实现。例如,以上所描述的装置/校准装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided by the present invention, it should be understood that the disclosed apparatus/calibration apparatus and method may be implemented in other manners. For example, the device/calibration device embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个基于内切圆心的波导端口S参数校准方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。The integrated modules/units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, the steps of each of the foregoing embodiments of the method for calibrating the S-parameter of the waveguide port based on the inscribed circle center can be implemented. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, Read-Only Memory (ROM), Random Access Memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal, software distribution medium, etc.

以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it is still possible to implement the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.

Claims (10)

1. A waveguide port S parameter calibration method based on an inscribed circle center is characterized by comprising the following steps:
acquiring a first reflection coefficient of a load calibration piece measured by a vector network analyzer under the condition of no phase offset;
acquiring a second reflection coefficient of the load calibration piece measured by the vector network analyzer under the first phase offset;
obtaining a third reflection coefficient of the load calibration piece measured by the vector network analyzer under a second phase bias, wherein the second phase bias is not equal to the first phase bias;
calculating the center coordinates of an inscribed circle of a triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in a Smith chart, and taking the coordinates as the reflection coefficients after the load calibration piece is corrected;
and calibrating the S parameter of the waveguide port of the vector network analyzer according to the reflection coefficient corrected by the load calibration piece.
2. The method according to claim 1, wherein the calculating the coordinates of the center of the inscribed circle of the triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in the smith chart as the reflection coefficients corrected by the load calibration member comprises:
computing
Figure FDA0003716237190000011
Figure FDA0003716237190000012
Figure FDA0003716237190000013
Figure FDA0003716237190000014
Figure FDA0003716237190000021
Γ Load_M =Re Load_M +Im Load_M
Γ Load_M As a corrected reflection coefficient of a load calibration member, wherein Re Load_M For the real part of the modified reflection coefficient, im Load_M For the imaginary part of the modified reflection coefficient, re Load_M1 Is the real part of the first reflection coefficient, im Load_M1 Is the imaginary part of the first reflection coefficient, re Load_M2 Is the real part of the second reflection coefficient, im Load_M2 Is the imaginary part of the second reflection coefficient, re Load_M3 Is the real part of the third reflection coefficient, im Load_M3 The imaginary part of the third reflection coefficient.
3. The method as claimed in claim 1, wherein the first phase offset is λ/6, and the second phase offset is λ/3, where λ is a wavelength corresponding to a center frequency of a calibration frequency band of the S parameter of the waveguide port.
4. The method according to claim 3, wherein the obtaining of the second reflection coefficient of the load calibration piece measured by the vector network analyzer under the first phase offset includes:
measuring a load calibration piece connected with a lambda/6 waveguide transmission line through a vector network analyzer, and acquiring a second reflection coefficient of the load calibration piece under the first phase offset;
the obtaining of the third reflection coefficient of the load calibration piece measured by the vector network analyzer at the second phase offset includes:
and measuring the load calibration piece connected with the lambda/3 waveguide transmission line through a vector network analyzer to obtain a third reflection coefficient of the load calibration piece under the second phase bias.
5. The method for calibrating the S parameter of the waveguide port based on the inscribed center according to claim 1, wherein the calibrating the S parameter of the waveguide port of the vector network analyzer according to the reflection coefficient corrected by the load calibrating element comprises:
obtaining a short circuit reflection coefficient of a short circuit calibration piece measured by a vector network analyzer;
acquiring a lambda/4 offset short circuit reflection coefficient of a lambda/4 offset short circuit calibration piece measured by a vector network analyzer;
obtaining a directional error, a source matching error and a reflection tracking error of a waveguide port of the vector network analyzer according to the reflection coefficient, the short circuit reflection coefficient and the lambda/4 bias short circuit reflection coefficient corrected by the load calibration piece;
and calibrating the S parameter of the waveguide port of the vector network analyzer according to the directivity error, the source matching error and the reflection tracking error.
6. The utility model provides a waveguide port S parameter calibration device based on inscribe centre of a circle which characterized in that includes:
the first acquisition module is used for acquiring a first reflection coefficient of the load calibration piece measured by the vector network analyzer under the condition of no phase offset;
the second acquisition module is used for acquiring a second reflection coefficient of the load calibration piece measured by the vector network analyzer under the first phase offset;
the third obtaining module is used for obtaining a third reflection coefficient of the load calibration piece measured by the vector network analyzer under a second phase offset, wherein the second phase offset is not equal to the first phase offset;
the calculating module is used for calculating the circle center coordinates of an inscribed circle of a triangle formed by the first reflection coefficient, the second reflection coefficient and the third reflection coefficient in a Smith chart, and the circle center coordinates are used as the reflection coefficients after the load calibration piece is corrected;
and the calibration module is used for calibrating the S parameter of the waveguide port of the vector network analyzer according to the reflection coefficient corrected by the load calibration piece.
7. The waveguide port S parameter calibration device based on the inscribed circle center of claim 6, wherein the calculation module is specifically configured to calculate
Figure FDA0003716237190000031
Figure FDA0003716237190000032
Figure FDA0003716237190000033
Figure FDA0003716237190000034
Figure FDA0003716237190000041
Γ Load_M =Re Load_M +Im Load_M
Γ Load_M As a corrected reflection coefficient of a load calibration member, wherein Re Load_M For the real part of the modified reflection coefficient, im Load_M For the imaginary part of the modified reflection coefficient, re Load_M1 Is the real part of the first reflection coefficient, im Load_M1 Is the imaginary part of the first reflection coefficient, re Load_M2 Is the real part of the second reflection coefficient, im Load_M2 Is the imaginary part of the second reflection coefficient, re Load_M3 Is the third reflectionReal part of coefficient, im Load_M3 The imaginary part of the third reflection coefficient.
8. The inscribe-center-based waveguide port S-parameter calibration device according to claim 7, wherein the first phase bias is λ/6, and the second phase bias is λ/3, where λ is a wavelength corresponding to a center frequency of a waveguide port S-parameter calibration band.
9. A calibration apparatus comprising a memory, a processor and a computer program stored in the memory and executable on the processor, wherein the processor when executing the computer program implements the steps of the method for calibrating S parameter of an inscribe center-based waveguide port according to any one of claims 1 to 5.
10. A computer readable storage medium storing a computer program, wherein the computer program when executed by a processor implements the steps of the inscribe circle center based waveguide port S parameter calibration method as claimed in any one of claims 1 to 5 above.
CN202210743203.4A 2022-06-27 A waveguide port S parameter calibration method and device based on the center of an inscribed circle Active CN115219815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210743203.4A CN115219815B (en) 2022-06-27 A waveguide port S parameter calibration method and device based on the center of an inscribed circle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210743203.4A CN115219815B (en) 2022-06-27 A waveguide port S parameter calibration method and device based on the center of an inscribed circle

Publications (2)

Publication Number Publication Date
CN115219815A true CN115219815A (en) 2022-10-21
CN115219815B CN115219815B (en) 2025-04-15

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115219816A (en) * 2022-06-27 2022-10-21 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on circumscribed circle centers
CN115290997A (en) * 2022-06-27 2022-11-04 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on the center of gravity

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191712A1 (en) * 2005-07-25 2008-08-14 University Of Florida Research Foundation, Inc. System, Device, and Method for Embedded S-Parameter Measurement
CN101258412A (en) * 2005-09-01 2008-09-03 株式会社村田制作所 Method and apparatus for measuring scattering coefficient of device under test
CN104515907A (en) * 2013-09-30 2015-04-15 上海霍莱沃电子系统技术有限公司 Scattering parameter testing system and implementation method thereof
CN104811156A (en) * 2015-05-14 2015-07-29 中国电子科技集团公司第五十四研究所 Resonance enhanced type broadband impedance matching circuit and matching method
CN107203495A (en) * 2017-06-09 2017-09-26 中国电子科技集团公司第四十研究所 A kind of circular interpolation method of S parameter
CN108226643A (en) * 2016-12-09 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 The method of the source reflectance factor of on-line measurement load balance factor system
CN110717234A (en) * 2019-10-17 2020-01-21 上海机电工程研究所 Irregular layout triple angular position simulation method, system and medium
KR102164927B1 (en) * 2019-06-17 2020-10-13 동의대학교 산학협력단 A Q measurement method of a lossy coupled cavity resonator
CN111983312A (en) * 2020-07-23 2020-11-24 中国电子科技集团公司第十三研究所 Method for determining noise parameters and terminal equipment
CN115219816A (en) * 2022-06-27 2022-10-21 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on circumscribed circle centers
CN115290997A (en) * 2022-06-27 2022-11-04 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on the center of gravity

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191712A1 (en) * 2005-07-25 2008-08-14 University Of Florida Research Foundation, Inc. System, Device, and Method for Embedded S-Parameter Measurement
CN101258412A (en) * 2005-09-01 2008-09-03 株式会社村田制作所 Method and apparatus for measuring scattering coefficient of device under test
CN104515907A (en) * 2013-09-30 2015-04-15 上海霍莱沃电子系统技术有限公司 Scattering parameter testing system and implementation method thereof
CN104811156A (en) * 2015-05-14 2015-07-29 中国电子科技集团公司第五十四研究所 Resonance enhanced type broadband impedance matching circuit and matching method
CN108226643A (en) * 2016-12-09 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 The method of the source reflectance factor of on-line measurement load balance factor system
CN107203495A (en) * 2017-06-09 2017-09-26 中国电子科技集团公司第四十研究所 A kind of circular interpolation method of S parameter
KR102164927B1 (en) * 2019-06-17 2020-10-13 동의대학교 산학협력단 A Q measurement method of a lossy coupled cavity resonator
CN110717234A (en) * 2019-10-17 2020-01-21 上海机电工程研究所 Irregular layout triple angular position simulation method, system and medium
CN111983312A (en) * 2020-07-23 2020-11-24 中国电子科技集团公司第十三研究所 Method for determining noise parameters and terminal equipment
CN115219816A (en) * 2022-06-27 2022-10-21 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on circumscribed circle centers
CN115290997A (en) * 2022-06-27 2022-11-04 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on the center of gravity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙静, 刘晨, 梁法国, 霍晔, 栾鹏, 吴爱华: "《利用矢量网络分析仪单端口校准误差项 提取二端口网络的S 参数》", 《计量学报》, vol. 42, no. 11, 30 November 2021 (2021-11-30), pages 1499 - 1503 *
董峦: "《应用史密斯圆图提取慢波微带线特征阻抗方法》", 《电子测试》, no. 5, 31 May 2011 (2011-05-31), pages 94 - 96 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115219816A (en) * 2022-06-27 2022-10-21 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on circumscribed circle centers
CN115290997A (en) * 2022-06-27 2022-11-04 中国电子科技集团公司第十三研究所 A method and device for calibrating S-parameters of waveguide ports based on the center of gravity
CN115219816B (en) * 2022-06-27 2025-02-07 中国电子科技集团公司第十三研究所 A waveguide port S parameter calibration method and device based on circumscribed circle center
CN115290997B (en) * 2022-06-27 2025-03-14 中国电子科技集团公司第十三研究所 A waveguide port S parameter calibration method and device based on center of gravity

Similar Documents

Publication Publication Date Title
EP3686616B1 (en) New on-chip s parameter calibration method
CN109444721B (en) Method for detecting S parameter and terminal equipment
WO2020232810A1 (en) Calibration method and system for on-chip s parameter of vector network analyzer, and device
CN110174633B (en) Device parameter measuring method and system and terminal equipment
CN111142057A (en) Terahertz frequency band on-chip S parameter calibration method and terminal equipment
CN112098791B (en) On-chip calibration piece model and method for determining parameters in on-chip calibration piece model
CN109239634B (en) Method for calibrating two-port vector network analyzer based on ridge regression
CN113849958A (en) Crosstalk error correction method and electronic equipment for on-chip S-parameter measurement system
US11385175B2 (en) Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter
CN111579869B (en) Method and device for measuring S parameters of reciprocal two-port network and terminal equipment
CN111983538B (en) On-chip S parameter measurement system calibration method and device
CN110174634B (en) Load traction measurement system and measurement method
CN111025214B (en) Method for obtaining power calibration model and terminal equipment
CN114137389B (en) Method, device, terminal and storage medium for determining S parameter phase of microwave probe
CN115219816B (en) A waveguide port S parameter calibration method and device based on circumscribed circle center
CN115290997B (en) A waveguide port S parameter calibration method and device based on center of gravity
CN113589211B (en) Millimeter wave broadband power calibration correction method and system, storage medium and terminal
JP7153309B2 (en) Measurement method of reflection coefficient using vector network analyzer
CN115219815A (en) Waveguide port S parameter calibration method and device based on inscribed circle center
CN115219815B (en) A waveguide port S parameter calibration method and device based on the center of an inscribed circle
US20230051442A1 (en) Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device
Dudkiewicz Vector-receiver load pull measurements
CN113821763B (en) On-chip S parameter measurement system calibration method and electronic equipment
CN114252831B (en) Terahertz on-wafer coaxial verification and optimization selection system, method and device
CN115542013A (en) Method for extracting load inductance from on-chip S parameters, electronic device and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant