[go: up one dir, main page]

CN115196693A - 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法 - Google Patents

一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法 Download PDF

Info

Publication number
CN115196693A
CN115196693A CN202210943776.1A CN202210943776A CN115196693A CN 115196693 A CN115196693 A CN 115196693A CN 202210943776 A CN202210943776 A CN 202210943776A CN 115196693 A CN115196693 A CN 115196693A
Authority
CN
China
Prior art keywords
libo
lialo
double
ion battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210943776.1A
Other languages
English (en)
Inventor
方明
丁何磊
罗学涛
许益伟
张旭
柴冠鹏
苏方哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gepai Cobalt Industry New Material Co ltd
Original Assignee
Zhejiang Gepai Cobalt Industry New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gepai Cobalt Industry New Material Co ltd filed Critical Zhejiang Gepai Cobalt Industry New Material Co ltd
Priority to CN202210943776.1A priority Critical patent/CN115196693A/zh
Publication of CN115196693A publication Critical patent/CN115196693A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/121Borates of alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/043Lithium aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料及其制备方法,其由镍钴锰铝四元正极材料以及包覆四元正极材料的LiBO2/LiAlO2组成;镍钴锰铝四元正极材料的化学式为LiNixCoyMnzAl1‑x‑y‑zO2。本发明中LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料可以有效阻断电极/电解质界面的副反应,从而提高材料的循环稳定性。

Description

一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的 制备方法
技术领域
本发明属于锂离子二次电池正极材料领域,具体的设计一种LiBO2/LiAlO2双层包覆改性锂离子电池四元NCMA正极材料的制备方法。
背景技术
随着科学技术的进步和国民经济的快速发展,人们的生活水平日益提升,随之对能源的需求也越来越大。但是石油、煤炭等化石能源逐渐枯竭,同时环境污染越来越严重,已经威胁到了人类的生存,因此迫切需要寻找可替代的新能源。太阳能、风能、潮汐能等可再生能源进入了人类的视线,但是大规模的应用受到了地域等各种因素的限制。随着人们对新能源的继续探索开发,各种储能设备相继出现,而其中锂离子电池深受重视。相比于传统的铅酸电池,锂离子电池有着独特的优势,例如能量密度高、自放电小、使用寿命长、环境友好等特点,广泛的应用于各种便携式电子设备。目前锂离子电池正极材料主要包括钴酸锂、磷酸铁锂、三元高镍正极材料等。
锂离子电池中,由于正极材料所处的电势较高,易与有机电解液发生副反应,从而恶化电池的性能。对于三元高镍材料,在合成过程中,氧浓度和配锂量不足以及温度过高都会导致Ni2+向Li层移动,造成Li+/Ni2+混排,降低了材料的倍率性能;在充电后期,占据Li层的Ni2+会被氧化为离子半径更小的Ni3+,造成层状结构坍塌;过多的过渡金属占据Li层还会加剧了层状相向尖晶石相甚至是岩盐相的转变,导致容量衰减加剧。
对于富镍层状材料,研究人员广泛研究了两种非常典型的锂镍钴铝氧化物(NCA,LiNixCoyAl1−x−yO2)和锂镍钴锰氧化物(NCM, LiNixCoyMn1−x−yO2)。研究发现,Al的引入明显提高了富镍阴极的热稳定性和循环稳定性。因此,在共沉淀法合成前驱体时引入Al来形成NCMA四元前驱体。由于Al的掺杂,抑制了正极材料在脱锂和嵌锂过程中所引起的体积收缩与膨胀,减少了应力集中和微裂纹的产生。NCMA体系同时具有NCA体系的热稳定性和循环稳定性以及NCM体系的高容量。
通过元素掺杂、表面改性、浓度梯度结构等方法提高富镍正极材料的结构稳定性和电化学性能。其中,金属氧化物涂层是防止电极表面直接接触有机电解液,从而缓解电解液对电极材料的侵蚀与分解。然而,金属氧化物涂层对于降低表面锂残留没有任何作用。此外,由于金属氧化物的离子导电性和电子导电性较低,其性能的提升也受到固有的限制。中国专利CN 109119611 B中提出了一种一步法实现离子掺杂和表面包覆共同修饰三元正极材料的方法。中国专利CN 113948707 A中公开了一种焦磷酸铈包覆改性锂离子电池三元正极材料,可以有效阻断电化学界面的副反应。但是以上专利包覆的均为金属氧化物或者离子电导率低的焦磷酸盐,对于正极材料的性能提升存在固有的限制。
发明内容
本发明的目的是提供减少表面副反应的LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料及其制备方法,本发明经过通过调控二次烧结过程中的包覆剂的添加量,实现了对四元正极材料稳定性的提高。
为达此目的,本发明采用以下技术方案:
一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,包括如下步骤:
步骤一:将四元材料前驱体与锂源均匀混合,然后在氧气气氛下进行烧结得到四元正极材料;
步骤二:将四元正极材料和聚乙烯吡咯烷酮加入到无水乙醇中持续搅拌形成均匀溶液I;
步骤三:将包覆剂加入到溶液I中,搅拌30min形成溶液II;所述包覆剂为硼源和铝源;如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方,其特征在于:以步骤一烧结得到四元正极材料的质量分数为100wt%计,包覆剂的质量分数为0.01wt%-5wt%;
步骤四:将溶液II通过离心得到固体,将收集到的固体用无水乙醇洗涤,真空干燥;
步骤五:将得到的干燥粉末在氧气气氛下烧结得到LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料;
所述LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的化学式为LiNixCoyMnzAl1-x-y-zO2,0.8<x<1,0<y<0.1,0<z<0.1,且x+y+z<1。
所述步骤一中锂源为LiOH·H2O。氢氧化锂的熔点在470℃左右,而另一种锂源碳酸锂的熔点在720℃左右;而四元高镍正极材料的合成温度在720℃左右,因而只能选择氢氧化锂。
所述步骤一中锂源与四元材料前驱体按照摩尔比0.95-1.05:1。
步骤一烧结为梯度烧结,且第一梯度温度为400-450℃,预烧时间为3-4h,第二梯度温度为700-780℃,烧结时间为10-14h。第一步有一个较低温度的预锂化过程,目的是使得氢氧化锂达到熔点从而熔化与前驱体接触更加充分,而后升温达到反应温度。
所述梯度烧结的升温速率为2-10℃。
所述步骤二中,硼源为H3BO3;铝源为Al2O3,Al2(SO4)3,NaAlO2或Al(NO3)3·9H2O中的一种或多种 。
步骤二和三中搅拌时的温度为0℃。因包覆步骤中需要加入铝离子充分搅拌,而铝离子极易水解,且水解反应是一个吸热反应,所以降低搅拌温度可以有效抑制铝离子水解;因离心过程相较于搅拌过程极短,故离心(步骤四)时可不需要控制在0℃。
所述步骤(5)烧结的升温速率为2~10℃/min;烧结的加热温度为400~550℃;烧结在氧气气氛中进行;烧结的保温时间为4~6h。
本发明通过调控二次烧结过程中包覆剂的添加量,实现了对四元正极材料循环稳定性的提高,本发明限定了包覆剂的添加量为0.01wt%-5wt%,当添加量过高时,一方面降低了材料中活性物质的含量,不利于容量的发挥;另一方面,过多的包覆剂添加量,造成过厚的包覆层,会极大的阻碍材料体相与界面的电荷转移,不利于材料的倍率性能发挥。
本发明具有以下优点:
形成的LiBO2/LiAlO2双层包覆层可以有效的隔断正极材料与电解液的直接接触,能够最大程度的减少电解液对活性材料的腐蚀,遏制表面副反应的发生,从而能够稳定材料界面,减少过渡金属离子的溶解;用活性物质(80 wt%四元正极材料)、乙炔黑(10 wt%)和聚偏氟乙烯(PVDF 10wt%)混合制备阴极电极。将混合物溶解于NMP溶剂中,搅拌形成均匀的浆料,然后涂在铝箔集电流器上,在120℃下干燥12 h。电极的质量负载在直径为12 mm的圆形铝箔上。以金属锂箔为对电极,Cellgard 2300为隔膜,以1 M LiPF6溶于碳酸乙烯(EC)/碳酸甲酯(EMC) (1:2, Vol%)的混合物为电解液,在氩填充的手套箱中组装CR2032型扣式电池。
附图说明
图1为对比例和实施例1的XRD谱图;
图2为对比例和实施例1中的SEM图片;
图3为对比例和实施例1的TEM图片;
图4为实施例1的EDS面扫图片;
图5为对比例和实施例1的1C循环曲线。
具体实施方式
下面结合具体实施例进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
对比例
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到NCMA90433正极材料。将NCMA90433正极材料在氧气气氛下550℃保温5h,得到退火后的NCMA90433正极材料。
实施例1
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.045gH3BO3、0.005gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实施例2
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.09gH3BO3、0.01gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实施例3
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.135gH3BO3、0.015gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实施例4
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.18gH3BO3、0.02gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实施例5
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.225gH3BO3、0.075gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实施例6
将10.000g四元前驱体材料(Ni0.9Co0.04Mn0.03Al0.03(OH)2)与4.476gLiOH·H2O混合均匀(Li:TM=1.05:1),然后置于气氛炉中450℃预烧结4h,然后升温(升温速率为2-10℃)至720℃保温12h后自然冷却,气氛炉中为氧气气氛。产物过400目筛得到镍钴锰铝正极材料。取10g NCMA90433正极材料,1g聚乙烯吡咯烷酮溶于50ml无水乙醇中,在0℃下搅拌得到溶液I;取0.27gH3BO3、0.03gAl (NO3)3·9H2O加入到溶液I中0℃下搅拌30min形成溶液II;将溶液II离心得到固体,经过无水乙醇洗涤后120℃真空干燥4h;将干燥后的粉体置于氧气气氛下500℃(升温速率为2-10℃)保温5h得到LiBO2/LiAlO2双层包覆改性的NCMA90433正极材料。
实验结果:
表一 对比例和实施例的1C循环性能对比
测试条件 第100圈容量 容量保持率
对比例 2.7-4.3V;1C 145.8 80.8%
实施例1 2.7-4.3V;1C 172.1 94.5%
实施例2 2.7-4.3V;1C 174.4 95.8%
实施例3 2.7-4.3V;1C 171.7 94.3%
实施例4 2.7-4.3V;1C 168.2 92.4%
实施例5 2.7-4.3V;1C 165.3 90.8
实施例6 2.7-4.3V;1C 161.5 88.7
结果表明,本发明的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的策略,极大的提高了正极材料的循环稳定性。并且随着包覆量的逐渐增加,循环保持率出现了先升后降的现象,这说明过量的包覆也是不适宜的。
上述实施例仅用于解释说明本发明的发明构思,而非对本发明权利保护的限定,凡利用此构思对本发明进行非实质性的改动,均应落入本发明的保护范围。

Claims (8)

1.一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于,包括如下步骤:
步骤一:将四元材料前驱体与锂源均匀混合,然后在氧气气氛下进行烧结得到四元正极材料;
步骤二:将四元正极材料和聚乙烯吡咯烷酮加入到无水乙醇中持续搅拌形成均匀溶液I;
步骤三:将包覆剂加入到溶液I中,搅拌30min形成溶液II;所述包覆剂为硼源和铝源;以步骤一烧结得到四元正极材料的质量分数为100wt%计,包覆剂的质量分数为0.01wt%-5wt%;
步骤四:将溶液II通过离心得到固体,将收集到的固体用无水乙醇洗涤,真空干燥;
步骤五:将得到的干燥粉末在氧气气氛下烧结得到LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料;
所述LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的化学式为LiNixCoyMnzAl1-x-y-zO2,0.8<x<1,0<y<0.1,0<z<0.1,且x+y+z<1。
2.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:所述步骤一中锂源为LiOH·H2O。
3.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:所述步骤一中锂源与四元材料前驱体按照摩尔比0.95-1.05:1。
4.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:步骤一烧结为梯度烧结,且第一梯度温度为400-450℃,预烧时间为3-4h,第二梯度温度为700-780℃,烧结时间为10-14h。
5.如权利要求4所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:所述梯度烧结的升温速率为2-10℃。
6.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方,其特征在于:所述步骤二中,硼源为H3BO3;铝源为Al2O3,Al2(SO4)3,NaAlO2或Al(NO3)3·9H2O中的一种或多种。
7.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:步骤二和三中搅拌时的温度为0℃。
8.如权利要求1所述的一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法,其特征在于:所述步骤(5)烧结的升温速率为2~10℃/min;烧结的加热温度为400~550℃;烧结在氧气气氛中进行;烧结的保温时间为4~6h。
CN202210943776.1A 2022-08-08 2022-08-08 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法 Pending CN115196693A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210943776.1A CN115196693A (zh) 2022-08-08 2022-08-08 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210943776.1A CN115196693A (zh) 2022-08-08 2022-08-08 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法

Publications (1)

Publication Number Publication Date
CN115196693A true CN115196693A (zh) 2022-10-18

Family

ID=83585628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210943776.1A Pending CN115196693A (zh) 2022-08-08 2022-08-08 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN115196693A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117374249A (zh) * 2023-10-30 2024-01-09 桂林理工大学 一种同步实现硼铝双掺杂/双包覆且在高倍率下具有长循环稳定性的超高镍无钴阴极材料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244397A (zh) * 2018-11-28 2020-06-05 天津国安盟固利新材料科技股份有限公司 一种高镍三元正极材料及其制备方法
CN111430700A (zh) * 2019-10-10 2020-07-17 蜂巢能源科技有限公司 用于锂离子电池的四元正极材料及其制备方法和锂离子电池
CN112563474A (zh) * 2021-02-22 2021-03-26 湖南长远锂科股份有限公司 一种原位包覆的复合ncma四元正极材料及其制备方法
CN113955809A (zh) * 2021-12-20 2022-01-21 河南科隆新能源股份有限公司 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
WO2022039201A1 (ja) * 2020-08-18 2022-02-24 Apb株式会社 リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質粒子の製造方法
CN114853090A (zh) * 2022-06-16 2022-08-05 楚能新能源股份有限公司 硼酸铝包覆改性的三元材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244397A (zh) * 2018-11-28 2020-06-05 天津国安盟固利新材料科技股份有限公司 一种高镍三元正极材料及其制备方法
CN111430700A (zh) * 2019-10-10 2020-07-17 蜂巢能源科技有限公司 用于锂离子电池的四元正极材料及其制备方法和锂离子电池
WO2022039201A1 (ja) * 2020-08-18 2022-02-24 Apb株式会社 リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質粒子の製造方法
CN112563474A (zh) * 2021-02-22 2021-03-26 湖南长远锂科股份有限公司 一种原位包覆的复合ncma四元正极材料及其制备方法
CN113955809A (zh) * 2021-12-20 2022-01-21 河南科隆新能源股份有限公司 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
CN114853090A (zh) * 2022-06-16 2022-08-05 楚能新能源股份有限公司 硼酸铝包覆改性的三元材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾喜凤: "单晶LiNi0.5Co0.2Mn0.3O2正极材料的包覆改性及高温高电压电池性能研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117374249A (zh) * 2023-10-30 2024-01-09 桂林理工大学 一种同步实现硼铝双掺杂/双包覆且在高倍率下具有长循环稳定性的超高镍无钴阴极材料的方法
CN117374249B (zh) * 2023-10-30 2025-02-21 桂林理工大学 一种同步实现硼铝双掺杂/双包覆且在高倍率下具有长循环稳定性的超高镍无钴阴极材料的方法

Similar Documents

Publication Publication Date Title
CN108878849B (zh) 富锂氧化物的合成工艺及含该富锂氧化物的锂离子电池
CN112310376B (zh) 一种复合包覆层的高镍正极材料的制备方法
CN113764658B (zh) 一种阴阳离子共掺杂的高镍单晶三元正极材料及其制备方法和应用
CN113644264B (zh) 一种天然石墨负极材料的改性方法
CN114229921B (zh) Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN113675394B (zh) 一种钾离子电池正极材料、制备方法以及钾离子电池
CN114220947A (zh) 一种锂金属电池负极、集流体及其制备方法和电池
CN112054174A (zh) 一种钾离子电池负极材料及其制备方法和应用
CN111244563A (zh) 一种正极补锂离子添加剂及其制备方法和应用
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN112103499B (zh) 一种石墨烯基负极材料及其制备方法
CN115196693A (zh) 一种LiBO2/LiAlO2双层包覆改性锂离子电池四元正极材料的制备方法
CN113140713B (zh) 一种LiFePO4/C包覆三元正极材料及其制备方法和用途
CN113471420A (zh) 一种钨酸铋包覆磷酸铁锂正极材料及其制备方法
CN109850949B (zh) 一种锂离子电池用富锂锰酸锂正极材料的制备方法
CN115312736B (zh) 一种Si@TiN-沥青复合负极材料的制备方法
CN101728524A (zh) 一种锂离子电池/电容器电极材料及其制备方法
CN112430089B (zh) 一种ReO3剪切结构MoNb6O18材料的制备方法及其应用
CN112125340B (zh) 一种锰酸锂及其制备方法和应用
CN113629241A (zh) 核壳结构正极材料的制备方法、正极材料及锂离子电池
CN113540460A (zh) 复合材料及其制备方法和应用
CN118637667B (zh) 一种硫酸锰高温固相合成锰酸锂正极材料的方法
CN114538459B (zh) 一种硼酸盐锂离子电池负极材料的制备方法及锂离子电池
CN116135789B (zh) 一种氧缺陷可调节的快充型五氧化二铌负极材料及其制备方法和应用
CN110556525B (zh) 一种锗酸锂、锗酸锂/石墨复合负极材料及其制备方法与在组装锂电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221018