CN115208274A - Motor controller - Google Patents
Motor controller Download PDFInfo
- Publication number
- CN115208274A CN115208274A CN202110377273.8A CN202110377273A CN115208274A CN 115208274 A CN115208274 A CN 115208274A CN 202110377273 A CN202110377273 A CN 202110377273A CN 115208274 A CN115208274 A CN 115208274A
- Authority
- CN
- China
- Prior art keywords
- motor controller
- waveform
- node
- phase
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007704 transition Effects 0.000 claims abstract 2
- 238000001514 detection method Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/18—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明关于一种马达控制器,特别是关于一种可应用于无传感器三相马达的马达控制器。The present invention relates to a motor controller, and more particularly, to a motor controller applicable to a sensorless three-phase motor.
背景技术Background technique
传统上三相马达的驱动方式可分为两种。一种是通过霍尔传感器以切换相位进而驱动三相马达运转。另一种则是无需霍尔传感器而驱动三相马达运转。由于霍尔传感器容易受外界环境的影响而造成感测准确度下降,且设置霍尔传感器会增加系统的体积与成本,因而无传感器的驱动方法便被提出以解决上述的问题。Traditionally, three-phase motors are driven in two ways. One is through the Hall sensor to switch the phase and then drive the three-phase motor to run. The other is to drive a three-phase motor without Hall sensors. Since the Hall sensor is easily affected by the external environment, the sensing accuracy is reduced, and the installation of the Hall sensor will increase the volume and cost of the system, so a sensorless driving method is proposed to solve the above problems.
图1为现有的无传感器的驱动方法的时序图。脉宽调变信号Vpw具有一工作周期(Duty Cycle)。一般来说,马达控制器通过调整工作周期以控制马达转速。在无传感器的驱动方法下,马达控制器会通过比较浮接相脚位电压Vf与参考电压Vr以侦测浮接相的反电动势进而切换相位。马达控制器可利用脉宽调变信号Vpw的导通时间区间以侦测换相点。由于浮接相脚位电压Vf会随着脉宽调变信号Vpw而变化,所以必须搭配脉宽调变信号Vpw的时序才能侦测到正确的换相点。如图1所示,马达控制器于脉宽调变信号Vpw的下降边缘的前侦测换相点。这是因为在脉宽调变信号Vpw的上升边缘之后,浮接相脚位电压Vf会由于切换噪声而不稳定,所以选择于脉宽调变信号Vpw的下降边缘之前侦测换相点,如此可使得浮接相脚位电压Vf处于一最稳定状态。然而,当马达控制器利用脉宽调变信号Vpw的导通时间区间以侦测换相点时,如果导通时间区间太小,会使得浮接相脚位电压Vf没有足够时间稳定下来,这样会难以侦测浮接相的反电动势。FIG. 1 is a timing chart of a conventional sensorless driving method. The PWM signal Vpw has a duty cycle. Generally, the motor controller controls the motor speed by adjusting the duty cycle. In the sensorless driving method, the motor controller will detect the back EMF of the floating phase by comparing the floating phase pin voltage Vf with the reference voltage Vr to switch phases. The motor controller can use the on-time interval of the PWM signal Vpw to detect the commutation point. Since the floating-phase pin voltage Vf changes with the PWM signal Vpw, the correct commutation point can be detected only by matching the timing of the PWM signal Vpw. As shown in FIG. 1 , the motor controller detects the commutation point before the falling edge of the PWM signal Vpw. This is because after the rising edge of the PWM signal Vpw, the floating-phase pin voltage Vf will be unstable due to switching noise, so the commutation point is detected before the falling edge of the PWM signal Vpw, so The floating phase pin voltage Vf can be in a most stable state. However, when the motor controller uses the on-time interval of the PWM signal Vpw to detect the commutation point, if the on-time interval is too small, the floating-phase pin voltage Vf will not have enough time to stabilize. It will be difficult to detect the back EMF of the floating phase.
发明内容SUMMARY OF THE INVENTION
有鉴于前述问题,本发明的目的在于提供一种易于侦测一浮接相的一反电动势的马达控制器。In view of the aforementioned problems, an object of the present invention is to provide a motor controller that can easily detect a back electromotive force of a floating phase.
依据本发明提供该马达控制器。该马达控制器用以驱动一三相马达,其中该三相马达具有一第一线圈、一第二线圈以及一第三线圈。该马达控制器具有一开关电路、一驱动电路以及一脉宽调变电路。该开关电路具有一第一晶体管、一第二晶体管、一第三晶体管、一第四晶体管、一第五晶体管、一第六晶体管、一第一端点、一第二端点以及一第三端点,其中该开关电路耦合至该三相马达以驱动该三相马达。该第一线圈的一端点耦合至该第一端点。该第二线圈的一端点耦合至该第二端点。该第三线圈的一端点耦合至该第三端点。此外,该第一线圈的另一端点耦合至该第二线圈的另一端点与该第三线圈的另一端点。也就是说,该第一线圈、该第二线圈以及该第三线圈以一Y字型的方式配置。该驱动电路产生一第一控制信号、一第二控制信号、一第三控制信号、一第四控制信号、一第五控制信号以及一第六控制信号,用以分别控制该第一晶体管、该第二晶体管、该第三晶体管、该第四晶体管、该第五晶体管以及该第六晶体管的导通情形。该脉宽调变电路接收一第一脉宽调变信号以产生一第二脉宽调变信号至该驱动电路。该马达控制器根据该第一脉宽调变信号以调整该三相马达的转速。The motor controller is provided according to the present invention. The motor controller is used for driving a three-phase motor, wherein the three-phase motor has a first coil, a second coil and a third coil. The motor controller has a switch circuit, a drive circuit and a pulse width modulation circuit. The switch circuit has a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a first terminal, a second terminal and a third terminal, Wherein the switch circuit is coupled to the three-phase motor to drive the three-phase motor. An end of the first coil is coupled to the first end. One end of the second coil is coupled to the second end. One end of the third coil is coupled to the third end. In addition, the other end of the first coil is coupled to the other end of the second coil and the other end of the third coil. That is to say, the first coil, the second coil and the third coil are arranged in a Y-shape. The driving circuit generates a first control signal, a second control signal, a third control signal, a fourth control signal, a fifth control signal and a sixth control signal for controlling the first transistor, the Conduction of the second transistor, the third transistor, the fourth transistor, the fifth transistor and the sixth transistor. The pulse width modulation circuit receives a first pulse width modulation signal to generate a second pulse width modulation signal to the driving circuit. The motor controller adjusts the rotational speed of the three-phase motor according to the first PWM signal.
该驱动电路可分别地产生一第一电压向量、一第二电压向量、一第三电压向量、一第四电压向量、一第五电压向量以及一第六电压向量至该开关电路,用以导通该第一线圈、该第二线圈以及该第三线圈其中之二。当该驱动电路产生该第一电压向量至该开关电路,该驱动电路会导通该第一晶体管与该第四晶体管,且不导通该第二晶体管、该第三晶体管、该第五晶体管以及该第六晶体管,用以依序地导通该第一线圈与该第二线圈。此时该浮接相形成于该第三线圈。当该驱动电路产生该第二电压向量至该开关电路,该驱动电路会导通该第一晶体管与该第六晶体管,且不导通该第二晶体管、该第三晶体管、该第四晶体管以及该第五晶体管,用以依序地导通该第一线圈与该第三线圈。此时该浮接相形成于该第二线圈。当该驱动电路产生该第三电压向量至该开关电路,该驱动电路会导通该第三晶体管与该第六晶体管,且不导通该第一晶体管、该第二晶体管、该第四晶体管以及该第五晶体管,用以依序地导通该第二线圈与该第三线圈。此时该浮接相形成于该第一线圈。当该驱动电路产生该第四电压向量至该开关电路,该驱动电路会导通该第二晶体管与该第三晶体管,且不导通该第一晶体管、该第四晶体管、该第五晶体管以及该第六晶体管,用以依序地导通该第二线圈与该第一线圈。此时该浮接相形成于该第三线圈。当该驱动电路产生该第五电压向量至该开关电路,该驱动电路会导通该第二晶体管与该第五晶体管,且不导通该第一晶体管、该第三晶体管、该第四晶体管以及该第六晶体管,用以依序地导通该第三线圈与该第一线圈。此时该浮接相形成于该第二线圈。当该驱动电路产生该第六电压向量至该开关电路,该驱动电路会导通该第四晶体管与该第五晶体管,且不导通该第一晶体管、该第二晶体管、该第三晶体管以及该第六晶体管,用以依序地导通该第三线圈与该第二线圈。此时该浮接相形成于该第一线圈。因此,当该驱动电路根据该第一电压向量、该第二电压向量、该第三电压向量、该第四电压向量、该第五电压向量以及该第六电压向量的顺序以切换相位时,将可带动该三相马达正转一圈。当该驱动电路根据该第六电压向量、该第五电压向量、该第四电压向量、该第三电压向量、该第二电压向量以及该第一电压向量的顺序以切换相位时,将可带动该三相马达反转一圈。The driving circuit can respectively generate a first voltage vector, a second voltage vector, a third voltage vector, a fourth voltage vector, a fifth voltage vector and a sixth voltage vector to the switch circuit for driving Connect two of the first coil, the second coil and the third coil. When the drive circuit generates the first voltage vector to the switch circuit, the drive circuit turns on the first transistor and the fourth transistor, and turns off the second transistor, the third transistor, the fifth transistor and The sixth transistor is used for sequentially turning on the first coil and the second coil. At this time, the floating phase is formed on the third coil. When the driving circuit generates the second voltage vector to the switching circuit, the driving circuit turns on the first transistor and the sixth transistor, and turns off the second transistor, the third transistor, the fourth transistor and The fifth transistor is used for sequentially turning on the first coil and the third coil. At this time, the floating phase is formed on the second coil. When the drive circuit generates the third voltage vector to the switch circuit, the drive circuit turns on the third transistor and the sixth transistor, and turns off the first transistor, the second transistor, the fourth transistor and The fifth transistor is used for sequentially turning on the second coil and the third coil. At this time, the floating phase is formed on the first coil. When the drive circuit generates the fourth voltage vector to the switch circuit, the drive circuit turns on the second transistor and the third transistor, and turns off the first transistor, the fourth transistor, the fifth transistor and The sixth transistor is used for sequentially turning on the second coil and the first coil. At this time, the floating phase is formed on the third coil. When the drive circuit generates the fifth voltage vector to the switch circuit, the drive circuit turns on the second transistor and the fifth transistor, and turns off the first transistor, the third transistor, the fourth transistor and The sixth transistor is used for sequentially turning on the third coil and the first coil. At this time, the floating phase is formed on the second coil. When the driving circuit generates the sixth voltage vector to the switching circuit, the driving circuit turns on the fourth transistor and the fifth transistor, and turns off the first transistor, the second transistor, the third transistor and the The sixth transistor is used for sequentially turning on the third coil and the second coil. At this time, the floating phase is formed on the first coil. Therefore, when the driving circuit switches phases according to the order of the first voltage vector, the second voltage vector, the third voltage vector, the fourth voltage vector, the fifth voltage vector and the sixth voltage vector, the It can drive the three-phase motor to rotate forward for one circle. When the driving circuit switches phases according to the sequence of the sixth voltage vector, the fifth voltage vector, the fourth voltage vector, the third voltage vector, the second voltage vector and the first voltage vector, it will drive the The three-phase motor reverses one revolution.
为了降低该三相马达的电流涟波,该马达控制器可利用一高频脉宽调变波形以驱动该三相马达。当该马达控制器启动一浮接相以侦测一换相点时,该马达控制器可切换至一低频脉宽调变波形以驱动该三相马达,并利用该低频脉宽调变波形的一导通时间区间去侦测该浮接相的一反电动势。也就是说,当该马达控制器利用该导通时间区间去侦测该换相点时,可避免该导通时间区间太小,因而使得侦测上变得容易。根据本发明的一实施例,该马达控制器利用一第一脉宽调变波形与一第二脉宽调变波形以驱动该三相马达,其中该第一脉宽调变波形与该第二脉宽调变波形具有不同的频率。该马达控制器于一侦测时间区间利用该第二脉宽调变波形以侦测一换相点,其中该第一脉宽调变波形的频率大于该第二脉宽调变波形的频率。该马达控制器于该侦测时间区间外的一时间区间利用该第一脉宽调变波形以驱动该三相马达。设计者可设计一脉宽调变信号使其具有该第一脉宽调变波形与该第二脉宽调变波形,其中该脉宽调变信号可耦合至该驱动电路以调整该三相马达的转速。此外,该马达控制器可通过侦测一浮接相的一反电动势以决定是否切换相位。该马达控制器可利用该第二脉宽调变波形的一导通时间区间以侦测该浮接相的该反电动势。In order to reduce the current ripple of the three-phase motor, the motor controller can use a high frequency pulse width modulation waveform to drive the three-phase motor. When the motor controller activates a floating phase to detect a commutation point, the motor controller can switch to a low frequency PWM waveform to drive the three-phase motor, and use the low frequency PWM waveform to drive the three-phase motor. An on-time interval is used to detect a back electromotive force of the floating phase. That is to say, when the motor controller uses the on-time interval to detect the commutation point, the on-time interval can be prevented from being too small, thus making the detection easier. According to an embodiment of the present invention, the motor controller uses a first PWM waveform and a second PWM waveform to drive the three-phase motor, wherein the first PWM waveform and the second PWM waveform are used to drive the three-phase motor. PWM waveforms have different frequencies. The motor controller uses the second PWM waveform to detect a commutation point in a detection time interval, wherein the frequency of the first PWM waveform is greater than the frequency of the second PWM waveform. The motor controller uses the first PWM waveform to drive the three-phase motor in a time interval outside the detection time interval. The designer can design a PWM signal to have the first PWM waveform and the second PWM waveform, wherein the PWM signal can be coupled to the driving circuit to adjust the three-phase motor speed. In addition, the motor controller can determine whether to switch phases by detecting a back electromotive force of a floating phase. The motor controller can detect the back EMF of the floating phase by using an on-time interval of the second PWM waveform.
附图说明Description of drawings
图1为现有的无传感器的驱动方法的时序图。FIG. 1 is a timing chart of a conventional sensorless driving method.
图2为本发明一实施例的马达控制器的示意图。FIG. 2 is a schematic diagram of a motor controller according to an embodiment of the present invention.
图3为本发明一实施例的时序图。FIG. 3 is a timing diagram of an embodiment of the present invention.
附图标记说明:10-马达控制器;VCC-端点;GND-端点;100-开关电路;110-驱动电路;120-脉宽调变电路;CMD-第一脉宽调变信号;Vp-第二脉宽调变信号;101-第一晶体管;102-第二晶体管;103-第三晶体管;104-第四晶体管;105-第五晶体管;106-第六晶体管;U-第一端点;V-第二端点;W-第三端点;C1-第一控制信号;C2-第二控制信号;C3-第三控制信号;C4-第四控制信号;C5-第五控制信号;C6-第六控制信号;L1-第一线圈;L2-第二线圈;L3-第三线圈;M-三相马达;Vpw-脉宽调变信号;Vr-参考电压;Vf-浮接相脚位电压;Su-第一驱动信号;Sv-第二驱动信号;Sw-第三驱动信号;Td-侦测时间区间。Description of reference numerals: 10-motor controller; VCC-terminal; GND-terminal; 100-switch circuit; 110-drive circuit; 120-pulse width modulation circuit; CMD-first pulse width modulation signal; Vp-th 2 PWM signal; 101-first transistor; 102-second transistor; 103-third transistor; 104-fourth transistor; 105-fifth transistor; 106-sixth transistor; U-first terminal; V-second endpoint; W-third endpoint; C1-first control signal; C2-second control signal; C3-third control signal; C4-fourth control signal; C5-fifth control signal; C6-th Six control signals; L1-first coil; L2-second coil; L3-third coil; M-three-phase motor; Vpw-pulse width modulation signal; Vr-reference voltage; Vf-floating phase pin voltage; Su-first driving signal; Sv-second driving signal; Sw-third driving signal; Td-detection time interval.
具体实施方式Detailed ways
下文中的说明将使本发明的目的、特征、与优点更明显。兹将参考图式详细说明依据本发明的较佳实施例。The objects, features, and advantages of the present invention will become more apparent from the following description. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
图2为本发明一实施例的马达控制器10的示意图。马达控制器10用以驱动一三相马达M,其中三相马达M具有一第一线圈L1、一第二线圈L2以及一第三线圈L3。马达控制器10具有一开关电路100、一驱动电路110以及一脉宽调变电路120。开关电路100具有一第一晶体管101、一第二晶体管102、一第三晶体管103、一第四晶体管104、一第五晶体管105、一第六晶体管106、一第一端点U、一第二端点V以及一第三端点W,其中开关电路100耦合至三相马达M以驱动三相马达M。第一端点U、第二端点V以及第三端点W分别提供一第一驱动信号Su、一第二驱动信号Sv以及一第三驱动信号Sw以驱动三相马达M。第一晶体管101耦合至一端点VCC与第一端点U而第二晶体管102耦合至第一端点U与一端点GND。第三晶体管103耦合至端点VCC与第二端点V而第四晶体管104耦合至第二端点V与端点GND。第五晶体管105耦合至端点VCC与第三端点W而第六晶体管106耦合至第三端点W与端点GND。第一晶体管101、第三晶体管103以及第五晶体管105可分别为一P型金氧半晶体管。第二晶体管102、第四晶体管104以及第六晶体管106可分别为一N型金氧半晶体管。FIG. 2 is a schematic diagram of the
第一线圈L1的一端点耦合至第一端点U。第二线圈L2的一端点耦合至第二端点V。第三线圈L3的一端点耦合至第三端点W。此外,第一线圈L1的另一端点耦合至第二线圈L2的另一端点与第三线圈L3的另一端点。也就是说,第一线圈L1、第二线圈L2以及第三线圈L3以一Y字型的方式配置。驱动电路110产生一第一控制信号C1、一第二控制信号C2、一第三控制信号C3、一第四控制信号C4、一第五控制信号C5以及一第六控制信号C6,用以分别控制第一晶体管101、第二晶体管102、第三晶体管103、第四晶体管104、第五晶体管105以及第六晶体管106的导通情形。脉宽调变电路120接收一第一脉宽调变信号CMD以产生一第二脉宽调变信号Vp至驱动电路110。马达控制器10根据第一脉宽调变信号CMD以调整三相马达M的转速。One end of the first coil L1 is coupled to the first end U. One end of the second coil L2 is coupled to the second end V. One end of the third coil L3 is coupled to the third end W. In addition, the other end of the first coil L1 is coupled to the other end of the second coil L2 and the other end of the third coil L3. That is, the first coil L1, the second coil L2 and the third coil L3 are arranged in a Y-shape. The driving
