CN115200976A - An adjustable gas-liquid-solid three-phase flow erosion wear test device - Google Patents
An adjustable gas-liquid-solid three-phase flow erosion wear test device Download PDFInfo
- Publication number
- CN115200976A CN115200976A CN202210826688.3A CN202210826688A CN115200976A CN 115200976 A CN115200976 A CN 115200976A CN 202210826688 A CN202210826688 A CN 202210826688A CN 115200976 A CN115200976 A CN 115200976A
- Authority
- CN
- China
- Prior art keywords
- erosion
- liquid
- stainless steel
- test
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003628 erosive effect Effects 0.000 title claims abstract description 121
- 238000012360 testing method Methods 0.000 title claims abstract description 86
- 239000007787 solid Substances 0.000 title claims abstract description 24
- 239000004576 sand Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 37
- 239000012071 phase Substances 0.000 claims abstract description 28
- 239000007791 liquid phase Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 239000007790 solid phase Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 49
- 239000010935 stainless steel Substances 0.000 claims description 49
- 238000003860 storage Methods 0.000 claims description 16
- 239000007921 spray Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 230000004580 weight loss Effects 0.000 claims description 11
- 238000003384 imaging method Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- 238000012876 topography Methods 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 2
- 230000001066 destructive effect Effects 0.000 claims description 2
- 239000004570 mortar (masonry) Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000004064 recycling Methods 0.000 claims description 2
- 239000008247 solid mixture Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- -1 flow parameters Substances 0.000 claims 1
- 238000003754 machining Methods 0.000 claims 1
- 238000011160 research Methods 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 238000012795 verification Methods 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/56—Investigating resistance to wear or abrasion
- G01N3/565—Investigating resistance to wear or abrasion of granular or particulate material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/56—Investigating resistance to wear or abrasion
- G01N3/567—Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
技术领域technical field
本发明涉及管道冲蚀技术领域,特别涉及一种可调式气液固三相流冲蚀磨损试验装置。The invention relates to the technical field of pipeline erosion, in particular to an adjustable gas-liquid-solid three-phase flow erosion and wear test device.
背景技术Background technique
冲蚀是指金属表面与流体介质间由于高速相对运动而引起的金属磨损现象,是管道破坏和设备失效的重要原因。在长输管线中冲蚀破坏主要发生在弯头、三通等管件,尤其在迎流壁面处极易发生磨损失效,不仅致使管道壁厚减薄,降低使用年限,甚至会造成钻孔裂缝、承压能力降低引发油气资源泄漏等恶性事故。此外石油勘探中磨料射流破岩割缝钻进时,固相磨料在高压流体携带下会对管柱内壁造成较严重的冲蚀作用,随着脉冲射流破岩技术的发展和广泛应用,气液两相流的冲蚀特性和磨损演变规律也是国内外冲蚀领域研究重点。Erosion refers to the phenomenon of metal wear caused by high-speed relative motion between the metal surface and the fluid medium, and is an important cause of pipeline damage and equipment failure. In long-distance pipelines, erosion damage mainly occurs in elbows, tees and other pipe fittings, especially at the upstream wall surface, which is prone to wear failure, which not only reduces the thickness of the pipe wall, reduces the service life, but also causes drilling cracks, The reduction of pressure bearing capacity leads to vicious accidents such as oil and gas resource leakage. In addition, when abrasive jets are used for rock-breaking and slot drilling in oil exploration, the solid phase abrasives carried by high-pressure fluid will cause serious erosion to the inner wall of the pipe string. With the development and wide application of pulsed jet rock-breaking technology, gas-liquid The erosion characteristics and wear evolution law of two-phase flow are also the focus of research in the field of erosion at home and abroad.
目前大多冲蚀磨损试验装置仅提供单一管流或喷射冲蚀工况,循环浆料采用混合收集装置,砂粒浓度不易调节,仅可以考虑冲击速度、颗粒浓度、靶材硬度等有限变量,不能模拟实现气固、固液及气液固等多种介质耦合工况。At present, most of the erosion wear test devices only provide a single pipe flow or jet erosion condition. The circulating slurry adopts a mixed collection device, and the sand concentration is not easy to adjust. Only limited variables such as impact velocity, particle concentration, and target hardness can be considered, which cannot be simulated. Realize various medium coupling conditions such as gas-solid, solid-liquid and gas-liquid-solid.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明的目的在于提供一种可调式气液固三相流冲蚀磨损试验装置,该装置采用喷射式和管流式相结合的方式,可用于模拟管流式和喷射式工况下冲蚀磨损,解决了传统试验室相似试验研究少,测试起来不方便不准确的问题,本发明可以满足试验室当前在管流式和喷射式冲蚀磨损方面的多介质耦合冲蚀研究需求,通过节流器和弹性砂袋实现固液分离,提高砂料分散性和均匀性,本发明可以同时进行冲蚀失重试验及冲蚀形貌研究,减少试验周期,适用于对各种影响因素下材料耐磨性能测试和冲蚀磨损规律的研究,为多相流冲蚀特性与磨损演变规律提供实物验证途径和科学理论依据。In order to overcome the above-mentioned deficiencies of the prior art, the purpose of the present invention is to provide an adjustable gas-liquid-solid three-phase flow erosion wear test device, which adopts a combination of jet type and pipe flow, and can be used to simulate pipe flow It solves the problems of few similar tests in traditional laboratories, inconvenient and inaccurate testing, and the present invention can meet the current requirements of the laboratory in tube-flow and jet-type erosion and wear. According to the research requirements of medium coupling erosion, the solid-liquid separation is realized through the restrictor and the elastic sand bag, and the dispersion and uniformity of the sand material are improved. For the study of wear resistance test and erosion wear law of materials under various influencing factors, it provides physical verification methods and scientific theoretical basis for the erosion characteristics and wear evolution law of multiphase flow.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种可调式气液固三相流冲蚀磨损试验装置,包括气流控制模块、出砂模块、供液模块、冲蚀试验模块和数据采集模块;An adjustable gas-liquid-solid three-phase flow erosion wear test device, comprising an air flow control module, a sand production module, a liquid supply module, an erosion test module and a data acquisition module;
所述气流控制模块为试验提供稳定可控的气相;The airflow control module provides a stable and controllable gas phase for the test;
所述出砂模块为试验提供具有高分散性和均匀性的固相;The sand production module provides a solid phase with high dispersion and uniformity for the test;
所述供液模块为试验提供液相;The liquid supply module provides a liquid phase for the test;
所述冲蚀试验模块和数据采集模块用于还原实现弯管冲蚀和射流冲蚀两种工况并进行实验结果数据提取。所述气流控制模块包括空压机1、气流缓冲罐2、调节阀一31、调节阀二32、不锈钢连接管一41和不锈钢连接管二42,所述空压机1与气流缓冲罐2通过不锈钢连接管一41连接,对高压气体进行稳压缓冲,随后经过电磁流量计5,通过调节阀一31获取用于试验的注气流量;调节阀二32用于调节液相流速,不锈钢连接管二42用于连接空压机1和气流缓冲罐2。The erosion test module and the data acquisition module are used to restore and realize two working conditions of elbow erosion and jet erosion, and to extract the experimental result data. The airflow control module includes an air compressor 1, an airflow buffer tank 2, a regulating valve 1 31, a regulating valve 2 32, a stainless steel connecting pipe 1 41 and a stainless steel connecting pipe 2 42. The air compressor 1 and the airflow buffer tank 2 pass through. The stainless steel connecting pipe one 41 is connected to stabilize the high pressure gas, and then passes through the electromagnetic flowmeter 5, and the gas injection flow rate for the test is obtained through the regulating valve 1 31; the regulating valve 2 32 is used to adjust the liquid flow rate, and the stainless steel connecting pipe The second 42 is used to connect the air compressor 1 and the airflow buffer tank 2.
所述出砂模块包括设置在不锈钢连接管二42位置的砂料漏斗6、设置在不锈钢储液桶18位置的弹性砂袋17和设置在不锈钢连接管二42位置的节流器7,砂料漏斗6通过不锈钢连接管二42与空压机1连接并导通,砂料通过不锈钢连接管二42进入节流器7内,形成均匀气固混合物;不锈钢储液桶18用于存储完成试验后的液相,弹性砂袋17用于存储完成试验后的固相,实现固相与液相分离。The sand producing module includes a
所述供液模块包括与不锈钢连接管二42相连的供液模块泥浆泵19、调节阀二32和与弹性砂袋17相连的不锈钢储液桶18,所述不锈钢储液桶18与泥浆泵19通过不锈钢连接管三43连接,实现液体循环利用;所述泥浆泵19用于实现液相的压送与循环。The liquid supply module includes the liquid supply
所述冲蚀试验模块包括在不锈钢连接管四44位置设置的喷射室14、喷嘴13和滑动支架11,不锈钢连接管二42通过法兰接口12连接喷嘴13,滑动支架11与带孔冲蚀弯管9连接,在喷射室14位置设置的试样夹持器16,式样夹持器16位置设置的块状试样15,在带孔冲蚀弯管9位置设置的试样挂片10。The erosion test module includes a
所述滑动支架11连接喷射室14和带孔冲蚀弯管9,通过所述法兰接口12与所述不锈钢连接管二42连接模拟管流式和射流式两种工况;所述浆料从喷嘴13喷射至块状试样10表面上造成冲蚀磨损后,由不锈钢连接管四44回流至弹性砂袋17和不锈钢储液桶18,实现砂液分离循环利用。The sliding
所述试样挂片10在加工制作过程中分两类制作,第一类试样挂片采用光滑加工工艺,便于模拟无损管道冲蚀磨损工况;第二类试样挂片采用凹坑加工工艺,试样挂片圆心位置钻刻形成0.5毫米深度凹坑,便于模拟含腐蚀坑管道冲蚀磨损工况。The
所述数据采集模块包括电子天平20、隔膜压力表8、电磁流量计5、成像显微镜21和计算机22,分别用于记录冲蚀试验模块的砂浆含水率、流量参数、试样失重率和表面形貌,所述电子天平20用于称重计算所述砂料含水率及试样被冲蚀前后的重量,所述成像显微镜21用于采集块状试样15和试样挂片10被冲蚀后的表面形貌,并可随所述表面形貌中表面冲蚀磨损裂纹的长度、宽度、裂缝边缘宽度拉线测量,所述计算机22用于接收保存所述表面形貌图片。The data acquisition module includes an
所述喷射室14为全透明的高强度玻璃室,便于喷射介质在块状试样15表面呈现冲蚀演示试验过程,所述块状试样15被试样夹持器16固定在喷射室14壁上,块状试样15中心垂直平面分别呈一定角度。The
所述块状试样15加工成大小为25mm×25mm×5mm的试块,加工好的试样先用砂纸打磨去除加工造成的表面凹坑、毛刺等缺陷,以备试验。The
所述式样夹持器16前端设置旋转接口,实现0-90°连续可调,这样避免了只能进行特定角度下的冲蚀样貌研究,使得角度对比试验结果更具连续性,且方便拿取操作。The front end of the
所述喷嘴13与试样夹持器16之间的角度设置为倾斜45度,试样夹持器16前端采用可旋转接口,根据所需角度实现块状试样15与喷嘴13在0-90°可调。The angle between the
所述带孔冲蚀弯管9为全透明高强度90°玻璃弯管,曲率半径为1.5倍弯管外径,便于观察冲蚀过程,可以更贴切的模拟输气管道工程实际。The
所述孔冲蚀弯管9外壁处依次排布12个直径1厘米的圆孔,所述试样挂片10为直径1厘米的圆形铁片,由定型胶依次粘贴于带孔冲蚀弯管9的孔隙内,并保证试样挂片10与带孔冲蚀弯管9内壁平齐,可模拟管道冲蚀工程实际。所述隔膜压力表8和所述电磁流量计5经采集处理系统连接至所述计算机22,所述采集处理系统可控制调节试验装置、记录处理试验数据。12 circular holes with a diameter of 1 cm are arranged in sequence at the outer wall of the hole
所述的电子天平20为LP503型电子天平称重,精度为0.1毫克。The
所述的成像显微镜21为双层机械移动式,配1200万像素,可拍照录像,并可做报表导出,兼带测量软件,精度为0.001微米。The imaging microscope 21 is a double-layer mechanical mobile type, equipped with 12 million pixels, capable of taking pictures and videos, exporting reports, and measuring software, with an accuracy of 0.001 micron.
冲蚀试验完成后采用LP503型电子天平称重(精度为0.1mg),称重多次取平均值计算试样失重率;基于成像显微镜分析试样表面形貌特征,将试样固定在载物台上,调试好需要的角度和光路,矫正比例尺寸,对试样表面冲蚀磨损裂纹的长度、宽度、裂缝边缘宽度拉线测量,通过数模转换将观测到的图像连接在计算机上拍照抓取图片并保存。After the erosion test is completed, an LP503 electronic balance is used to weigh (with an accuracy of 0.1 mg), and the weight loss rate of the sample is calculated by taking the average value of multiple weighings. On the stage, adjust the required angle and optical path, correct the scale size, measure the length, width and crack edge width of the erosion wear crack on the surface of the sample, and connect the observed image to the computer through digital-to-analog conversion to take pictures and capture. picture and save.
本发明的有益效果:Beneficial effects of the present invention:
本发明提供的可调式气液固三相流冲蚀磨损试验装置,通过节流器、弹性砂袋和不锈钢储料桶的配合作用,提高了砂粒分散性和均匀性,实现喷砂的浓度可调节性;本发明可以通过滑动支架实现弯管冲蚀和射流冲蚀两种基本工况,最大程度还原气液固三相流冲蚀过程,并可以同时进行冲蚀失重试验及冲蚀形貌研究,减少试验周期;本发明采用液相及固相闭式循环系统,实现介质重复利用,降低试验成本;本发明可测试不同气体流量和砂料浓度下的不同钢级试件,适用于对各种影响因素下材料耐磨性能测试和冲蚀磨损规律的研究;本发明简易安全可靠,操作方便,既满足试验室条件下的三相流冲蚀磨损方面的研究需求,也可用作教学示范。The adjustable gas-liquid-solid three-phase flow erosion wear test device provided by the invention improves the dispersion and uniformity of sand particles through the cooperation of the restrictor, the elastic sand bag and the stainless steel storage barrel, and realizes the sand blasting concentration can be adjusted. Adjustability; the invention can realize two basic working conditions of elbow erosion and jet erosion through sliding brackets, reduce the gas-liquid-solid three-phase flow erosion process to the greatest extent, and can perform erosion weight loss test and erosion morphology at the same time. research and reduce the test period; the present invention adopts the liquid phase and solid phase closed circulation system to realize the reuse of the medium and reduce the test cost; the present invention can test different steel grade specimens under different gas flow rates and sand material concentrations, and is suitable for Test of wear resistance of materials under various influencing factors and research on the law of erosion and wear; the invention is simple, safe, reliable and convenient to operate, which not only meets the research needs of three-phase flow erosion and wear under laboratory conditions, but also can be used for teaching demonstration.
在其他条件相同的情况下,改变流体冲蚀速度并分析试样失重率,探究流速对试样失重率以及试样形貌变化的重要影响。Under the same other conditions, change the fluid erosion rate and analyze the weight loss rate of the sample, and explore the important influence of the flow rate on the weight loss rate of the sample and the change of the sample morphology.
在其他条件相同的情况下,改变试样冲蚀角度,得到具有良好重现性的冲蚀试验数据,分析试样表面冲蚀形貌和失重率,观察不同冲蚀角度下获得的试样表面形貌图片,分析颗粒物对壁面产生的犁削作用和撞击坑,探究不同冲击角度对样品表面形貌的冲蚀情况。Under the same other conditions, change the erosion angle of the sample to obtain the erosion test data with good reproducibility, analyze the erosion morphology and weight loss rate of the surface of the sample, and observe the surface of the sample obtained under different erosion angles. Morphology pictures, analyze the ploughing effect and impact crater produced by particles on the wall, and explore the erosion of the surface morphology of the sample at different impact angles.
在其他条件相同的情况下,改变出砂速率,分析试样失重量和表面形貌变化,探究颗粒之间的碰撞效应和导致总的冲蚀效果。在其他条件相同的情况下,改变介质耦合工况,基于试样失重率变化和冲蚀形貌分析,分析固相、气相和液相对试样失重率的影响。Under other conditions being equal, the sand production rate was changed, the weight loss and surface topography changes of the samples were analyzed, and the collision effect between particles and the overall erosion effect were investigated. Under the same other conditions, change the medium coupling condition, and analyze the influence of the solid phase, gas phase and liquid on the weight loss rate of the sample based on the change of the weight loss rate of the sample and the analysis of the erosion morphology.
在其他条件相同的情况下,设置不同钢级管材,记录最后数据并分析不同钢级试样失重量和表面形貌变化,探究不同钢级管材的抗冲蚀强度和耐蚀性。Under the same other conditions, set different steel grade pipes, record the final data, analyze the weight loss and surface morphology changes of different steel grade samples, and explore the erosion resistance and corrosion resistance of different steel grade pipes.
附图说明Description of drawings
图1是本发明一种可调式气液固三相流冲蚀磨损试验装置结构示意图。1 is a schematic structural diagram of an adjustable gas-liquid-solid three-phase flow erosion wear test device according to the present invention.
图2是本发明一种可调式气液固三相流冲蚀磨损试验装置喷射室冲蚀过程示意图。FIG. 2 is a schematic diagram of the erosion process of the jet chamber of an adjustable gas-liquid-solid three-phase flow erosion wear test device according to the present invention.
图3是本发明一种可调式气液固三相流冲蚀磨损试验装置带孔冲蚀弯管结构图Fig. 3 is a structural diagram of a perforated erosion elbow of an adjustable gas-liquid-solid three-phase flow erosion wear test device according to the present invention
附图标记:1-空压机,2-气流缓冲罐,5-电磁流量计,6-砂料漏斗,7-节流器,8-隔膜压力表,9-带孔冲蚀弯管,10-试样挂片,11-滑动支架,12-法兰接口,13-喷嘴,14-喷射室,15-块状试样,16-试样夹持器,17-弹性砂袋,18-不锈钢储液桶,19-泥浆泵,20-电子天平,21-成像显微镜,22-计算机,23-砂粒,31-调节阀一,32-调节阀二,41-不锈钢连接管一,42-不锈钢连接管二,43-不锈钢连接管三,44-不锈钢连接管四。Reference numerals: 1-air compressor, 2-airflow buffer tank, 5-electromagnetic flowmeter, 6-sand funnel, 7-restrictor, 8-diaphragm pressure gauge, 9-hole erosion elbow, 10 - Specimen coupon, 11- Sliding bracket, 12- Flange interface, 13- Nozzle, 14- Spray chamber, 15- Block specimen, 16- Specimen holder, 17- Elastic sand bag, 18- Stainless steel Liquid storage tank, 19-mud pump, 20-electronic balance, 21-imaging microscope, 22-computer, 23-sand, 31-regulating valve one, 32-regulating valve two, 41-stainless steel connecting pipe one, 42-stainless steel connection Pipe two, 43-stainless steel connecting pipe three, 44-stainless steel connecting pipe four.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the embodiments.
如图1-图3所示:本发明为满足试验室当前在冲蚀磨损方面管流式和喷射式研究需求,为三相流冲蚀特性与磨损演变规律提供实物验证途径,为管材防腐及设备寿命研究提供科学理论依据。目前关于冲蚀磨损的主要是理论计算和数值模拟,试验室相似试验研究少,测试起来既不方便也不准确,因此,发明一种可实现调式气液固三相流冲蚀磨损试验装置尤为重要。As shown in Fig. 1-Fig. 3: The present invention is to meet the current research needs of the laboratory in terms of erosion and wear, and provides a physical verification method for the erosion characteristics and wear evolution of the three-phase flow. Equipment life research provides scientific theoretical basis. At present, the main research on erosion wear is theoretical calculation and numerical simulation. There are few similar experiments in the laboratory, and it is neither convenient nor accurate to test. Therefore, it is particularly important to invent a gas-liquid-solid three-phase flow erosion wear test device that can be adjusted. important.
一种可调式气液固三相流冲蚀磨损试验装置,如附图所示,气流控制模块中空压机1通过不锈钢连接管一41连接气流缓冲罐2,通过调节阀一31,为整个管路提供稳定气流;供液模块中泥浆泵19通过不锈钢连接管三43与不锈钢储液桶18连接,通过调节阀二32实现对液相流量的控制;气流控制模块和供液模块由不锈钢连接管二42连接,所需气液介质进行混合后经电磁流量计5记录后到达出砂模块,依次通过砂料漏斗6和节流器7,实现三相流均匀混合并以一定的流速经过隔膜压力表8测压后到达冲蚀试验模块;本发明提供带孔冲蚀弯管9和13喷嘴,由滑动支架11进行管流式和喷射式冲蚀试验转换;在管流式冲蚀试验中,试样挂片10经砂纸打磨后通过定型胶依次粘贴于带孔冲蚀弯管9的孔隙内并保证试样挂片与弯管内壁平齐,在喷射式冲蚀试验中,块状试样15被式样夹持器16固定在喷射室14壁上,其中心垂直平面分别呈一定角度布置,使得浆料从喷嘴喷射至试样表面上造成冲蚀磨损;冲蚀形成后,混合浆料流经弹性砂袋17实现砂料回收,剩余液相储存于不锈钢储液桶18,通过不锈钢连接管三43连接泥浆泵19实现液相循环利用;待试验结束后对试样进行清水清洗,记录称重数据和表面冲蚀样貌。An adjustable gas-liquid-solid three-phase flow erosion wear test device, as shown in the accompanying drawings, the air compressor 1 in the airflow control module is connected to the airflow buffer tank 2 through a stainless steel connecting pipe-41, and the entire pipe is connected through a regulating valve-31. In the liquid supply module, the
试验过程中,根据不同试验组需求,可按需调节砂粒粒径、管材钢级、冲蚀角度、流体流量和多相流耦合,获取相应试验数据。上述冲蚀试验装置的数据采集模块包括电子天平20和成像显微镜21,试验前块状试样准备阶段应先用砂纸打磨边缘并去掉加工时留下的铁锈,清洗三分钟干燥后,用LP503型电子天平称重(精度为0.1mg),称重三次取平均值,试样挂片冲洗干净后由定型胶依次粘贴于带孔冲蚀弯管的孔隙内,并保证试样挂片与弯管内壁平齐;试验后试样称量前先用酒精清洗,后放入超声波清洗装置中清洗三分钟,在室温下干燥后称量,经三次测量取平均值。成像显微镜21通过数模转换,将试样表面形貌图像连接在计算机22上,对试样表面冲蚀磨损裂纹的长度、宽度、裂缝边缘宽度拉线测量,拍照抓取图片并保存。本发明能够满足试验室当前多相流冲蚀磨损试验的研究需求,为数值仿真提供验证途径,提高冲蚀磨损机理与后果预测的可信度,试验操作简单。During the test, according to the needs of different test groups, sand particle size, pipe steel grade, erosion angle, fluid flow and multiphase flow coupling can be adjusted as needed to obtain corresponding test data. The data acquisition module of the above erosion test device includes an
具体而言,本实施例的喷射室14所述喷射室为全透明的高强度玻璃室,便于喷射介质在块状试样15表面呈现冲蚀演示试验过程,块状试样15被式样夹持器16固定在喷射室壁上,块状试样15中心垂直平面分别呈一定角度。Specifically, the
具体的,本实施例的带孔冲蚀弯管9为全透明高强度玻璃弯管,其中孔隙为12个直径1厘米的圆孔,依次排布于弯管外壁处。本实施例的试样挂片10为直径1厘米的圆形铁片,由定型胶依次粘贴于带孔冲蚀弯管,本实施例的隔膜压力表8和本实施例的电磁流量计5经采集处理系统连接至计算机22,本实施例的计算机22可控制调节试验装置、记录处理试验数据。Specifically, the
具体的,本实施例的成像显微镜21为双层机械移动式,配1200万像素,可拍照录像,并可做报表导出,兼带测量软件,精度为0.001微米。Specifically, the imaging microscope 21 of this embodiment is a double-layer mechanical mobile type, with 12 million pixels, capable of taking pictures and videos, and exporting reports, with measurement software, and an accuracy of 0.001 microns.
进一步的,本实施例的对照试验组可根据现场情况或者实际试验需求确定。Further, the control test group in this embodiment can be determined according to the on-site conditions or actual test requirements.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210826688.3A CN115200976A (en) | 2022-07-14 | 2022-07-14 | An adjustable gas-liquid-solid three-phase flow erosion wear test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210826688.3A CN115200976A (en) | 2022-07-14 | 2022-07-14 | An adjustable gas-liquid-solid three-phase flow erosion wear test device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115200976A true CN115200976A (en) | 2022-10-18 |
Family
ID=83581057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210826688.3A Pending CN115200976A (en) | 2022-07-14 | 2022-07-14 | An adjustable gas-liquid-solid three-phase flow erosion wear test device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115200976A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115561108A (en) * | 2022-12-05 | 2023-01-03 | 中国石油大学(华东) | An erosion test system and test method considering high temperature and string buckling |
CN115979869A (en) * | 2023-03-22 | 2023-04-18 | 四川工程职业技术学院 | Shale gas collecting pipeline erosion and wear experimental apparatus |
CN116818565A (en) * | 2023-07-06 | 2023-09-29 | 山东中和金石科技集团股份有限公司 | Composite ceramic performance detection device |
-
2022
- 2022-07-14 CN CN202210826688.3A patent/CN115200976A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115561108A (en) * | 2022-12-05 | 2023-01-03 | 中国石油大学(华东) | An erosion test system and test method considering high temperature and string buckling |
CN115979869A (en) * | 2023-03-22 | 2023-04-18 | 四川工程职业技术学院 | Shale gas collecting pipeline erosion and wear experimental apparatus |
CN115979869B (en) * | 2023-03-22 | 2023-06-06 | 四川工程职业技术学院 | Erosion abrasion experimental device for shale gas collecting pipeline |
CN116818565A (en) * | 2023-07-06 | 2023-09-29 | 山东中和金石科技集团股份有限公司 | Composite ceramic performance detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115200976A (en) | An adjustable gas-liquid-solid three-phase flow erosion wear test device | |
CN202305479U (en) | Multi-purpose six-axis automatic ultrasonic testing system | |
CN106644920A (en) | Online detection experimental device for simulating erosion corrosion of elbows with different dip angles | |
CN110763265B (en) | System and method for testing atomization spraying effect of natural gas drag reducer | |
Hong et al. | Experimental investigation of erosion rate for gas-solid two-phase flow in 304 stainless/L245 carbon steel | |
CN112414878A (en) | Solid-liquid two-phase flow pipe erosion wear test device | |
CN110530760A (en) | A kind of experimental provision developed with geometry and method of exchanging heat in fissure channel for analog study foam fracturing fluid | |
CN112147064A (en) | Scouring corrosion simulation test device for aluminum radiator of indirect cooling system and use method thereof | |
CN107192626A (en) | A kind of concrete anti-abrasion performance test apparatus and test method | |
CN108303334B (en) | A device and test method for testing the wear resistance of materials | |
CN204027885U (en) | A kind of blast furnace gas dust content is measured and is used filter membrane sampling device | |
CN201196560Y (en) | Underwater repose angle measurer for small particle model sand | |
CN209729213U (en) | Along journey drag reduction experiment instrument | |
CN115078240A (en) | Oil gas pipeline corrosion monitoring test device | |
CN109406566B (en) | Nano fluid impact jet flow heat exchange characteristic and erosion wear performance experimental device | |
CN205941176U (en) | Sample impact angle degree adjustment subassembly of rotation type erosion test device | |
CN110926987A (en) | High-precision test bed for analyzing erosion wear of surface sample | |
CN209255408U (en) | A kind of blast furnace gas sampling purge system | |
CN208043727U (en) | A kind of online dew-point detecting device of iron and steel enterprise's air compression system | |
CN206787962U (en) | A kind of concrete anti-abrasion performance test apparatus | |
CN105738039A (en) | Measurement device and measurement method for annular gap flow of plunger-copper-sleeve pair | |
CN206505042U (en) | Pipe internal diameter ultrasound examination dolly | |
CN211955098U (en) | A device for measuring sediment content in water samples based on differential pressure | |
CN111199082B (en) | Pipeline erosion rate obtaining method | |
CN114152560A (en) | Test device and method for corrosion evaluation of natural gas hydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |