CN115208755A - Internet of things equipment resource-friendly feature extractor deployment method and system - Google Patents
Internet of things equipment resource-friendly feature extractor deployment method and system Download PDFInfo
- Publication number
- CN115208755A CN115208755A CN202210821641.8A CN202210821641A CN115208755A CN 115208755 A CN115208755 A CN 115208755A CN 202210821641 A CN202210821641 A CN 202210821641A CN 115208755 A CN115208755 A CN 115208755A
- Authority
- CN
- China
- Prior art keywords
- feature extractor
- feature
- internet
- redundant
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000007781 pre-processing Methods 0.000 claims abstract description 9
- 238000004590 computer program Methods 0.000 claims description 22
- 238000000605 extraction Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Telephonic Communication Services (AREA)
Abstract
本发明提供一种面向物联网设备资源友好的特征提取器部署方法及系统,属于物联网技术领域,调取存储的数据集信息和特征提取器生成算法生成特征提取器;生成了单容量非冗余多功能特征提取器;将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。本发明减少物联网设备存储资源消耗,提高特征提取器切换效率;去除了冗余特征提取器,并以参数共享的方式将非冗余特征提取器嵌套在一起,减少了部署多个特征提取器消耗的存储资源;减少了无效的特征提取器切换,提高了特征提取器切换效率。
The invention provides a resource-friendly feature extractor deployment method and system for Internet of Things equipment, belonging to the technical field of Internet of Things. After the IoT device collects data for preprocessing, select a feature extractor to extract the principal components of the data according to its current available resources feature, and then upload the extracted principal component feature data to the edge server. The invention reduces the storage resource consumption of the Internet of Things equipment and improves the switching efficiency of the feature extractors; the redundant feature extractors are removed, and the non-redundant feature extractors are nested together in the way of parameter sharing, thereby reducing the deployment of multiple feature extractors The storage resources consumed by the processor are reduced; the invalid feature extractor switching is reduced, and the switching efficiency of the feature extractor is improved.
Description
技术领域technical field
本发明涉及物联网技术领域,具体涉及一种面向物联网设备资源友好的特征提取器部署方法及系统。The invention relates to the technical field of the Internet of Things, in particular to a resource-friendly feature extractor deployment method and system for the Internet of Things device.
背景技术Background technique
随着万物互联时代的到来,数以亿计的物联网设备将连接入网,并会产生海量的数据。由于物联网设备资源有限,难以提供充足的计算资源完成所有的数据处理任务。因此,在物联网设备上部署特征提取器首先提取收集的数据的特征,然后将提取的特征数据上传至边缘服务器/云服务器进行进一步处理已成为主流。With the advent of the Internet of Everything era, hundreds of millions of IoT devices will be connected to the network and will generate massive amounts of data. Due to the limited resources of IoT devices, it is difficult to provide sufficient computing resources to complete all data processing tasks. Therefore, it has become mainstream to deploy feature extractors on IoT devices to first extract the features of the collected data, and then upload the extracted feature data to edge servers/cloud servers for further processing.
物联网设备具有可用资源动态变化的特性,为了保障物联网设备在其可用资源动态变化的情况下提供不间断的特征提取服务,需要在物联网设备上部署多个不同容量的特征提取器。然而,物联网设备资源有限,部署多个特征提取器会占用物联网设备大量的存储资源。IoT devices have the characteristics of dynamically changing available resources. In order to ensure that IoT devices can provide uninterrupted feature extraction services when their available resources are dynamically changing, it is necessary to deploy multiple feature extractors with different capacities on IoT devices. However, the resources of IoT devices are limited, and deploying multiple feature extractors will occupy a large amount of storage resources of IoT devices.
将物联网设备产生的海量数据都上传至边缘/云服务器,不仅会导致较大的核心网带宽压力,而且难以满足用户对低时延、高性能应用服务的需求。为了减少物联网设备上传至边缘/云服务器的数据量,同时考虑到物联网设备具有可用资源动态变化和有限的特性,在物联网设备上同时部署多个不同容量的特征提取器已成为主流。现有方法提出在物联网设备上部署多个特征提取器,并提出以参数共享的方式存储多个不同容量的特征提取器。然而,该类方法忽略了部署在物联网设备上的特征提取器包含大量的冗余子特征提取器,导致物联网设备存储资源的浪费。Uploading massive amounts of data generated by IoT devices to edge/cloud servers will not only lead to greater pressure on core network bandwidth, but also make it difficult to meet users' needs for low-latency, high-performance application services. In order to reduce the amount of data uploaded by IoT devices to edge/cloud servers, and considering that IoT devices have dynamically changing and limited available resources, it has become mainstream to deploy multiple feature extractors with different capacities on IoT devices simultaneously. Existing methods propose to deploy multiple feature extractors on IoT devices, and propose to store multiple feature extractors with different capacities in a parameter-sharing manner. However, this type of method ignores that the feature extractor deployed on the IoT device contains a large number of redundant sub-feature extractors, which leads to the waste of the storage resources of the IoT device.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种通过去除冗余子特征提取器来避免物联网设备存储资源的浪费的面向物联网设备资源友好的特征提取器部署方法及系统,以解决上述背景技术中存在的至少一项技术问题。The purpose of the present invention is to provide a resource-friendly feature extractor deployment method and system for IoT devices that avoids the waste of IoT device storage resources by removing redundant sub-feature extractors, so as to solve at least the problems in the above background technology. a technical issue.
为了实现上述目的,本发明采取了如下技术方案:In order to achieve the above object, the present invention has adopted the following technical solutions:
一方面,本发明提供一种面向物联网设备资源友好的特征提取器部署方法,包括:In one aspect, the present invention provides a resource-friendly feature extractor deployment method for IoT devices, including:
调取存储的数据集信息和特征提取器生成算法生成特征提取器;Call the stored dataset information and feature extractor generation algorithm to generate a feature extractor;
在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;Using a single-capacity non-redundant multi-functional feature extractor on IoT devices to split the feature extractor into multiple non-redundant sub-feature extractors, and use these non-redundant sub-feature extractors to generate a single Capacity non-redundant multifunctional feature extractor;
将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。Send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, and then extract the principal component features of the data. The ingredient feature data is uploaded to the edge server.
第二方面,本发明提供一种面向物联网设备资源友好的特征提取器部署系统,包括:In a second aspect, the present invention provides a resource-friendly feature extractor deployment system for IoT devices, including:
调取模块,用于调取存储的数据集信息和特征提取器生成算法生成特征提取器;The retrieval module is used to retrieve the stored data set information and the feature extractor generation algorithm to generate the feature extractor;
生成模块,用于在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;A generation module for splitting a feature extractor into multiple non-redundant sub-feature extractors with a single-capacity non-redundant multi-function feature extractor on IoT devices, and dividing these non-redundant sub-feature extractors with parameters Generate a single-capacity non-redundant multi-functional feature extractor in a shared way;
提取模块,用于将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。The extraction module is used to send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for data preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, Then upload the extracted principal component feature data to the edge server.
第三方面,本发明提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质用于存储计算机指令,所述计算机指令被处理器执行时,实现如上所述的面向物联网设备资源友好的特征提取器部署方法。In a third aspect, the present invention provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed by a processor, realize the above-mentioned orientation A resource-friendly feature extractor deployment method for IoT devices.
第四方面,本发明提供一种计算机程序产品,包括计算机程序,所述计算机程序当在一个或多个处理器上运行时,用于实现如上所述的面向物联网设备资源友好的特征提取器部署方法。In a fourth aspect, the present invention provides a computer program product comprising a computer program for implementing the resource-friendly feature extractor for IoT devices as described above when run on one or more processors Deployment method.
第五方面,本发明提供一种电子设备,包括:处理器、存储器以及计算机程序;其中,处理器与存储器连接,计算机程序被存储在存储器中,当电子设备运行时,所述处理器执行所述存储器存储的计算机程序,以使电子设备执行实现如上所述的面向物联网设备资源友好的特征提取器部署方法的指令。In a fifth aspect, the present invention provides an electronic device, comprising: a processor, a memory, and a computer program; wherein the processor is connected to the memory, the computer program is stored in the memory, and when the electronic device runs, the processor executes all The computer program stored in the memory to cause the electronic device to execute the instructions for implementing the resource-friendly feature extractor deployment method for IoT devices as described above.
本发明有益效果:减少物联网设备存储资源消耗,提高特征提取器切换效率;通过分析特征提取器的性质和不同容量的特征提取器之间的关系,去除了冗余特征提取器,并以参数共享的方式将非冗余特征提取器嵌套在一起,减少了部署多个特征提取器消耗的存储资源;去除了冗余特征提取器,减少了大量无效的特征提取器切换,提高了特征提取器切换效率。The beneficial effects of the invention are as follows: the consumption of the storage resources of the Internet of Things equipment is reduced, and the switching efficiency of the feature extractor is improved; by analyzing the properties of the feature extractor and the relationship between the feature extractors of different capacities, the redundant feature extractors are removed, and the parameter The shared method nests non-redundant feature extractors together, reducing the storage resources consumed by deploying multiple feature extractors; removing redundant feature extractors, reducing a large number of invalid feature extractor switching, and improving feature extraction Switching efficiency.
本发明附加方面的优点,将在下述的描述部分中更加明显的给出,或通过本发明的实践了解到。Advantages of additional aspects of the present invention will be more apparent in the following description, or will be learned by practice of the present invention.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例所述的面向物联网设备资源友好的特征提取框架示意图。FIG. 1 is a schematic diagram of a resource-friendly feature extraction framework for IoT devices according to an embodiment of the present invention.
具体实施方式Detailed ways
下面详细叙述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below through the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It should also be understood that terms such as those defined in the general dictionary should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件和/或它们的组。It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It should be further understood that the word "comprising" used in the description of the present invention refers to the presence of stated features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, Integers, steps, operations, elements and/or groups thereof.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
为便于理解本发明,下面结合附图以具体实施例对本发明作进一步解释说明,且具体实施例并不构成对本发明实施例的限定。In order to facilitate the understanding of the present invention, the present invention will be further explained and described below with reference to the accompanying drawings with specific embodiments, and the specific embodiments do not constitute limitations to the embodiments of the present invention.
本领域技术人员应该理解,附图只是实施例的示意图,附图中的部件并不一定是实施本发明所必须的。Those skilled in the art should understand that the accompanying drawings are only schematic diagrams of the embodiments, and the components in the accompanying drawings are not necessarily necessary to implement the present invention.
实施例1Example 1
本实施例1提供一种面向物联网设备资源友好的特征提取器部署系统,包括:This embodiment 1 provides a resource-friendly feature extractor deployment system for IoT devices, including:
调取模块,用于调取存储的数据集信息和特征提取器生成算法生成特征提取器;The retrieval module is used to retrieve the stored data set information and the feature extractor generation algorithm to generate the feature extractor;
生成模块,用于在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;A generation module for splitting a feature extractor into multiple non-redundant sub-feature extractors with a single-capacity non-redundant multi-function feature extractor on IoT devices, and dividing these non-redundant sub-feature extractors with parameters Generate a single-capacity non-redundant multi-functional feature extractor in a shared way;
提取模块,用于将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。The extraction module is used to send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for data preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, Then upload the extracted principal component feature data to the edge server.
本实施例1中,利用上述的系统,实现了一种面向物联网设备资源友好的特征提取器部署方法,包括:In this embodiment 1, using the above system, a resource-friendly feature extractor deployment method for IoT devices is implemented, including:
调取存储的数据集信息和特征提取器生成算法生成特征提取器;Call the stored dataset information and feature extractor generation algorithm to generate a feature extractor;
在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;Using a single-capacity non-redundant multi-functional feature extractor on IoT devices to split the feature extractor into multiple non-redundant sub-feature extractors, and use these non-redundant sub-feature extractors to generate a single Capacity non-redundant multifunctional feature extractor;
将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。Send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, and then extract the principal component features of the data. The ingredient feature data is uploaded to the edge server.
实施例2Example 2
本实施例2中,提供一种资源友好的特征提取器部署方法,解决现有技术中存储多个不同容量的特征提取器占用物联网设备大量存储资源的问题。如图1所示,本实施例2所提方法的应用流程为:边缘服务器首先利用特征提取器生成算法,例如主成分特征提取器生成算法(PrincipalComponentAnalysis,PCA)和数据集信息生成特征提取器E,然后运行单容量非冗余多功能特征提取器生成算法生成Emulti。随后边缘服务器将生成的Emulti发送至物联网设备。当物联网设备收集到数据后,首先预处理数据,然后根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器进行进一步处理。本实施例所述的方法可以分为离线阶段和在线阶段。In this embodiment 2, a resource-friendly feature extractor deployment method is provided, which solves the problem that storing multiple feature extractors with different capacities in the prior art occupies a large amount of storage resources of IoT devices. As shown in FIG. 1 , the application process of the method proposed in Embodiment 2 is as follows: the edge server first uses a feature extractor generation algorithm, such as a principal component feature extractor generation algorithm (Principal Component Analysis, PCA) and data set information to generate a feature extractor E , and then run the single-capacity non-redundant multi-function feature extractor generation algorithm to generate E multi . The edge server then sends the generated E multi to the IoT device. After the IoT device collects the data, it first preprocesses the data, then selects a feature extractor to extract the principal component features of the data according to its current available resources, and then uploads the extracted principal component feature data to the edge server for further processing. The method described in this embodiment can be divided into an offline stage and an online stage.
离线阶段:Offline stage:
首先利用边缘服务器存储的数据集信息和特征提取器生成算法(PCA算法)生成特征提取器E。然后,为了适应物联网设备可用资源动态变化的特性,本发明在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器E拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器Emulti。其中,冗余子特征提取器的定义见定义1。First, the feature extractor E is generated by using the data set information stored in the edge server and the feature extractor generation algorithm (PCA algorithm). Then, in order to adapt to the characteristics of the dynamic change of the available resources of the IoT device, the present invention uses a single-capacity non-redundant multi-functional feature extractor on the IoT device to split the feature extractor E into multiple non-redundant sub-feature extractors, And these non-redundant sub-feature extractors are used to generate a single-capacity non-redundant multi-functional feature extractor E multi in the way of parameter sharing. Among them, see Definition 1 for the definition of redundant sub-feature extractor.
定义1(冗余子特征提取器):对于两个子特征提取器SEi和SEj,其中SEi={E1,E2,...,Ei},SEj={E1,E2,...,Ej},i≠j,若子特征提取器SEi和SEj对应的提取精度相同,则SEi或SEj是冗余的。Definition 1 (redundant sub-feature extractors): For two sub-feature extractors S Ei and S Ej , where S Ei ={E 1 ,E 2 ,...,E i },S Ej ={E 1 ,E 2 ,...,E j }, i≠j, if the sub-feature extractors S Ei and S Ej have the same extraction precision, then S Ei or S Ej is redundant.
根据定义1,本实施例中可以确定哪些子特征提取器是冗余的。According to Definition 1, it can be determined in this embodiment which sub-feature extractors are redundant.
此外,本实施例中也定义了去除冗余子特征提取器的方法,见定义2。In addition, a method for removing redundant sub-feature extractors is also defined in this embodiment, see Definition 2.
定义2(去除特征提取器):对于两个子特征提取器SEi和SEj,其中,SEi={E1,E2,...,Ei},SEj={E1,E2,...,Ej},如果i<j,则去除子特征提取器SEj。Definition 2 (removal of feature extractors): For two sub-feature extractors S Ei and S Ej , where S Ei ={E 1 ,E 2 ,...,E i },S Ej ={E 1 ,E 2 ,...,E j }, if i<j, then remove the sub-feature extractor S Ej .
为此,根据定义2去除冗余子特征提取器,然后以参数共享的方式生成单容量多功能特征提取器Emulti。最后,边缘服务器将Emulti发送至物联网设备并部署。To this end, redundant sub-feature extractors are removed according to Definition 2, and then a single-capacity multifunctional feature extractor E multi is generated in a parameter-sharing manner. Finally, the edge server sends the E multi to the IoT device and deploys it.
在线阶段:Online stage:
当物联网设备收集到数据后,首先对数据进行预处理,比如灰度化、维度对齐。然后,物联网设备根据其当前可用资源(CPU资源、存储资源或网络带宽资源)选取合适的子特征提取器提取预处理之后的数据的主成分特征。最后,物联网设备将提取器的特征数据发送至边缘服务器。After the IoT device collects data, it first preprocesses the data, such as grayscale and dimension alignment. Then, the IoT device selects an appropriate sub-feature extractor according to its current available resources (CPU resources, storage resources or network bandwidth resources) to extract the principal component features of the preprocessed data. Finally, the IoT device sends the feature data of the extractor to the edge server.
综上,本实施例2所述的方法,去除了冗余子特征提取器,并以参数共享的方式在终端设备上部署多个非冗余特征提取器,避免物联网设备存储资源的浪费。通过分析特征提取器的组成,定义并去除冗余特征提取器的方法,减少多个特征提取器占用的存储资源和提高特征提取器之间切换的效率。通过参数共享的方式嵌套多个非冗余特征提取器,有效的减少了终端设备存储资源的消耗。To sum up, the method described in Embodiment 2 removes redundant sub-feature extractors, and deploys multiple non-redundant feature extractors on terminal devices in a parameter sharing manner to avoid waste of IoT device storage resources. By analyzing the composition of feature extractors, the method of defining and removing redundant feature extractors reduces the storage resources occupied by multiple feature extractors and improves the efficiency of switching between feature extractors. By nesting multiple non-redundant feature extractors in a parameter sharing manner, the consumption of storage resources of the terminal device is effectively reduced.
实施例3Example 3
本发明实施例3提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质用于存储计算机指令,所述计算机指令被处理器执行时,实现面向物联网设备资源友好的特征提取器部署方法,该方法包括:Embodiment 3 of the present invention provides a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed by a processor, resource-friendly IoT devices are realized. feature extractor deployment method, which includes:
调取存储的数据集信息和特征提取器生成算法生成特征提取器;Call the stored dataset information and feature extractor generation algorithm to generate a feature extractor;
在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;Using a single-capacity non-redundant multi-functional feature extractor on IoT devices to split the feature extractor into multiple non-redundant sub-feature extractors, and use these non-redundant sub-feature extractors to generate a single Capacity non-redundant multifunctional feature extractor;
将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。Send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, and then extract the principal component features of the data. The ingredient feature data is uploaded to the edge server.
实施例4Example 4
本发明实施例4提供一种计算机程序(产品),包括计算机程序,所述计算机程序当在一个或多个处理器上运行时,用于实现面向物联网设备资源友好的特征提取器部署方法,该方法包括:Embodiment 4 of the present invention provides a computer program (product), including a computer program that, when running on one or more processors, is used to implement a resource-friendly feature extractor deployment method for IoT devices, The method includes:
调取存储的数据集信息和特征提取器生成算法生成特征提取器;Call the stored dataset information and feature extractor generation algorithm to generate a feature extractor;
在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;Using a single-capacity non-redundant multi-functional feature extractor on IoT devices to split the feature extractor into multiple non-redundant sub-feature extractors, and use these non-redundant sub-feature extractors to generate a single Capacity non-redundant multifunctional feature extractor;
将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。Send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, and then extract the principal component features of the data. The ingredient feature data is uploaded to the edge server.
实施例5Example 5
本发明实施例5提供一种电子设备,包括:处理器、存储器以及计算机程序;其中,处理器与存储器连接,计算机程序被存储在存储器中,当电子设备运行时,所述处理器执行所述存储器存储的计算机程序,以使电子设备执行实现面向物联网设备资源友好的特征提取器部署方法的指令,该方法包括:Embodiment 5 of the present invention provides an electronic device, including: a processor, a memory, and a computer program; wherein the processor is connected to the memory, the computer program is stored in the memory, and when the electronic device runs, the processor executes the A computer program stored in a memory to cause an electronic device to execute instructions implementing a resource-friendly feature extractor deployment method for IoT devices, the method comprising:
调取存储的数据集信息和特征提取器生成算法生成特征提取器;Call the stored dataset information and feature extractor generation algorithm to generate a feature extractor;
在物联网设备上利用单容量非冗余多功能特征提取器将特征提取器拆分成多个非冗余子特征提取器,并将这些非冗余子特征提取器以参数共享的方式生成单容量非冗余多功能特征提取器;Using a single-capacity non-redundant multi-functional feature extractor on IoT devices to split the feature extractor into multiple non-redundant sub-feature extractors, and use these non-redundant sub-feature extractors to generate a single Capacity non-redundant multifunctional feature extractor;
将生成的单容量多功能特征提取器发送至物联网设备;当物联网设备收集到数据进行预处理数据,根据其当前可用资源选择一个特征提取器提取数据的主成分特征,然后将提取的主成分特征数据上传至边缘服务器。Send the generated single-capacity multi-function feature extractor to the IoT device; when the IoT device collects data for preprocessing, select a feature extractor to extract the principal component features of the data according to its current available resources, and then extract the principal component features of the data. The ingredient feature data is uploaded to the edge server.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing apparatus, where a series of operational steps are performed on the computer or other programmable apparatus to produce a computer-implemented process, whereby the instructions for execution on the computer or other programmable apparatus Steps are provided for implementing the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明公开的技术方案的基础上,本领域技术人员在不需要付出创造性劳动即可做出的各种修改或变形,都应涵盖在本发明的保护范围之内。Although the specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, they do not limit the scope of protection of the present invention. Those skilled in the art should understand that on the basis of the technical solutions disclosed in the present invention, those skilled in the art do not need to pay Various modifications or deformations that can be made by creative work shall be covered within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210821641.8A CN115208755A (en) | 2022-07-13 | 2022-07-13 | Internet of things equipment resource-friendly feature extractor deployment method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210821641.8A CN115208755A (en) | 2022-07-13 | 2022-07-13 | Internet of things equipment resource-friendly feature extractor deployment method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115208755A true CN115208755A (en) | 2022-10-18 |
Family
ID=83581063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210821641.8A Pending CN115208755A (en) | 2022-07-13 | 2022-07-13 | Internet of things equipment resource-friendly feature extractor deployment method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115208755A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157118A (en) * | 2008-12-26 | 2010-07-15 | Denso It Laboratory Inc | Pattern identification device and learning method for the same and computer program |
US20180025092A1 (en) * | 2016-07-21 | 2018-01-25 | International Business Machines Corporation | Modular memoization, tracking and train-data management of feature extraction |
CN111814977A (en) * | 2020-08-28 | 2020-10-23 | 支付宝(杭州)信息技术有限公司 | Method and device for training event prediction model |
CN113632094A (en) * | 2019-02-22 | 2021-11-09 | 谷歌有限责任公司 | Memory-directed video object detection |
CN113662561A (en) * | 2021-08-19 | 2021-11-19 | 西交利物浦大学 | EEG feature extraction method and device based on sub-band cascade co-spatial pattern |
-
2022
- 2022-07-13 CN CN202210821641.8A patent/CN115208755A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157118A (en) * | 2008-12-26 | 2010-07-15 | Denso It Laboratory Inc | Pattern identification device and learning method for the same and computer program |
US20180025092A1 (en) * | 2016-07-21 | 2018-01-25 | International Business Machines Corporation | Modular memoization, tracking and train-data management of feature extraction |
CN113632094A (en) * | 2019-02-22 | 2021-11-09 | 谷歌有限责任公司 | Memory-directed video object detection |
CN111814977A (en) * | 2020-08-28 | 2020-10-23 | 支付宝(杭州)信息技术有限公司 | Method and device for training event prediction model |
CN113662561A (en) * | 2021-08-19 | 2021-11-19 | 西交利物浦大学 | EEG feature extraction method and device based on sub-band cascade co-spatial pattern |
Non-Patent Citations (2)
Title |
---|
CHUNTAO DING 等: "Edge/Cloud-Assisted Feature Extraction in IoT Devices", IEEE INTERNET OF THINGS JOURNAL, pages 1 - 4 * |
JI WANG 等: "A Utility-Aware Approach to Redundant Data Upload in Cooperative Mobile Cloud", 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3477556A1 (en) | Method and apparatus for performing operations in convolutional neural network | |
WO2022105440A1 (en) | Hybrid quantum-classical cloud platform and task execution method | |
CN110321448B (en) | Image retrieval method, device and storage medium | |
CN102521218B (en) | File combining method and file combining device | |
CN113300881B (en) | 5G network-based scheduling method, device, equipment and storage medium | |
CN111131379A (en) | Distributed flow acquisition system and edge calculation method | |
CN104794194A (en) | Distributed heterogeneous parallel computing system facing large-scale multimedia retrieval | |
CN103310460A (en) | Image characteristic extraction method and system | |
CN104935951B (en) | One kind being based on distributed video transcoding method | |
CN114048006B (en) | Virtual machine dynamic migration method, device and storage medium | |
CN114416352A (en) | Computing resource allocation method and device, electronic equipment and storage medium | |
CN112231108A (en) | Task processing method, device, computer-readable storage medium, and server | |
CN109951320A (en) | An extensible multi-level monitoring framework for cloud platform and its monitoring method | |
CN116227599A (en) | An optimization method, device, electronic equipment and storage medium for a reasoning model | |
CN117675799A (en) | File transmission method and device, electronic equipment and storage medium | |
EP4012573A1 (en) | Graph reconstruction method and apparatus | |
CN114020214B (en) | Storage cluster expansion method and device, electronic equipment and readable storage medium | |
CN115208755A (en) | Internet of things equipment resource-friendly feature extractor deployment method and system | |
CN112527450B (en) | Super-fusion self-adaptive method, terminal and system based on different resources | |
CN118689397A (en) | A method and system for processing massive data | |
CN110765082B (en) | Hadoop file processing method and device, storage medium and server | |
JP2018132948A (en) | Loading program, loading method, and information processing device | |
CN111061719A (en) | Data collection method, device, equipment and storage medium | |
CN107203554A (en) | A kind of distributed search method and device | |
CN110245022A (en) | Parallel Skyline processing method and system for massive data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221018 |
|
RJ01 | Rejection of invention patent application after publication |