CN115200703A - Light source detection device - Google Patents
Light source detection device Download PDFInfo
- Publication number
- CN115200703A CN115200703A CN202210989280.8A CN202210989280A CN115200703A CN 115200703 A CN115200703 A CN 115200703A CN 202210989280 A CN202210989280 A CN 202210989280A CN 115200703 A CN115200703 A CN 115200703A
- Authority
- CN
- China
- Prior art keywords
- light
- optical
- light source
- led
- optical surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J2001/4247—Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本申请涉及一种光源检测装置,包括:至少两个光源部,各个光源部用于输出发射光;至少一个二向色镜,二向色镜上有第一光学面和第二光学面,在各个光源部发射光后,第一光学面用于将对应的发射光进行光路集成后输出合成光,第二光学面用于对发射光分束后进行光量检测。本申请提供的上述方案,通过二向色镜的上第一光学面实现多个光源部合光,通过二向色镜的上第二光学面实现对发射光分束后进行光量检测,该装置在不追加额外的光学元件下就能够实现分光检测,有效简化了系统设计。
The application relates to a light source detection device, comprising: at least two light source parts, each of which is used for outputting emitted light; at least one dichroic mirror, the dichroic mirror has a first optical surface and a second optical surface, After each light source part emits light, the first optical surface is used for optical path integration of the corresponding emitted light to output a combined light, and the second optical surface is used for light quantity detection after splitting the emitted light. The above solution provided by the present application realizes light combining of multiple light source parts through the upper first optical surface of the dichroic mirror, and realizes light quantity detection after beam splitting of the emitted light through the upper second optical surface of the dichroic mirror. Spectroscopic detection can be realized without adding additional optical components, which effectively simplifies the system design.
Description
技术领域technical field
本发明涉及内窥镜技术领域,特别是涉及一种光源检测装置。The present invention relates to the technical field of endoscopes, and in particular, to a light source detection device.
背景技术Background technique
在医疗领域中,内窥镜已经成为了一种普及的诊断方式。医疗内窥镜具有插入到人体的插入部,通过光源装置产生的照明光并由导光束传输进入到人体内进行照明,由插入部前端的摄像模组进行摄像,并通过相应图像处理器进行图像处理,最后通过显示器进行图像输出。In the medical field, endoscopy has become a popular diagnostic method. The medical endoscope has an insertion part that is inserted into the human body, and the illumination light generated by the light source device is transmitted into the human body through the light guide for illumination, and the camera module at the front end of the insertion part takes pictures, and the corresponding image processor is used for image processing. processing, and finally image output through the display.
作为提供活体观察时的照明光的照明装置,LED(Light Emitting Diode发光二级管)或LD(Laser Diode激光二极管)的固体发光元件由于具有功耗低、寿命长等优点而代替传统的氙灯和卤素灯被逐渐应用于实际产品中。在内窥镜的诊断中,普遍使用白光观察模式对活体组织表面整体形状进行观察,此外,还发展了多种特殊光观察模式来对不同深度的血管加强观察,从而加强对病变组织的筛查,由此就要求照明装置提供具有不同的光谱形式的照明模式,例如:采用LED作为发光元件的光源,通过多LED的组合,或使用滤光片来实现上述白光或特殊光的照明输出。As an illuminating device that provides illuminating light for in vivo observation, LED (Light Emitting Diode) or LD (Laser Diode) solid-state light emitting devices have the advantages of low power consumption, long life, etc. instead of traditional xenon lamps and Halogen lamps are gradually being used in actual products. In the diagnosis of endoscopy, the white light observation mode is generally used to observe the overall shape of the surface of the living tissue. In addition, a variety of special light observation modes have been developed to strengthen the observation of blood vessels at different depths, thereby strengthening the screening of diseased tissue. Therefore, the lighting device is required to provide lighting modes with different spectral forms, such as: using LED as the light source of the light-emitting element, combining multiple LEDs, or using filters to achieve the above-mentioned white light or special light lighting output.
内窥镜的摄像模组拍摄观察图像,并由图像处理部处理并生成静态或动态观察图像,医生通过观察图像进行病变诊断。由于照明装置输出的照明光的光谱状态将影响生成图像的色调,对病变观察具有重要影响,因此维持光源装置输出照明光的光谱或色调保持稳定,具有重要意义。而由LED作为发光元件构成的光源,LED自身温度的变化会影响出光量的大小,其次,温度变化还会导致LED发生一定程度的波长偏移,进而导致照明光量或/和光谱不能保持恒定;随着使用时间的推进,LED工作时自身温度(结温)过高,会导致其出光量发生一定程度的衰减。The camera module of the endoscope captures the observation image, which is processed by the image processing unit to generate a static or dynamic observation image, and the doctor diagnoses the lesion through the observation image. Since the spectral state of the illuminating light output by the illuminating device will affect the hue of the generated image, which has an important influence on the observation of lesions, it is of great significance to keep the spectrum or hue of the illuminating light output by the light source device stable. For the light source composed of LED as a light-emitting element, the change of the temperature of the LED itself will affect the amount of light emitted. Secondly, the temperature change will also cause a certain degree of wavelength shift of the LED, which will lead to the illumination light amount or/and spectrum cannot be kept constant; With the advancement of use time, the LED's own temperature (junction temperature) is too high during operation, which will lead to a certain degree of attenuation of its light output.
为了方便检测LED的出光量,现有申请号为CN201380001706.3的专利通过配置于光路空间侧面的照度传感器接收各LED发出光中不被用作照明光的漏光或/和照明光路中被光学元件反射的光,来进行发光元件光量监测;申请号为CN201410524810.7和申请号为CN201811007363.2的专利均通过分束镜和光检测器来进行分光检测;申请号为CN209564106U的专利不使用额外的分束镜进行光量监测,收集第一和第二发光元件不被用来照明的平行光漏光。In order to facilitate the detection of the light output of the LEDs, the existing patent with the application number of CN201380001706.3 uses an illuminance sensor arranged on the side of the optical path space to receive the light emitted by each LED that is not used as the illuminating light or/and the optical element in the illuminating optical path. The reflected light is used to monitor the light quantity of the light-emitting element; the patent application number CN201410524810.7 and the patent application number CN201811007363.2 both use a beam splitter and a photodetector for spectroscopic detection; the patent application number CN209564106U does not use additional points The beam mirror performs light quantity monitoring, and collects parallel light leakage light that is not used for illumination by the first and second light-emitting elements.
然而申请号为CN201380001706.3的专利中照度传感器所接受到的光量相对较弱,因此不能进行高效的光量监测;申请号为CN201410524810.7和申请号为CN201811007363.2追加了额外的分束元件(分束反射镜),同样增加了系统复杂度;申请号为CN209564106U检测光量的大小由于仅收集系统漏光,可能存在检测光量较弱导致检测精度较低的情况,且无法实时进行光量监测。However, the amount of light received by the illuminance sensor in the patent with application number CN201380001706.3 is relatively weak, so efficient light monitoring cannot be performed; application number CN201410524810.7 and application number CN201811007363.2 add additional beam splitting elements ( Beam splitting mirror), which also increases the complexity of the system; the application number CN209564106U detects the amount of light due to only collecting system light leakage, there may be a situation where the detection accuracy is low due to weak detection light, and it is impossible to monitor the light amount in real time.
因此,如何在不追加额外光学元件的情况下,实现高精度、高动态范围的实时光量监测已经成为本领域技术人员亟需解决的技术难题。Therefore, how to realize real-time light quantity monitoring with high precision and high dynamic range without adding additional optical elements has become a technical problem that those skilled in the art need to solve urgently.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种光源检测装置,以实现在不追加额外光学元件的情况下,就能够实现高精度、高动态范围的实时光量监测。The purpose of the present invention is to provide a light source detection device, so as to realize real-time light quantity monitoring with high precision and high dynamic range without adding additional optical elements.
本申请提供了一种光源检测装置,包括:The application provides a light source detection device, comprising:
至少两个光源部,各个所述光源部用于输出发射光;at least two light source parts, each of which is used for outputting emitted light;
至少一个二向色镜,所述二向色镜上有第一光学面和第二光学面,在各个所述光源部发射光后,所述第一光学面用于将对应的发射光进行光路集成后输出合成光,所述第二光学面用于对发射光分束后进行光量检测。At least one dichroic mirror, the dichroic mirror has a first optical surface and a second optical surface, after each of the light source parts emits light, the first optical surface is used to send the corresponding emitted light to the optical path After integration, synthetic light is output, and the second optical surface is used for light quantity detection after splitting the emitted light.
在其中一个实施例中,所述光源检测装置还包括至少一个用于检测发射光的光通量测量件,所述光通量测量件的位置与所要检测的光源部的位置相对应;In one of the embodiments, the light source detection device further comprises at least one luminous flux measuring member for detecting the emitted light, the position of the luminous flux measuring member corresponds to the position of the light source part to be detected;
所述第二光学面能够将对应的光源部的发射光分束得到的反射光作为检测光进入到所述光通量测量件中。The second optical surface can enter the reflected light obtained by splitting the emitted light of the corresponding light source part into the luminous flux measuring element as detection light.
在其中一个实施例中,所述二向色镜上的第一光学面仅能够进行光路集成后输出合成光,或者In one of the embodiments, the first optical surface on the dichroic mirror can only output synthesized light after optical path integration, or
其中至少一个所述二向色镜上的第一光学面能够透射来进行光量检测。The first optical surface on at least one of the dichroic mirrors can transmit light to detect the light quantity.
在其中一个实施例中,其中至少一个所述二向色镜上的第一光学面上设置有第一光学区和第二光学区,所述第一光学区占所述第一光学面的面积大于等于90%,所述第二光学区占所述第一光学面的面积小于等于10%;In one of the embodiments, a first optical zone and a second optical zone are provided on the first optical surface of at least one of the dichroic mirrors, and the first optical zone occupies an area of the first optical surface greater than or equal to 90%, the second optical zone occupies less than or equal to 10% of the area of the first optical surface;
所述第二光学区用于透射对应光源部的发射光,以使得发射光进入到对应的光通量测量件中。The second optical zone is used to transmit the emitted light of the corresponding light source part, so that the emitted light enters the corresponding luminous flux measuring element.
在其中一个实施例中,所述第一光学区上设置有二向色滤光膜;所述第二光学区上设置有分束膜,或所述第二光学区上设置有增透膜。In one embodiment, a dichroic filter film is disposed on the first optical zone; a beam splitter film is disposed on the second optical zone, or an anti-reflection film is disposed on the second optical zone.
在其中一个实施例中,通过所述第二光学区透射到对应的光通量测量件的光敏面正对经所述第二光学区透射的二向色镜的检测光轴的方向。In one of the embodiments, the photosensitive surface transmitted through the second optical zone to the corresponding luminous flux measuring element faces the direction of the detection optical axis of the dichroic mirror transmitted through the second optical zone.
在其中一个实施例中,通过所述第二光学区透射到对应的所述光通量测量件上的光束尺寸大于所述光敏面尺寸。In one of the embodiments, the size of the light beam transmitted through the second optical zone to the corresponding luminous flux measuring element is larger than the size of the photosensitive surface.
在其中一个实施例中,通过所述第二光学面反射到对应的所述光通量测量件的感光面与经所述第二光学面反射的二向色镜的检测光轴的方向成垂直设置。In one of the embodiments, the light-sensing surface of the corresponding luminous flux measuring element reflected by the second optical surface is arranged perpendicular to the direction of the detection optical axis of the dichroic mirror reflected by the second optical surface.
在其中一个实施例中,通过所述第二光学面反射到对应的所述光通量测量件的感光面尺寸均小于对应所述光源部上的检测光的光束尺寸。In one of the embodiments, the size of the photosensitive surface reflected by the second optical surface to the corresponding luminous flux measuring element is smaller than the size of the beam of the detection light corresponding to the light source part.
在其中一个实施例中,其中一个所述二向色镜上的第一光学面上设置有分束膜F3B;所述分束膜F3B能够将对应光源部的发射光在反射的同时进行透射,以使得透射出的光进入到对应的光通量测量件中。In one of the embodiments, a beam splitter film F3B is provided on the first optical surface of one of the dichroic mirrors; the beam splitter film F3B can transmit the emitted light of the corresponding light source part while reflecting, So that the transmitted light enters into the corresponding luminous flux measuring element.
在其中一个实施例中,所述二向色镜上的第一光学面上设置有二向色滤光膜。In one embodiment, a dichroic filter film is disposed on the first optical surface of the dichroic mirror.
在其中一个实施例中,所述光源检测装置还包括背景光检测器,所述背景光检测器位于对应的光通量测量件上的对应的检测光束所覆盖的范围之外。In one of the embodiments, the light source detection device further includes a background light detector, and the background light detector is located outside the range covered by the corresponding detection beam on the corresponding luminous flux measuring element.
在其中一个实施例中,所述光源检测装置还包括开口光阑,至少一个所述光通量测量件的前端设置有所述开口光阑。In one of the embodiments, the light source detection device further includes an aperture diaphragm, and the front end of at least one of the luminous flux measuring pieces is provided with the aperture diaphragm.
在其中一个实施例中,所述光源检测装置还包括滤光片,至少一个所述光通量测量件的前端设置有所述滤光片。In one embodiment, the light source detection device further includes an optical filter, and the front end of at least one of the luminous flux measuring elements is provided with the optical filter.
在其中一个实施例中,二向色镜为多个;多个二向色镜的第二光学面上分别设置有分束膜,所述分束膜用于对相应的光源部的发射光进行分束,每个分束膜用于分束的不同波长的发射光;所述分束膜的分束波长范围由所述发射光的波长确定。In one of the embodiments, there are multiple dichroic mirrors; beam splitting films are respectively provided on the second optical surfaces of the multiple dichroic mirrors, and the beam splitting films are used to perform the beam splitting process on the emitted light of the corresponding light source parts. For beam splitting, each beam splitting film is used for splitting emitted light of different wavelengths; the beam splitting wavelength range of the beam splitting film is determined by the wavelength of the emitted light.
在其中一个实施例中,二向色镜为多个;多个二向色镜的第二光学面上设置有同一分束膜;所述同一分束膜用于分束由第二光学面反射的发射光,在第二光学面反射的发射光波段不同时,所述同一分束膜的分束波长范围能够覆盖所述波段不同的发射光的波长范围。In one of the embodiments, there are multiple dichroic mirrors; the second optical surfaces of the multiple dichroic mirrors are provided with the same beam splitting film; the same beam splitting film is used for beam splitting to be reflected by the second optical surface When the wavelength range of the emitted light reflected by the second optical surface is different, the beam splitting wavelength range of the same beam splitting film can cover the wavelength range of the emitted light with different wavelength bands.
在其中一个实施例中,所述分束膜能够将小于等于10%的光束反射并且能够使得大于等于90%的光束透射。In one of the embodiments, the beam splitting film can reflect less than or equal to 10% of the light beam and can transmit more than or equal to 90% of the light beam.
本申请的有益效果包括:The beneficial effects of this application include:
本申请提供的光源检测装置,通过二向色镜的上第一光学面实现多个光源部合光,通过二向色镜的上第二光学面实现对发射光分束后进行光量检测,该装置在不追加额外的光学元件下就能够实现分光检测,有效简化了系统设计。The light source detection device provided by the present application realizes light combining of multiple light sources through the upper first optical surface of the dichroic mirror, and realizes light quantity detection after beam splitting of the emitted light through the upper second optical surface of the dichroic mirror. The device can realize spectroscopic detection without adding additional optical elements, which effectively simplifies the system design.
附图说明Description of drawings
图1为本申请一实施例提供的内窥镜系统结构示意图;FIG. 1 is a schematic structural diagram of an endoscope system according to an embodiment of the present application;
图2为本申请一实施例提供的第一光学装置示意图;FIG. 2 is a schematic diagram of a first optical device according to an embodiment of the present application;
图3A为图2中各LED及二向色镜光谱曲线图;3A is a spectral curve diagram of each LED and a dichroic mirror in FIG. 2;
图3B为图2中的第三二向色镜F3光谱曲线图;3B is a spectral curve diagram of the third dichroic mirror F3 in FIG. 2;
图3C为图2中的第二二向色镜F2光谱曲线图;3C is a spectral curve diagram of the second dichroic mirror F2 in FIG. 2;
图3D为图2中的第一二向色镜F1光谱曲线图;3D is a spectral curve diagram of the first dichroic mirror F1 in FIG. 2;
图3E为本申请一实施例提供的第一光学装置中的第三二向色镜F3和F3B光谱曲线图;3E is a spectral curve diagram of the third dichroic mirrors F3 and F3B in the first optical device provided by an embodiment of the application;
图4为本申请一实施例提供的第一光学装置检测光路示意图;4 is a schematic diagram of a detection optical path of a first optical device according to an embodiment of the present application;
图5A为图4中的第三二向色镜33A面镀膜示意图FIG. 5A is a schematic diagram of the surface coating of the third
图5B为图4中的第一、二光电传感器的位置结构示意图;5B is a schematic diagram of the positional structure of the first and second photoelectric sensors in FIG. 4;
图5C为本申请一实施例提供的背景光检测器相对于第一、二光电传感器的位置结构示意图;5C is a schematic structural diagram of the position of the background light detector relative to the first and second photoelectric sensors according to an embodiment of the present application;
图6为本申请一实施例提供的第二光学装置检测光路示意图;6 is a schematic diagram of a detection optical path of a second optical device according to an embodiment of the present application;
图7A为图6中各LED及二向色镜光谱曲线图;7A is a spectral curve diagram of each LED and a dichroic mirror in FIG. 6;
图7B为图6中第四二向色镜光谱曲线图;7B is a fourth dichroic mirror spectral curve diagram in FIG. 6;
图7C为图6中第三二向色镜光谱曲线图;Figure 7C is a third dichroic mirror spectral curve diagram in Figure 6;
图7D为图6中第二二向色镜光谱曲线图;Fig. 7D is the spectral curve diagram of the second dichroic mirror in Fig. 6;
图7E为图6中第一二向色镜光谱曲线图;Fig. 7E is the spectral curve diagram of the first dichroic mirror in Fig. 6;
图7F为本申请一实施例提供的第二光学装置中的第二二向色镜F2和F2B光谱曲线图;7F is a spectral curve diagram of the second dichroic mirrors F2 and F2B in the second optical device provided by an embodiment of the application;
图8为本申请一实施例提供的第二光学装置检测光路示意图;8 is a schematic diagram of a detection optical path of a second optical device according to an embodiment of the present application;
图9为本申请一实施例提供的第三光学装置检测光路示意图;FIG. 9 is a schematic diagram of a detection optical path of a third optical device according to an embodiment of the present application;
图10为图9中第一二向色镜光谱曲线图;Fig. 10 is the first dichroic mirror spectral curve diagram in Fig. 9;
图11为本申请一实施例提供的第三光学装置检测光路变化例示意图。FIG. 11 is a schematic diagram of an example of an optical path change detected by a third optical device according to an embodiment of the present application.
图中标记如下:The figures are marked as follows:
11、第一LED发光元件;12、第二LED发光元件;13、第三LED发光元件;14、第四LED发光元件;15、第五LED发光元件;21、第一准直透镜;22、第二准直透镜;23、第三准直透镜;24、第四准直透镜;25、第五准直透镜;31、第一二向色镜;32、第二二向色镜;33、第三二向色镜;34、第四二向色镜;4、聚焦透镜;5、导光束;81、第一光电传感器;82、第二光电传感器;83、第三光电传感器;84、第四光电传感器;85、第五光电传感器;100、光源检测装置;101、内窥镜;10、合光模组;20散热部;30、图像处理部;40、控制部;50、导光部;51、照明透镜;60、摄像模组;70、输入部;80、显示部。11, the first LED light-emitting element; 12, the second LED light-emitting element; 13, the third LED light-emitting element; 14, the fourth LED light-emitting element; 15, the fifth LED light-emitting element; 21, the first collimating lens; 22, The second collimating lens; 23, the third collimating lens; 24, the fourth collimating lens; 25, the fifth collimating lens; 31, the first dichroic mirror; 32, the second dichroic mirror; 33, The third dichroic mirror; 34, the fourth dichroic mirror; 4, the focusing lens; 5, the light guide; 81, the first photoelectric sensor; 82, the second photoelectric sensor; 83, the third photoelectric sensor; 84, the first photoelectric sensor Four photoelectric sensors; 85, fifth photoelectric sensor; 100, light source detection device; 101, endoscope; 10, light combining module; 20, heat dissipation part; 30, image processing part; 40, control part; 50, light guide part ; 51, illuminating lens; 60, camera module; 70, input part; 80, display part.
具体实施方式Detailed ways
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。In order to make the above objects, features and advantages of the present application more clearly understood, the specific embodiments of the present application will be described in detail below with reference to the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present application. However, the present application can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without departing from the connotation of the present application. Therefore, the present application is not limited by the specific embodiments disclosed below.
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", " Back, Left, Right, Vertical, Horizontal, Top, Bottom, Inner, Outer, Clockwise, Counterclockwise, Axial , "radial", "circumferential" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying the indicated device or Elements must have a particular orientation, be constructed and operate in a particular orientation and are therefore not to be construed as limitations on this application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present application, "plurality" means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In this application, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In this application, unless otherwise expressly stated and defined, a first feature "on" or "under" a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or an intervening element may also be present. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present. The terms "vertical", "horizontal", "upper", "lower", "left", "right" and similar expressions used herein are for the purpose of illustration only and do not represent the only embodiment.
本申请一实施例中,提供了一种光源检测装置,包括:至少两个光源部和至少一个二向色镜,其中,各个光源部用于输出发射光,二向色镜上有第一光学面和第二光学面,在各个光源部发射光后,第一光学面用于将对应的发射光进行光路集成后输出合成光,第二光学面用于对发射光分束后进行光量检测。In an embodiment of the present application, a light source detection device is provided, including: at least two light source parts and at least one dichroic mirror, wherein each light source part is used for outputting emitted light, and the dichroic mirror has a first optical After each light source part emits light, the first optical surface is used to integrate the corresponding emitted light in the optical path and output the synthesized light, and the second optical surface is used to detect the light quantity after splitting the emitted light.
本申请中的光源检测装置用于内窥镜中光源部的检测,以下,均以内窥镜的光源部为例作说明。The light source detection device in the present application is used for detection of a light source part in an endoscope, and below, the light source part of an endoscope is taken as an example for description.
采用上述技术方案,通过二向色镜的上第一光学面实现多个光源部合光,通过二向色镜的上第二光学面实现对发射光分束后进行光量检测,该装置在不追加额外的光学元件下就能够实现分光检测,有效简化了系统设计。By adopting the above technical solution, the light combining of multiple light source parts is realized through the upper first optical surface of the dichroic mirror, and the light quantity detection is realized after the emitted light is divided into beams through the upper second optical surface of the dichroic mirror. Spectroscopic detection can be realized by adding additional optical components, which effectively simplifies the system design.
在一些实施例中,为了能够检测分束后的发射光,光源检测装置还包括至少一个用于检测发射光的光通量测量件,光通量测量件的位置与所要检测的光源部的位置相对应;同时,第二光学面能够将对应的光源部的发射光分束得到的反射光作为检测光进入到光通量测量件中。In some embodiments, in order to be able to detect the split emitted light, the light source detection device further includes at least one luminous flux measuring element for detecting the emitted light, the position of the luminous flux measuring element corresponds to the position of the light source part to be detected; , the second optical surface can enter the reflected light obtained by splitting the emitted light of the corresponding light source part into the luminous flux measuring element as detection light.
示例性的,如图4所示,本申请中的光通量测量件包括第一光电传感器81、第三光电传感器83以及第四光电传感器84;光源部包括第一LED发光元件11、第三LED发光元件13以及第四LED发光元件14;二向色镜为第一二向色镜31、第二二向色镜32、第三二向色镜33;Exemplarily, as shown in FIG. 4 , the luminous flux measuring element in this application includes a first
如图4并结合图2所示,第一LED发光元件11的发射光经过第三二向色镜33上的第二光学面33B分束后进入到第一光电传感器81中;第三LED发光元件13的发射光经过第二二向色镜32上的第二光学面32B分束后进入到第三光电传感器83中;第四LED发光元件14的发射光经过第一二向色镜31上的第二光学面31B分束后进入到第四光电传感器84中。由于用光电传感器测量光通量的技术原理为现有技术,此处不再累述。As shown in FIG. 4 and in conjunction with FIG. 2 , the emitted light of the first LED light-emitting
进一步地,本申请中的光通量测量件与光源部一一对应,从而就实现对每个光源部的光量检测。需要说明的是,对于光通量测量件的数量,可以根据实际产品的需要进行选择,此处不做限定。Further, the luminous flux measuring elements in the present application correspond to the light source parts one by one, thereby realizing the detection of the light quantity of each light source part. It should be noted that, the number of the luminous flux measuring pieces can be selected according to the needs of the actual product, which is not limited here.
在一些实施例中,二向色镜上的第一光学面仅能够进行光路集成后输出合成光,或者,其中至少一个二向色镜上的第一光学面能够透射来进行光量检测。在实际应用,二向色镜上的第一光学面在进行光路集成的时候还存在少量漏光现象,本申请主要对二向色镜上的第一光学面的光谱特性进行说明。In some embodiments, the first optical surface on the dichroic mirror can only be integrated into the optical path to output synthetic light, or the first optical surface on at least one of the dichroic mirrors can transmit light to detect the light quantity. In practical applications, the first optical surface on the dichroic mirror still has a small amount of light leakage when the optical path is integrated. This application mainly describes the spectral characteristics of the first optical surface on the dichroic mirror.
示例性的,如图2并结合图4所示,本申请中的光源部包括第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14;光源检测装置包括第一二向色镜31、第二二向色镜32以及第三二向色镜33;光通量测量件包括第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84,可以理解,所述光通量测量部件81~84具有光电传感器PD(Photo Diode),在其他实施例中,也可以使用其他类型的光电探测元件。Exemplarily, as shown in FIG. 2 in conjunction with FIG. 4 , the light source part in this application includes a first LED light-emitting
其中,第一LED发光元件11为发出紫色到蓝色区域波段UV光的UV_LED,第二LED发光元件12为蓝色波段B光的B_LED,第三LED发光元件13为绿色波段G光的G_LED,第四LED发光元件14为红色波段R光的R_LED。The first LED light-emitting
同时,UV_LED,根据血红蛋白对405~415nm波段光谱具强吸收的特性,优选地具有405~415nm的峰值波长,其波长范围优选为窄带,带宽约为20nm,根据其高散射和强吸收的特点,用于描绘近表层或浅表层附近血管形态;B_LED,优选地具有430~460nm的峰值波长,进一步地,其峰值波长优选为430~450nm,通过表层血管与粘膜反射率差异在观察图像上形成二者的区分,其波长范围优选为窄带,带宽约为20nm;G_LED,优选地具有530~560nm的峰值波长,其带宽可选择为宽带,如带宽约为100nm,且G_LED为荧光型LED;R_LED,优选地具有600~640nm峰值波长,其波长范围优选为窄带,带宽约为20nm。At the same time, UV_LED, according to the characteristics of hemoglobin having strong absorption to the 405-415nm band spectrum, preferably has a peak wavelength of 405-415nm, and its wavelength range is preferably a narrow band with a bandwidth of about 20nm. According to its high scattering and strong absorption characteristics, It is used to describe the shape of blood vessels near the superficial layer or the superficial layer; B_LED, preferably has a peak wavelength of 430-460 nm, and further, its peak wavelength is preferably 430-450 nm, through the difference in the reflectivity of the superficial blood vessels and the mucosa forms two on the observed image. To distinguish between them, its wavelength range is preferably narrowband, and its bandwidth is about 20nm; G_LED, preferably has a peak wavelength of 530-560nm, and its bandwidth can be selected to be wideband, such as a bandwidth of about 100nm, and G_LED is a fluorescent LED; R_LED, Preferably, it has a peak wavelength of 600-640 nm, and its wavelength range is preferably a narrow band with a bandwidth of about 20 nm.
具体地,第三LED发光元件13为由蓝色LED激发荧光体而发射绿光,即荧光型G_LED,其中蓝色LED具有峰值波长位于410~440nm的蓝色激发光,由蓝色激发光激发荧光物质产生绿光,少量蓝色激发光不被荧光物质吸收而直接透射,所以第三LED发光元件13发光光谱除包含绿色波段光谱,还包含少量蓝色激发光,相对于本身发光为绿色的LED,荧光型绿色LED更容易实现高输出光功率。Specifically, the third LED light-emitting
在使用时,第二二向色镜32上的第一光学面32A实现G_LED发射光中短波段的蓝色激光光的截止滤波,阻止蓝色激发光进入后续光路,其输出照明光中G_LED与B_LED分量光谱波段几乎互不重叠,通过独立地进行各色光谱成分的比例调整,简化光谱和光通量的控制策略,实现高精度的照明光色调和光通量稳定性控制。In use, the first
本申请中第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14的光谱曲线为图3A所示,光谱L1对应UV_LED紫外光光谱,光谱L2对应B_LED蓝光光谱,光谱L3对应G_LED蓝色激发光与(荧光型)绿光的混合光光谱,光谱L4对应R_LED红光光谱。The spectral curves of the first LED light-emitting
如图3B并结合图2所示,第三二向色镜33上的第一光学面33A,具有过渡区波长约为410-430nm的短波通特性F3,用于透射UV_LED低于420nm且反射B_LED高于420nm的光,完成UV_LED发射的紫光与B_LED发射的蓝光的光路集成。As shown in FIG. 3B and in conjunction with FIG. 2 , the first
如图3C并结合图2所示,第二二向色镜32上的第一光学面32A,具有过渡区波长约为460-480nm的长波通特性F2,用于反射UV_LED和B_LED低于于470nm且透射G_LED高于470nm的光,完成UV_LED发射的紫光、B_LED发射的蓝光与G_LED发射的绿光的光路集成。As shown in FIG. 3C and in conjunction with FIG. 2 , the first
如图3D并结合图2所示,第一二向色镜31上的第一光学面31A,具有过渡区波长约为590-610nm的长波通特性F1,用于反射UV_LED、B_LED和G_LED低于600nm且透射R_LED高于600nm的光,完成UV_LED发射的紫光、B_LED发射的蓝光、G_LED发射的绿光与R_LED发射的红光的光路集成后输出合成光。As shown in FIG. 3D and in conjunction with FIG. 2 , the first
本申请中UV_LED通过第三二向色镜33上的第一光学面33A的长波截止与B_LED进行光谱分离,实现独立的光谱B1(≤420nm);B_LED通过第三二向色镜33上的第一光学面33A的短波截止和第二二向色镜32上的第一光学面32A的长波截止进行光谱分离,实现独立的光谱B2(420~470nm);G_LED通过第二二向色镜32上的第一光学面32A的短波截止和第一二向色镜32上的第一光学面31A的长波截止进行光谱分离,实现独立的光谱B3(470~600nm);R_LED通过第三二向色镜上的第一光学面31A的短波截止(600nm)进行光谱分离,实现独立的光谱B4(≥600nm);其中,本申请中的短波截止与长波截止均相对于具体的发光波段而言,为各LED发光波段的短波端和长波端。In this application, the UV_LED is spectrally separated from the B_LED through the long-wave cutoff of the first
本申请中的第一二向色镜31、第二二向色镜32以及第三二向色镜33在实现UV_LED发射的紫光、B_LED发射的蓝光、G_LED发射的绿光与R_LED发射的红光的光路集成后输出合成光的同时,能实现UV_LED、B_LED、G_LED和R_LED分量光谱曲线相互独立的光谱B1~B4,如图3A所示,本申请中输出的照明光中UV_LED、B_LED、G_LED和R_LED分量光谱波段几乎互不重叠,通过独立地进行各色光谱成分的比例调整,简化光谱和光通量的控制策略,实现高精度的照明光色调和光通量稳定性控制。The first
该装置在输出合成光的同时,如图4并结合图2所示,第一LED发光元件11的发射光经过第三二向色镜33上的第二光学面33B分束后进入到第一光电传感器81中;第三LED发光元件13的发射光经过第二二向色镜32上的第二光学面32B分束后进入到第三光电传感器83中;第四LED发光元件14的发射光经过第一二向色镜31上的第二光学面31B分束后进入到第四光电传感器84中。由于用光电传感器测量光通量的技术原理为现有技术,此处不再累述。While the device outputs synthesized light, as shown in FIG. 4 and in conjunction with FIG. 2 , the emitted light of the first LED light-emitting
同时,第二LED发光元件12的发射光经过第三二向色镜33上的第一光学面33A透射后能够进入到第二光电传感器82中,此时,就可以检测第二LED发光元件12的发射光。At the same time, the emitted light of the second LED light-emitting
进一步地,本申请实施例中的第三LED发光元件13的发射光还可以经过第二二向色镜32上的第一光学面32A透射传输,继而经过第一二向色镜31上的第一光学面31A透射得到检测光束,进入到对应的光电传感器83中进行测量。Further, the emitted light of the third LED light-emitting
本申请通过二向色镜的第一光学面和第二光学面的不同光学特性设计,完成多光源部合光的同时,实现了各光源部发光量的分光检测,在不追加额外的光学元件的情况下(如分束反射镜或其他分束光学元件)获得检测光束实现了分光检测,其中,检测光束为经二向色镜的第一光学面或第二光学面的少量反射和透射光,具有简化的系统设计和反馈控制策略。In the present application, through the design of different optical characteristics of the first optical surface and the second optical surface of the dichroic mirror, the light combining of multiple light source parts is completed, and the spectroscopic detection of the light emission of each light source part is realized without adding additional optical elements. The detection beam is obtained under the circumstance (such as beam-splitting mirror or other beam-splitting optical element) to realize spectroscopic detection, wherein the detection beam is a small amount of reflected and transmitted light passing through the first optical surface or the second optical surface of the dichroic mirror , with simplified system design and feedback control strategy.
在一些实施例中,至少一个二向色镜上的第一光学面上设置有第一光学区R1和第二光学区R2,第一光学区R1占第一光学面的面积大于等于90%,第二光学区R2占第一光学面的面积小于等于10%;第二光学区R2用于透射对应光源部的发射光,以使得发射光进入到对应的光通量测量件中。In some embodiments, a first optical area R1 and a second optical area R2 are provided on the first optical surface of at least one dichroic mirror, and the first optical area R1 occupies 90% or more of the area of the first optical surface, The second optical area R2 occupies less than or equal to 10% of the area of the first optical surface; the second optical area R2 is used to transmit the emitted light of the corresponding light source part, so that the emitted light enters the corresponding luminous flux measuring element.
示例性的,为了方便检测第二LED发光元件12即B_LED中的光通量,第三二向色镜33的第一光学面33A具有分区镀膜特性,具体地,如图5A中的左右两图所示,本申请在第三二向色镜33上的第一光学面33A上设置有第一光学区R1和第二光学区R2,且第一光学区R1和第二光学区R2具有不同的镀膜特性,第一光学区R1占第一光学面的面积大于等于90%,第二光学区R2占第一光学面的面积小于等于10%。Exemplarily, in order to facilitate the detection of the luminous flux in the second LED light-emitting
该第一光学区R1用于透射第一LED发光元件11上波长低于420nm的光束且反射第二LED发光元件12上波长大于420nm的光束以形成合成光;第二光学区R2用于透射第二LED发光元件12的射出光,以使得射出光进入到第二光电传感器82中。The first optical zone R1 is used to transmit the light beam with the wavelength lower than 420 nm on the first LED light-emitting
在使用时,第一光学区R1具有二向色滤光膜F3,第二光学区R2不镀膜,或,第二光学区R2上设置有对B_LED发射蓝光进行以透射为主的分束膜F5,或第二光学区R2上设置有增透特性的增透膜F6从而实现B_LED发射光经第二光学区R2透射性分光到对应的第二光电传感器82中。In use, the first optical area R1 has a dichroic filter film F3, the second optical area R2 is not coated, or the second optical area R2 is provided with a beam splitting film F5 that mainly transmits blue light emitted by the B_LED , or the second optical zone R2 is provided with an anti-reflection film F6 with anti-reflection properties, so that the light emitted by the B_LED can be transmitted and split into the corresponding
进一步地,如图5A所示,本申请中的第二光学区R2可以为方形或者圆形,第二光学区R2大小和形状的设计,应匹配第二光电传感器82所具有的感光面的大小,即B_LED发射光经第二光学区R2的透射光束,作为检测光进入第二光电传感器82的感光面,检测光尺寸大于或近似等于第二光电传感器82的感光面尺寸。Further, as shown in FIG. 5A , the second optical zone R2 in the present application may be a square or a circle, and the design of the size and shape of the second optical zone R2 should match the size of the photosensitive surface of the second
本申请中当第二光学区R2不镀膜时,根据光学材料的菲涅尔反射特性,若采用BK7光学玻璃作为第三二向色镜33的基底材料,则区域R2具有接近90%的透光率,即可达到B_LED发射光的透射性分光,具有简化工艺的特点。In this application, when the second optical region R2 is not coated, according to the Fresnel reflection characteristics of the optical material, if BK7 optical glass is used as the base material of the third
在一些实施例中,通过第二光学区R2透射到对应的光通量测量件的光敏面正对经第二光学区透射的二向色镜的检测光轴的方向。In some embodiments, the photosensitive surface transmitted to the corresponding luminous flux measuring element through the second optical zone R2 is in the direction of the detection optical axis of the dichroic mirror transmitted through the second optical zone.
示例性的,如图4并结合图5A所示,第二光学区R2透射到第二光电传感器82的光敏面的光方向正对第二LED发光元件12经二向色镜33第二光学区R2透射的检测光束光轴(检测光轴)方向,同时,第二LED发光元件12的发射光经过第三二向色镜33上的第一光学面33A的第二光学区R2透射后的检测光束,直接照射到第二光电传感器82上的光敏面,从而可以使得第二光电传感器82最佳的接收对应的检测光。Exemplarily, as shown in FIG. 4 in conjunction with FIG. 5A , the direction of the light transmitted from the second optical zone R2 to the photosensitive surface of the
在一些实施例中,通过第二光学区R2透射到对应的光通量测量件上的光束尺寸大于光敏面尺寸,第二LED发光元件12的检测光束完全覆盖第二光电传感器82上的光敏面。In some embodiments, the size of the beam transmitted to the corresponding luminous flux measuring element through the second optical region R2 is larger than the size of the photosensitive surface, and the detection beam of the second LED light-emitting
示例性的,如图4并结合图5A所示,第二LED发光元件12即B_LED发射光通过第二光学区R2透射到第二光电传感器82上的光束尺寸大于第二光电传感器82感光面的尺寸。因此,B_LED入射到第二光电传感器82的检测光,留有一定余量地覆盖第二光电传感器82的感光面,从而使得第二光电传感器82对安装位置不敏感,保证系统可靠性,控制生产成本。Exemplarily, as shown in FIG. 4 in conjunction with FIG. 5A , the size of the light beam transmitted from the second LED light-emitting
在一些实施例中,通过第二光学面反射到对应的光通量测量件的感光面与经第二光学面反射的二向色镜的检测光轴的方向成垂直设置。In some embodiments, the photosensitive surface of the corresponding luminous flux measuring element reflected by the second optical surface is disposed perpendicular to the direction of the detection optical axis of the dichroic mirror reflected by the second optical surface.
示例性的,如图4所示,第一LED发光元件11经过第三二向色镜33上的第二光学面32B反射的沿竖直方向的光即为检测光轴所在方向,经过第三二向色镜33上的第二光学面32B反射的沿竖直方向的光与对应的第一光电传感器81的感光面垂直;第三光电传感器83上的感光面与对应的第二二向色镜32上的第二光学面32B反射的检测光轴垂直;第四光电传感器84上的感光面与对应的第一二向色镜31上的第二光学面31B反射的检测光轴垂直。Exemplarily, as shown in FIG. 4 , the light in the vertical direction reflected by the first LED light-emitting
本申请中由于第一光电传感器81、第三光电传感器83以及第四光电传感器84的感光面对应与第三二向色镜33上的第二光学面33B、第二二向色镜32上的第二光学面32B以及第一二向色镜31上的第二光学面31B反射的检测光轴成垂直设置,从而可以使得第一光电传感器81、第三光电传感器83以及第四光电传感器84最佳地接收对应的检测光。In this application, since the photosensitive surfaces of the first
在一些实施例中,通过第二光学面反射到对应的光通量测量件的感光面尺寸均远小于对应光源部上的检测光的光束尺寸。In some embodiments, the size of the photosensitive surface reflected by the second optical surface to the corresponding luminous flux measuring element is much smaller than the beam size of the detection light on the corresponding light source part.
示例性的,第一光电传感器81上的感光面尺寸远小于第一LED发光元件11上检测光的光束尺寸,第三光电传感器83上的感光面尺寸远小于第三LED发光元件13上检测光的光束尺寸,第四光电传感器84上的感光面尺寸远小于第四LED发光元件14上检测光的光束尺寸。Exemplarily, the size of the photosensitive surface on the
具体地,第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14通过对应的第二光学面反射的检测光光束尺寸远大于对应的第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84上感光面的尺寸,这样可以使得光通量测量件对安装位置不敏感,提高了整体装置的可靠性,同时降低了生产成本。Specifically, the size of the detection light beam reflected by the first LED light-emitting
为了避免第一光电传感器81和第二光电传感器82空间位置干涉,如图5B所示,在设计时,用于接收第二光学面反射光的第一光电传感器81进行适量的空间位置偏移以避开用于接收第一光学面透射的第二光电传感器82所在空间。例如:第一光电传感器81和第二光电传感器82在检测光路空间进行上下偏移,或进行左右偏移。见图5B所示,图中所示圆直径为检测光轴的光束直径,所述检测光束为近似准直光束C1~C4经二向色镜第二光学面反射后的光束,第一光电传感器81和第二光电传感器82上下或左右并列设置,最佳地接收第一LED发光元件11和第二LED发光元件12的检测光,第一光电传感器81偏移后依然满足第二LED发光元件12的检测光束完全覆盖第二光电传感器82上的光敏面,此时,接收到的光通量不低于原有光通量90%。In order to avoid the spatial position interference of the first
在一些实施例中,二向色镜为多个;多个二向色镜的第二光学面上分别设置有分束膜,分束膜用于对相应的光源部的发射光进行分束,每个分束膜用于分束的不同波长的发射光;分束膜的分束波长范围由发射光的波长确定。In some embodiments, there are multiple dichroic mirrors; beam splitting films are respectively provided on the second optical surfaces of the multiple dichroic mirrors, and the beam splitting films are used for splitting the emitted light of the corresponding light source parts, Each beam splitting film is used to split the emitted light of different wavelengths; the beam splitting wavelength range of the beam splitting film is determined by the wavelength of the emitted light.
本申请中的第一二向色镜31上的第二光学面31B、第二二向色镜32上的第二光学面32B以及第三二向色镜33上的第二光学面33B均具有分光特性,通过反射特性为辅、透射特性为主的分束分光特性,即反射少量光,透射大部分光,实现反射性分光,当反射性分光照射到对应的光电传感器中,就能够实现对应LED光通量的检测。In the present application, the second
具体地,本申请中的第三二向色镜33上的第二光学面33B具有第三分色膜FT3,其能够对UV_LED发出的紫光具有小于等于10%低反射的部分反射特性和大于等于90%高透射的透射特性;第二二向色镜32上的第二光学面32B具有第二分色膜FT2,其能够对G_LED发出的绿光具有小于等于10%低反射的部分反射特性和大于等于90%高透射的透射特性;第一二向色镜31上的第二光学面31B具有第三分色膜FT1,其能够对R_LED发出的红光具有小于等于10%低反射的部分反射特性和大于等于90%高透射的透射特性。Specifically, the second
在使用时,第一LED发光元件11即UV_LED发出的紫光中的小于等于10%的光量通过第三二向色镜33上的第二光学面33B反射,部分反射光进入到对应的第一光电传感器81中;第三LED发光元件13即G_LED发出的绿光中的小于等于10%的光量通过第二二向色镜32上的第二光学面32B反射,部分反射光进入到对应的第三光电传感器83中;第四LED发光元件14即R_LED发出的红光中的小于等于10%的光量通过第一二向色镜31上的第二光学面31B反射,部分反射光进入到对应的第四光电传感器84中,从而就能够实现UV_LED、G_LED以及R_LED光通量的检测。In use, less than or equal to 10% of the violet light emitted by the first LED light-emitting
本申请第三二向色镜33上的第二光学面33B、第二二向色镜32上的第二光学面32B以及第一二向色镜31上的第二光学面31B能够反射小于等于10%的光量,或反射小于等于5%的光量,根据光电传感器81-84的感光特性,该装置在不过多牺牲有效照明光的情况下就能够保证检测光量保持在合适的水平。The second
在一些实施例中,二向色镜为多个;多个二向色镜的第二光学面上设置有同一分束膜;同一分束膜用于分束由第二光学面反射的发射光,在第二光学面反射的发射光波段不同时,同一分束膜的分束波长范围能够覆盖不同波长的发射光的波长范围。In some embodiments, there are multiple dichroic mirrors; the second optical surfaces of the multiple dichroic mirrors are provided with the same beam splitting film; the same beam splitting film is used to split the emitted light reflected by the second optical surface , when the wavelength bands of the emitted light reflected by the second optical surface are different, the wavelength range of the beam splitting film of the same beam splitting film can cover the wavelength range of the emitted light of different wavelengths.
示例性的,本申请中的第一二向色镜31上的第二光学面31B、第二二向色镜32上的第二光学面32B以及第三二向色镜33上的第二光学面33B均设置有同一光学膜FT4,该光学膜FT4可以为宽波段的分束膜,同时,该光学膜FT4至少覆盖上述UV_LED、G_LED和R_LED发射光波段的宽波段(370~650nm),在370~650nm的宽波段范围内具有一致性较好的小于等于10%低反射的部分反射特性和大于等于90%高透射的透射特性。本申请实施例中采用相同的光学膜FT4,简化了工艺且降低了系统成本。Exemplarily, in the present application, the second
在一些实施例中,光源检测装置还包括开口光阑,其中,第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84的前端设置有开口光阑。In some embodiments, the light source detection device further includes an aperture diaphragm, wherein the front ends of the first
本申请通过开口光阑的尺寸限制,调节入射到第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84中检测光量的大小,以达到检测灵敏度与最大检测饱和光量的平衡,实现高动态范围的光量监测。The present application adjusts the amount of detected light incident to the first
在一些实施例中,光源检测装置还包括背景光检测器8A,背景光检测器8A的位置与第二光电传感器82的位置相对应。In some embodiments, the light source detection device further includes a
示例性的,如图5C所示,设置背景光检测器8A来消除背景杂光对第二光电传感器82测量结果的影响。本申请在第二光电传感器82的一侧设置背景光检测器8A,背景光检测器8A几乎不能接收到B_LED发射光经第一光学区R1透射的检测光束。通过第二光电传感器82的检测信号与背景光检测器8A所检测到的背景光信号相减,得到与输出B光更一致的B光检测信号,从而实现了精度更高的B光光量控制。Exemplarily, as shown in FIG. 5C , the
进一步地,为了不增加使用背景光检测器8A,本申请可以使用第一光电传感器81作为背景光检测光电探测器,其基本不能接收B光检测光束,达到简化系统的目的。Further, in order not to increase the use of the
再进一步地,如图5C所示,本申请还设置有背景光检测光电探测器8B,背景光检测光电探测器8B位于近似准直光束C1经第二光学面31B反射得到的UV光检测光束直径之外,即背景光检测光电探测器8B几乎接收不到UV光经第二光学面31B反射的UV光,通过第一光电传感器81的检测信号与背景光检测光电探测器8B所检测到的背景光信号相减,得到与输出UV光更一致的UV光检测信号,实现精度更高的UV光光量控制;同样地,可对第三光电传感器83、第四光电传感器84设置相应的背景光检测光电探测器,来消除背景杂光影响,提高检测精度,此处不再累述。Further, as shown in FIG. 5C , the present application is also provided with a background
在一些实施例中,光源检测装置还包括滤光片,第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84的前端设置有滤光片。In some embodiments, the light source detection device further includes a filter, and the front ends of the
为实现照明光色调稳定及亮度的高精度控制,可以对其中一个光电传感器或者一个以上的光电传感器检测光束的光谱进行光谱滤波。可选地,本申请对第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84检测光束的光谱均进行光谱滤波,本申请在第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84的测量光路中配置滤光片,截止超出输出照明光中光谱范围的部分,实现与第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14输出光谱B1~B4一致或近似的测量光谱。In order to achieve stable illumination light tone and high-precision control of brightness, spectral filtering can be performed on the spectrum of the detection beam of one of the photosensors or more than one photosensors. Optionally, the present application performs spectral filtering on the spectra of the detected light beams of the
本申请通过第一光电传感器81、第二光电传感器82、第三光电传感器83以及第四光电传感器84的光量检测与输出光中第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14分量输出强相关的对应关系,保证光量检测的准确度,从而维持照明光色调稳定性和光通量稳定性,同时也简化了光量控制策略。In this application, the first LED light-emitting
在设计时,至少地在第三光电传感器83前端配置光谱B3范围内具有透射特性的带通滤光片L3,有效滤除荧光型G_LED发光光谱中的蓝色激发光,保持G_LED检测光束光谱与输出光谱B3近似或一致;或者,在第一光电传感器81前端配置光谱B1范围内具有透射特性的短波通或带通滤光片L1;在第二光电传感器82前端配置光谱B2范围内具有透射特性的带通滤光片L2;在第四光电传感器84前端配置光谱B4范围内具有透射特性的长波通或带通滤光片L4。In the design, at least the front end of the third
在一些实施例中,光源检测装置还包括多个准直透镜,每个光源部的发射光均经过对应的准直透镜后照射到对应的二向色镜上。In some embodiments, the light source detection device further includes a plurality of collimating lenses, and the emitted light of each light source portion is irradiated on the corresponding dichroic mirror after passing through the corresponding collimating lens.
示例性的,如图2所示,该光源检测装置第一准直透镜21、第二准直透镜22、第三准直透镜23以及第四准直透镜24;第一准直透镜21、第二准直透镜22、第三准直透镜23以及第四准直透镜24分别对第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14发射照明光进行准直得到近似准直光束C1~C4,随后第一二向色镜31、第二二向色镜32以及第三二向色镜33通过透射或反射对应的近似准直光束C1~C4完成光路集成,得到合光光束C5。Exemplarily, as shown in FIG. 2 , the light source detection device has a
在一些实施例中,光源检测装置还包括聚焦透镜,聚焦透镜设置在输出的合成光的照射路径上。如图2所示,聚焦透镜4将得到的光束C5进行汇聚,在出光口形成具有一定孔径角β的聚焦光束A,该聚焦光束A经耦合进入对应的导光束5中。In some embodiments, the light source detection device further includes a focusing lens, and the focusing lens is arranged on the irradiation path of the output synthetic light. As shown in FIG. 2 , the focusing
在一些实施例中,如图1所示,光源检测装置还包括散热部20,该散热部20的位置与光源部的位置相对应,用于对光源部进行散热。In some embodiments, as shown in FIG. 1 , the light source detection device further includes a
在使用时,由于第一LED发光元件11、第二LED发光元件12、第三LED发光元件13以及第四LED发光元件14的相关参数受工作温度影响,如发光光量及光谱,LED工作过程中产生热量导致结温(PN结温度)升高,一方面导致峰值波长漂移,另一方面光通量随结温升高而有所下降,其中第四LED发光元件14所使用的R_LED尤为明显,内窥镜光源装置对各LED发光元件进行散热控制以维持工作温度在合理范围。During use, since the related parameters of the first LED light-emitting
该散热部20可采用多种方式组合散热,如对各LED发光元件采用导热胶、导热片、散热鳍片、水冷或液冷等方式进行传导散热;进一步进地,散热部20还包括配置于各LED发光元件或外部空间的一个或多个风扇进行风冷扇热,用于对各LED发光元件,或/和内窥镜光源装置其他组件(如电路控制组件)进行整体散热。The
本申请中光源检测装置不仅仅限于对四个LED发光元件进行检测,如图6所示,该光源检测装置包括第一LED发光元件11、第二LED发光元12、第三LED发光元件13、第四LED发光元14以及第五LED发光元件15;图7A给出了各LED及二向色镜光谱曲线图;图7B、图7C、图7D以及图7E对应给出了第四二向色镜的光谱曲线图、第三二向色镜的光谱曲线图、第二二向色镜的光谱曲线图以及第一二向色镜的光谱曲线图;图7F给出了图6中的第二二向色镜F2和F2B光谱曲线图;图8对应为图6的检测装置,其在前述的基础上还包括第五准直透镜25和第四二向色镜34以及第五光电传感器85。The light source detection device in this application is not limited to detecting four LED light-emitting elements. As shown in FIG. 6 , the light source detection device includes a first LED light-emitting
图6中的装置相对于前述增加了琥珀色LED15(A-LED),即五个LED发光元件LED11~15分别为紫外LED11(UV-LED)、蓝色LED12(B-LED)、绿色LED13(G-LED)、红色LED14(R-LED),琥珀色LED15(A-LED);其中,琥珀色LED15(A-LED),优选地,其峰值波长为590-610nm,血红蛋白在600nm附近对光的吸收程度变化幅度较大,LED14(R_LED)的峰值波长位于620-640nm,相比600nm波长光吸收系数小,同时活体组织散射系数也更小,根据LED15与LED16发光光谱600nm与630nm附近的窄带光的吸收和散射特性差异,有利于提高深部血管的可视性,其他的结构都和前述相同,此处不再累述。第一二向色镜31的第二光学面上设置有分束膜F1B;分束膜F3B能够对第二LED发光元件12发射出的光束在反射的同时进行透射得到B光检测光束,所述检测光束进入到第二光电传感器82中进行检测。The device in FIG. 6 has an amber LED15 (A-LED) added to the aforementioned device, that is, the five LED light-emitting elements LED11-15 are respectively an ultraviolet LED11 (UV-LED), a blue LED12 (B-LED), a green LED13 ( G-LED), red LED14 (R-LED), amber LED15 (A-LED); wherein, amber LED15 (A-LED), preferably, its peak wavelength is 590-610nm, and hemoglobin is near 600nm. The absorption degree of LED14 (R_LED) varies greatly. The peak wavelength of LED14 (R_LED) is located at 620-640nm, which is smaller than the light absorption coefficient of 600nm wavelength, and the scattering coefficient of living tissue is also smaller. According to the narrow band near 600nm and 630nm of LED15 and LED16 The difference in light absorption and scattering characteristics is beneficial to improve the visibility of deep blood vessels. Other structures are the same as the above, and will not be repeated here. The second optical surface of the first
具体地,第一二向色镜31A的的第一光学面过渡区波长为范围为410-430nm,对UV_LED发射的紫外光(≤420nm),其透过率根据镀膜工艺达到最佳透过率T1,优选地,T1≥97%;同时,对B_LED发射的蓝光(≥420nm),具有以反射特性为主、透射特性为辅的分光特性,优选地,第一光学面31A在430nm以上波段的反射率R1和透过率T2通过分束膜设计,具有对B光小于等于10%的透过特性,且对B光具有大于等于90%的反射特性,F1B镀膜特性对UV_LED发射的紫光高透,对B_LED发射的蓝光大于等于90%反射的同时小于等于10%的透射,使得UV_LED发射光与B_LED光合光的同时实现B_LED的透射性分光,作为检测光进入光通量测量件PD82对B_LED输出光通量进行检测。Specifically, the wavelength of the transition region of the first optical surface of the first
R_LED发射光依次经第四二向色镜34第一光学面34A反射,再经第三二向色镜33第一光学面33A反射,然后经第二二向色镜32第二光学面32B反射得到R光检测光束,作为检测光进入光通量测量件PD84对R_LED输出光通量进行检测。The emitted light of R_LED is sequentially reflected by the first
其中,G_LED的光路集成在B_LED的光路集成之前进行,作为G_LED的光路和B_LED的光路集成的二向色镜32的第一光学面32A,实现G_LED发射光中的蓝色激发光截止,具有完全截止G_LED反射光中蓝色激发光和完全反射B_LED发射光的特性,即B_LED发射蓝光的反射率根据镀膜工艺达到最高,几乎不具有透射蓝光的分光特性。Among them, the optical path integration of G_LED is performed before the optical path integration of B_LED, as the first
由于本申请实施例其他检查原理与前述相同,此处不再累述。Since other inspection principles in the embodiments of the present application are the same as those described above, they are not repeated here.
如图9所示,本申请还提供了一种第三光学装置检测光路示意图,其包括第一LED发光元件11、第二LED发光元件12、第三LED发光元件13、第四LED发光元件14以及第五LED发光元件15,其中,第一LED发光元件11、第二LED发光元件12、第三LED发光元件13、第四LED发光元件14已在前述中对应描述,此处不再累述。第五LED发光元件15为琥珀色光源。图10给出了该实施例中的第一二向色镜31光谱曲线图,图11给出了该光学装置检测光路变化例示意图。As shown in FIG. 9 , the present application also provides a schematic diagram of a detection light path of a third optical device, which includes a first LED light-emitting
具体地,该包括第一LED发光元件11、第二LED发光元件12、第三LED发光元件13、第四LED发光元件14以及第五LED发光元件15的五路合光系统,其对应为紫外(UV-LED)、蓝色(B-LED)、绿色(G-LED)、红色(R-LED)以及琥珀色(A-LED)。Specifically, the five-way light combining system including the first LED light-emitting
其中,G_LED的光路集成在B_LED的光路集成之后进行,进一步地,光源部根据发射波长,由短到长地依次进行光路集成,由此,第一二向色镜31的第一光学面31A、第二二向色镜32的第一光学面32A、第三二向色镜33的第一光学面33A、以及第四二向色镜34的第一光学面34A具有长波通或短波通特性具有简化镀膜工艺与降低系统成本的特点。The optical path integration of the G_LED is performed after the optical path integration of the B_LED. Further, the light source unit performs optical path integration in sequence from short to long according to the emission wavelength, so that the first
同时,第二二向色镜33的第一光学面33A和第四二向色镜34的第一光学面34A的特性见图3C和3B所示;第二二向色镜32的第一光学面32A的特性见图7C所示;第一二向色镜31的第一光学面31A具有过渡区波长约为600-630nm的长波通特性,透射R_LED高于610nm且反射A-LED低于610nm的光,完成UV_LED、B_LED、G_LED和A_LED发射的紫光、蓝光、绿光和琥珀色光与R_LED发射的红光的光路集成;Meanwhile, the characteristics of the first
该装置通过各LED光通量的反馈控制,实现照明光的稳定色调及输出光量的精确控制,具体地,设置多个光通量测量件81~85对各LED输出光通量进行检测,优选地,光通量测量件件81~85具有光电传感器PD81~85。The device realizes the stable color tone of the illumination light and the precise control of the output light quantity through the feedback control of the luminous flux of each LED. 81 to 85 have photoelectric sensors PD81 to 85.
通过二向色镜31、33、34的第二光学面31B、33B、34B的分束分光特性,将R_LED、G_LED和UV_LED的发射光部分分束并进入与各LED相对应的光通量测量件84、83、81;通过二向色镜32上的第一光学面32A上的第二光学区R2的分光特性,将A_LED发射光通过第二光学区R2的透射分束并进入与光通量测量件85;通过二向色镜34第一光学面34A第二光学区R2的分光特性,或者二向色镜34上的第一光学面34A的分束特性,将B_LED发射光透射分束并进入与光通量测量件82;二向色镜31、33、34第二光学面31B、33B、34B的分束分光特性,以及二向色镜32、34第一光学面32A、34A的分区镀膜特性或二向色分束特性,与实施例一~三进行同理设计,实现各LED在光路集成的同时完成分光检测。Through the beam splitting characteristics of the second
优选地,二向色镜32和34对应的第一光学面32A和34A的第二光学区R2不镀膜,或具有相同的镀膜特性,即同时具有对A_LED发射琥珀色光和B_LED发射蓝光进行约95%透射和约5%反射的分束膜F5,或者增透特性的增透膜F6,参考实施例一第二镀膜工序,对二向色镜32和34第一光学面32A和34A的第二光学区R2可同批次镀膜,简化镀膜工艺,降低系统成本。Preferably, the second optical regions R2 of the first
光通量测量件81和82,对光通量测量件82进行偏移,光电传感器PD81和PD82在图9所示的检测光路空间上下或左右并列设置,最佳地接收LED11和LED12的检测光。The luminous
该装置检测光路变化例见图11所示,可选地,对B_LED发出的B光的分光检测方案,采用将二向色镜32第二光学面32B设置为具有分束分光特性,B_LED发射光依次经二向色镜34和33第一光学面34A和33A反射,进入二向色镜32第二光学面32B进行分光得到B光检测观赏,作为检测光进入光通量测量件82,达到B光的反射分光检测,光通量测量件82和85,对光通量测量件82进行偏移,光电传感器82和85在图10所示第二光学装置检测光路空间上下或左右并列设置。An example of the change of the detection optical path of the device is shown in Figure 11. Optionally, for the spectroscopic detection scheme of the B light emitted by the B_LED, the second
优选地,光通量测量件81~85所接收检测光量占比各LED发射光量的比例适中,一方面达到充足的光量,以满足系统监测精度,另一方面,发射光量不至于过量,避免过多的检测光量带来光电传感器11~15饱和,又能达到系统所需最大化的动态检测范围,在对各LED光通量进行高精度高动态范围检测的同时,又不过多的损失有效输出照明光。Preferably, the amount of detected light received by the luminous
同时,荧光型G_LED发射绿光的同时具有蓝色激发光,为防止G_LED的蓝色激发光经过下游光路中二向色镜的分区镀膜分光或二向色分束特性透射进入有效照明光路中,检测光路满足如下条件:At the same time, the fluorescent G_LED emits green light and has blue excitation light. In order to prevent the blue excitation light of the G_LED from being transmitted into the effective illumination light path through the subdivision coating splitting or dichroic beam splitting characteristics of the dichroic mirror in the downstream optical path, The detection optical path meets the following conditions:
实现G_LED作为G_LED的光路和B_LED的光路集成的二向色镜的第一光学面,实现现G_LED发射光中的蓝色激发光截止,且具有完全截止G_LED反射光中蓝色激发光和完全反射B_LED发射光的特性,即B_LED发射蓝光的反射率根据镀膜工艺达到最高,几乎不具有透射蓝光的分光特性。Realize G_LED as the first optical surface of the dichroic mirror integrating the optical path of G_LED and the optical path of B_LED, realize the cut-off of blue excitation light in the emission light of G_LED, and have complete cut-off of blue excitation light and complete reflection in the reflected light of G_LED The characteristics of the light emitted by the B_LED, that is, the reflectivity of the blue light emitted by the B_LED reaches the highest level according to the coating process, and hardly has the spectral characteristics of transmitting blue light.
上述条件限制阻止输出照明光中G_LED的蓝色激发光与B_LED发射蓝光成分相互混淆,达到输出照明光中各光源部分量光谱曲线相互独立,尽可能少地或几乎不存在波段相互重叠的部分;对采用其他荧光型LED进行合光的的内窥镜光源装置100,其检测光路具有类似的特点。The above constraints prevent the blue excitation light of G_LED and the blue light emitted by B_LED from being confused with each other in the output illumination light, so that the spectral curves of each light source part in the output illumination light are independent of each other, and there are as few or almost no overlapping bands as possible; The detection light path of the endoscope
该检测光路在满足上述条件和检测效果前提下,根据上述多种检测方案具有不同的组合变化形式,隶属属于本发明范畴;Under the premise of satisfying the above conditions and detection effects, the detection optical path has different combinations and variations according to the above-mentioned various detection schemes, and belongs to the scope of the present invention;
如图1所示,本申请的内窥镜系统具备:光源检测装置100、内窥镜101、图像处理部30、控制部40、输入部70以及显示部80,其中,光源检测装置100包括N个光源部和合光模组10,其中,光源部11~1N的光源类型为LED或LD,包括荧光型LED或LD,如荧光型绿色LED或LD,或其他类型的光源。As shown in FIG. 1 , the endoscope system of the present application includes a light
内窥镜101包括设置其中的导光部50,导光部由导光束5构成;内窥镜101还包括设置于前端的照明透镜51和摄像模组60,摄像模组60包含摄像物镜和图像传感器,例如CCD(Charge Coupled Device:电荷耦合元件)或CMOS(Complementary Metal OxideSemiconductor)传感器等光电转换器件;内窥镜101还包括分布于内窥镜101中的连接线缆。The
合光模组10将各光源部11~1N输出光进行光路集成后输出合成光,合成光耦合进入内窥镜101内部导光部50,导光部50内部含有紧密排布、用于光传播的光纤组合成的导光束5,经导光部50内导光束传输至前端照明透镜51进行光束扩散,形成投射于观察目标的照明光。The light combining module 10 integrates the output light of each light source part 11-1N and outputs the combined light, and the combined light is coupled into the
光源检测装置100提供目标(体腔内活体组织)观察所需的照明光,摄像模组60对观察区域(活体组织粘膜及血管等)成像,导光部50将光源检测装置100的输出光传输至内窥镜101前端,由照明透镜51进行照明光发散角扩散,为观察区域提供充足照明;摄像模组60拍摄所得图像信号经连接线缆传输至图像处理部30进行信号处理,然后输出到显示部80进行图像显示。The light
控制部40基于各光源部11~1N驱动电流(或电压)调整实现输出光通量变化,或通过调节电流脉冲占空比PWM(Pulse Width Modulation)改变光通量;控制部40控制光源检测装置100和摄像模组60的工作状态,例如,根据预设光通量比控制各光源部11~1N的输出光通量比例,根据摄像模组60成像的亮暗水平整体调整各光源部11~1N输出光通量大小,或根据输入部70外部输入指令进行普通白光、混合光或特殊光多种照明光模式之间的切换。The
具体地,控制部40通过光通量测量件的测量结果实现对各LED发光元件驱动电流(或电压)反馈控制,首先,对各个光通量测量件检测信号进行标定,建立起各光源部驱动电流、检测信号与输出光通量各LED发光元件分量之间的对应关系。标定时,逐点改变或增加各LED发光元件的驱动电流,分别测试相应电流下各个光通量测量件的检测信号与输出光通量各LED发光元件分量,得到各LED发光元件驱动电流、检测信号及输出光通量三者的关系曲线完成标定,然后将标定结果存储于控制部40中。通过各个光通量测量件的实时信号检测,结合标定结果,精确地实现各个LED发光元件输出光量的反馈控制。Specifically, the
通过控制部40的控制策略,使各个LED发光元件的输出光通量按照预设的比例输出且保持恒定,得到适合内窥镜系统的多种观察模式。基本地,具有白光照明的普通光观察模式M1,得到活体组织的整体轮廓图像;还具有区别于普通白光照明的第一特殊光观察模式M2,如通过设置发射紫光或蓝光的第一LED发光元件11或第二LED发光元件12输出光通量为主要照明光分量,根据血管中血液对紫光或蓝光的高吸收特性,用于浅表层或表层血管的强调观察;或者,还具有混合光观察模式M3,区别于普通光照明和特殊光照明,具有特殊光照明的部分光谱,且具有普通光照明的部分光谱,得到区别于二者的混合光谱输出,实现兼顾活体组织整体轮廓和血管强调观察的图像;还具有用于进行出血点观察的第二特殊光观察模式M4,通过设置发射绿色、琥珀色和红色的第三LED发光元件13、第五LED发光元件15和第四LED发光元件14同时工作,在观察图像上进行出血点位置显示。Through the control strategy of the
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the patent application. It should be noted that, for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210989280.8A CN115200703A (en) | 2022-08-17 | 2022-08-17 | Light source detection device |
PCT/CN2023/113538 WO2024037590A1 (en) | 2022-08-17 | 2023-08-17 | Light source apparatus and endoscopic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210989280.8A CN115200703A (en) | 2022-08-17 | 2022-08-17 | Light source detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115200703A true CN115200703A (en) | 2022-10-18 |
Family
ID=83585508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210989280.8A Pending CN115200703A (en) | 2022-08-17 | 2022-08-17 | Light source detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115200703A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024037590A1 (en) * | 2022-08-17 | 2024-02-22 | 常州联影智融医疗科技有限公司 | Light source apparatus and endoscopic system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111176A (en) * | 2011-11-28 | 2013-06-10 | Fujifilm Corp | Light source device for endoscope |
CN104510435A (en) * | 2013-10-03 | 2015-04-15 | 富士胶片株式会社 | Light source apparatus used for endoscope and endoscope system using same |
CN104514988A (en) * | 2013-10-01 | 2015-04-15 | 欧司朗股份有限公司 | Lighting device comprising measuring device and method for operating the lighting device |
US20200029786A1 (en) * | 2018-07-26 | 2020-01-30 | Fujifilm Corporation | Light source device for endoscope and endoscope system |
CN111557632A (en) * | 2020-06-12 | 2020-08-21 | 深圳开立生物医疗科技股份有限公司 | Endoscope light source and endoscope system |
CN113164026A (en) * | 2018-12-04 | 2021-07-23 | 奥林巴斯株式会社 | Light source device |
CN115227187A (en) * | 2022-08-17 | 2022-10-25 | 常州联影智融医疗科技有限公司 | Endoscope light source device and endoscope system |
-
2022
- 2022-08-17 CN CN202210989280.8A patent/CN115200703A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111176A (en) * | 2011-11-28 | 2013-06-10 | Fujifilm Corp | Light source device for endoscope |
CN104514988A (en) * | 2013-10-01 | 2015-04-15 | 欧司朗股份有限公司 | Lighting device comprising measuring device and method for operating the lighting device |
CN104510435A (en) * | 2013-10-03 | 2015-04-15 | 富士胶片株式会社 | Light source apparatus used for endoscope and endoscope system using same |
US20200029786A1 (en) * | 2018-07-26 | 2020-01-30 | Fujifilm Corporation | Light source device for endoscope and endoscope system |
CN113164026A (en) * | 2018-12-04 | 2021-07-23 | 奥林巴斯株式会社 | Light source device |
CN111557632A (en) * | 2020-06-12 | 2020-08-21 | 深圳开立生物医疗科技股份有限公司 | Endoscope light source and endoscope system |
CN115227187A (en) * | 2022-08-17 | 2022-10-25 | 常州联影智融医疗科技有限公司 | Endoscope light source device and endoscope system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024037590A1 (en) * | 2022-08-17 | 2024-02-22 | 常州联影智融医疗科技有限公司 | Light source apparatus and endoscopic system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6417014B2 (en) | Endoscope light source device and endoscope system using the same | |
CN100414378C (en) | LED illumination system having an intensity monitoring system | |
CN107111046B (en) | High radiation LED light engine | |
CN104510435B (en) | Light source device for endoscope and use its endoscopic system | |
JP4925618B2 (en) | Light source device and endoscope provided with the light source device | |
US20170112370A1 (en) | Endoscope system and endoscope light source apparatus | |
WO2014123000A1 (en) | Light source device | |
JP5749633B2 (en) | Endoscope light source device | |
US20080285820A1 (en) | Operating system having an operating lamp and a camera | |
EP2967299A2 (en) | Endoscopic light source and imaging system | |
CN109310311B (en) | Light source device for endoscope, and endoscope system | |
US10799086B2 (en) | Light source device for endoscope and endoscope system | |
JP2013111176A (en) | Light source device for endoscope | |
JP5560215B2 (en) | Endoscope device | |
CN115227187A (en) | Endoscope light source device and endoscope system | |
CN106574755A (en) | Light source device | |
CN115200703A (en) | Light source detection device | |
JP5345597B2 (en) | Temperature control device, temperature control method, light source device, and endoscope diagnosis device | |
CN219250110U (en) | Light source device and endoscope system | |
WO2024037590A1 (en) | Light source apparatus and endoscopic system | |
CN115227188A (en) | Light source device and endoscope system | |
JP6681454B2 (en) | Endoscope light source device and endoscope system | |
JP7290770B2 (en) | Position adjustment method | |
CN118489159A (en) | Light emitting device and sensing system | |
JP6138395B1 (en) | Drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Liu Juanjuan Inventor after: Tong Yi Inventor before: Liu Juanjuan Inventor before: Dong Li |