驱动电路110可分别地产生一第一电压向量、一第二电压向量、一第三电压向量、一第四电压向量、一第五电压向量以及一第六电压向量至开关电路100,用以导通第一线圈L1、第二线圈L2以及第三线圈L3其中之二。当驱动电路110产生第一电压向量至开关电路100,驱动电路110会导通第一晶体管101与第四晶体管104,且不导通第二晶体管102、第三晶体管103、第五晶体管105以及第六晶体管106,用以依序地导通第一线圈L1与第二线圈L2。此时浮接相形成于第三线圈L3。当驱动电路110产生第二电压向量至开关电路100,驱动电路110会导通第一晶体管101与第六晶体管106,且不导通第二晶体管102、第三晶体管103、第四晶体管104以及第五晶体管105,用以依序地导通第一线圈L1与第三线圈L3。此时浮接相形成于第二线圈L2。当驱动电路110产生第三电压向量至开关电路100,驱动电路110会导通第三晶体管103与第六晶体管106,且不导通第一晶体管101、第二晶体管102、第四晶体管104以及第五晶体管105,用以依序地导通第二线圈L2与第三线圈L3。此时浮接相形成于第一线圈L1。当驱动电路110产生第四电压向量至开关电路100,驱动电路110会导通第二晶体管102与第三晶体管103,且不导通第一晶体管101、第四晶体管104、第五晶体管105以及第六晶体管106,用以依序地导通第二线圈L2与第一线圈L1。此时浮接相形成于第三线圈L3。当驱动电路110产生第五电压向量至开关电路100,驱动电路110会导通第二晶体管102与第五晶体管105,且不导通第一晶体管101、第三晶体管103、第四晶体管104以及第六晶体管106,用以依序地导通第三线圈L3与第一线圈L1。此时浮接相形成于第二线圈L2。当驱动电路110产生第六电压向量至开关电路100,驱动电路110会导通第四晶体管104与第五晶体管105,且不导通第一晶体管101、第二晶体管102、第三晶体管103以及第六晶体管106,用以依序地导通第三线圈L3与第二线圈L2。此时浮接相形成于第一线圈L1。因此,当驱动电路110根据第一电压向量、第二电压向量、第三电压向量、第四电压向量、第五电压向量以及第六电压向量的顺序以切换相位时,将可带动三相马达M正转一圈。当驱动电路110根据第六电压向量、第五电压向量、第四电压向量、第三电压向量、第二电压向量以及第一电压向量的顺序以切换相位时,将可带动三相马达M反转一圈。The driving
图3为本发明一实施例的时序图。第一驱动信号Su、第二驱动信号Sv以及第三驱动信号Sw的波形皆相似于一M型波形,但相位角却是两两相差120度。第二驱动信号Sv落后第一驱动信号Su一120度的相位角。第三驱动信号Sw落后第二驱动信号Sv一120度的相位角。举例来说,当第一驱动信号Su与第二驱动信号Sv相减时,则可得到一相似于一正弦波的波形。因此,流经第一线圈L1与第二线圈L2的电流波形也会相似于该正弦波。FIG. 3 is a timing diagram of an embodiment of the present invention. The waveforms of the first driving signal Su, the second driving signal Sv and the third driving signal Sw are all similar to an M-shaped waveform, but the phase angles differ by 120 degrees. The second driving signal Sv lags the first driving signal Su by a phase angle of 120 degrees. The third driving signal Sw lags behind the second driving signal Sv by a phase angle of 120 degrees. For example, when the first driving signal Su and the second driving signal Sv are subtracted, a waveform similar to a sine wave can be obtained. Therefore, the current waveforms flowing through the first coil L1 and the second coil L2 are also similar to the sine wave.
为了降低三相马达M的电流涟波,马达控制器10可利用一高频脉宽调变波形以驱动三相马达M。当马达控制器10启动一浮接相以侦测一换相点时,马达控制器10可切换至一低频脉宽调变波形以驱动三相马达M,并利用低频脉宽调变波形的一导通时间区间去侦测浮接相的一反电动势。也就是说,当马达控制器10利用导通时间区间去侦测换相点时,可避免导通时间区间太小,因而使得侦测上变得容易。如图3所示,当马达控制器10于一侦测时间区间Td侦测反电动势时,可避免导通时间区间太小,因而提高侦测的成功率。根据本发明的一实施例,马达控制器10利用一第一脉宽调变波形与一第二脉宽调变波形以驱动三相马达M,其中第一脉宽调变波形与第二脉宽调变波形具有不同的频率。马达控制器10于侦测时间区间Td利用第二脉宽调变波形以侦测换相点,其中第一脉宽调变波形的频率大于第二脉宽调变波形的频率。马达控制器10于侦测时间区间Td外的时间区间利用第一脉宽调变波形以驱动三相马达M。设计者可设计一脉宽调变信号使其具有第一脉宽调变波形与第二脉宽调变波形,其中脉宽调变信号可耦合至驱动电路110以调整三相马达M的转速。此外,马达控制器10可通过侦测浮接相的反电动势以决定是否切换相位。马达控制器10可利用第二脉宽调变波形的一导通时间区间以侦测浮接相的反电动势。In order to reduce the current ripple of the three-phase motor M, the
具体而言,第二脉宽调变信号Vp可为一多频信号。当马达控制器10运作于一非浮接相模式时,第二脉宽调变信号Vp可具有一第一频率与第一脉宽调变波形以降低三相马达M的电流涟波。当马达控制器10运作于一浮接相模式时,第二脉宽调变信号Vp可具有一第二频率与第二脉宽调变波形以提高侦测换相点的成功率,其中第一频率大于第二频率。马达控制器10可通过侦测浮接相的反电动势以决定是否切换相位。当马达控制器10利用第二脉宽调变信号Vp的导通时间区间以侦测换相点时,可避免导通时间区间太小,因而使得侦测上变得容易。Specifically, the second PWM signal Vp may be a multi-frequency signal. When the
虽然本发明业已通过较佳实施例作为例示加以说明,应了解者为:本发明不限于此被揭露的实施例。相反地,本发明意欲涵盖对于熟习此项技艺的人士而言明显的各种修改与相似配置。因此,申请专利范围应根据最广的诠释,以包含所有此类修改与相似配置。While the present invention has been described by way of illustration of the preferred embodiments, it should be understood that the invention is not limited to the disclosed embodiments. To the contrary, the present invention is intended to cover various modifications and similar arrangements apparent to those skilled in the art. Accordingly, the scope of the patent application should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110377273.8A CN115208274A (en) | 2021-04-08 | 2021-04-08 | Motor controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110377273.8A CN115208274A (en) | 2021-04-08 | 2021-04-08 | Motor controller |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115208274A true CN115208274A (en) | 2022-10-18 |
Family
ID=83571426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110377273.8A Pending CN115208274A (en) | 2021-04-08 | 2021-04-08 | Motor controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115208274A (en) |
-
2021
- 2021-04-08 CN CN202110377273.8A patent/CN115208274A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI699959B (en) | Motor driving device and method | |
US8040090B2 (en) | Brushless motor controller and brushless motor | |
CN109905060B (en) | Semiconductor devices, motor drive systems, and motor control programs | |
KR100288770B1 (en) | Rectifier Circuit for Sensorless Three-Phase Bieldi Motors | |
US20080112695A1 (en) | Motor drive apparatus and method | |
CN112448623B (en) | Motor drive circuit and method | |
US20040108827A1 (en) | Motor driving circuit | |
JPH11122979A (en) | Sensorless three-phase pldc motor drive circuit | |
TWI749948B (en) | Motor controller | |
US7235941B2 (en) | Phase commutation method of brushless direct current motor | |
TW202247591A (en) | Motor controller | |
TWI764663B (en) | Motor controller | |
CN110611464B (en) | Rotor commutation control system and method for brushless direct current motor | |
CN115208274A (en) | Motor controller | |
TWI778454B (en) | Motor controller | |
TWI751086B (en) | Motor controller | |
CN114553067A (en) | Motor controller | |
US11349426B1 (en) | Motor controller | |
CN210297582U (en) | Rotor phase-change control system for brushless direct current motor | |
JPH10234198A (en) | Device for drive brushless motor | |
US11563397B2 (en) | Motor controller | |
KR100308005B1 (en) | Position sensing device of sensorless and brushless direct current(bldc) motor without sensor | |
TWI818488B (en) | Motor controller | |
US11515814B2 (en) | Motor drive control device and method for controlling the same | |
JPH01122388A (en) | Sensorless brushless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |