CN115186221A - Rotor blade-vortex interference noise extraction method and system - Google Patents
Rotor blade-vortex interference noise extraction method and system Download PDFInfo
- Publication number
- CN115186221A CN115186221A CN202210935286.7A CN202210935286A CN115186221A CN 115186221 A CN115186221 A CN 115186221A CN 202210935286 A CN202210935286 A CN 202210935286A CN 115186221 A CN115186221 A CN 115186221A
- Authority
- CN
- China
- Prior art keywords
- propeller
- vortex interference
- noise
- interference
- vortex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及飞行器噪声分析领域,特别是涉及一种旋翼桨-涡干扰噪声提取方法及系统。The invention relates to the field of aircraft noise analysis, in particular to a method and system for extracting rotor propeller-vortex interference noise.
背景技术Background technique
由于直升机独特的飞行性能,其被广泛应用于军事和民用任务,但同时也会产生由不同噪声类型组成的高水平噪声,如桨-涡噪声、厚度噪声和载荷噪声等。其中,旋翼产生的桨-涡干扰噪声是比较重要的成分,桨-涡干扰噪声是一种高频气动噪声,它出现的同时总是同时出现频带范围非常广的高频噪声和低频气动噪声,不仅影响乘客的舒适度,而且增加了飞行员的工作强度和直升机的维护成本,而且桨-涡干扰噪声也是直升机在城市地区运作的主要限制之一。Due to the unique flight performance of helicopters, they are widely used in military and civilian missions, but at the same time they also generate high levels of noise composed of different noise types, such as propeller-vortex noise, thickness noise, and load noise. Among them, the propeller-vortex interference noise generated by the rotor is a more important component. The propeller-vortex interference noise is a kind of high-frequency aerodynamic noise. It always appears at the same time as high-frequency noise and low-frequency aerodynamic noise with a very wide frequency band. Not only affects the comfort of passengers, but also increases the work intensity of the pilot and the maintenance cost of the helicopter, and the propeller-vortex interference noise is also one of the main limitations of the helicopter's operation in urban areas.
目前一般是利用小波理论与深度神经网络结合的方法提取桨-涡干扰噪声,但是这种方法基于纯理论气动噪声模型,基于纯理论方法构造桨-涡干扰信号没有考虑实验环境的干扰情况,抗干扰能力不强,理论构造过程也相当复杂,难以直接应用到工程上。At present, the combination of wavelet theory and deep neural network is generally used to extract the propeller-vortex interference noise, but this method is based on a purely theoretical aerodynamic noise model, and the propeller-vortex interference signal is constructed based on a pure theoretical method without considering the interference of the experimental environment. The interference ability is not strong, and the theoretical construction process is quite complicated, so it is difficult to directly apply to engineering.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种旋翼桨-涡干扰噪声提取方法及系统,可提高桨-涡干扰噪声的可靠性。The purpose of the present invention is to provide a method and system for extracting rotor propeller-vortex interference noise, which can improve the reliability of propeller-vortex interference noise.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种旋翼桨-涡干扰噪声提取方法,包括:A method for extracting rotor-vortex interference noise, comprising:
获取现场直升机的旋翼总噪声及旋翼总噪声中桨-涡干扰的发生时间;Obtain the total rotor noise of the on-site helicopter and the occurrence time of the propeller-vortex interference in the total rotor noise;
采用交错投影算法对所述旋翼总噪声进行滤波,确定高频噪声;所述高频噪声包括多个采样点及各采样点处的声压;The total noise of the rotor is filtered by the interlaced projection algorithm to determine the high-frequency noise; the high-frequency noise includes a plurality of sampling points and the sound pressure at each sampling point;
根据所述桨-涡干扰的发生时间及所述旋翼总噪声的采样频率,确定桨-涡干扰长度;According to the occurrence time of the propeller-vortex interference and the sampling frequency of the total noise of the rotor, determine the propeller-vortex interference length;
根据旋翼转速、直升机的桨叶片数及所述旋翼总噪声的采样频率,确定桨-涡干扰间距;Determine the propeller-vortex interference distance according to the rotor speed, the number of propeller blades of the helicopter and the sampling frequency of the total noise of the rotor;
在所述高频噪声中确定多个模极大值;各模极大值为所述高频噪声中声压大于设定阈值的声压;determining a plurality of modulo maxima in the high-frequency noise; each modulo maxima is a sound pressure whose sound pressure in the high-frequency noise is greater than a set threshold;
根据各模极大值,确定桨-涡干扰平均强度;According to the maximum value of each mode, determine the average intensity of propeller-vortex interference;
根据所述高频噪声中各采样点处的声压,确定高频噪声平均强度;Determine the average intensity of high-frequency noise according to the sound pressure at each sampling point in the high-frequency noise;
根据所述桨-涡干扰平均强度、所述高频噪声平均强度及所述高频噪声中各采样点处的声压,在所述高频噪声中确定多个初始桨-涡干扰区间;According to the average intensity of the propeller-vortex interference, the average intensity of the high-frequency noise, and the sound pressure at each sampling point in the high-frequency noise, determining a plurality of initial propeller-vortex interference intervals in the high-frequency noise;
根据各初始桨-涡干扰区间内的声压最大值及所述桨-涡干扰间距,确定多个最终桨-涡干扰区间;According to the maximum value of sound pressure in each initial propeller-vortex interference interval and the propeller-vortex interference spacing, determine a plurality of final propeller-vortex interference intervals;
根据各最终桨-涡干扰区间内声压的模最大值,确定多个桨-涡干扰中心;According to the maximum value of the sound pressure in each final propeller-vortex interference interval, multiple propeller-vortex interference centers are determined;
根据各桨-涡干扰中心及所述桨-涡干扰长度,在所述高频噪声中确定最终的桨-涡干扰噪声。According to each propeller-vortex interference center and the propeller-vortex interference length, the final propeller-vortex interference noise is determined in the high-frequency noise.
可选地,确定桨-涡干扰长度:Optionally, determine the paddle-vortex interference length:
nBVI≈tBVI/fsr;n BVI ≈t BVI /f sr ;
其中,nBVI为桨-涡干扰长度,tBVI为桨-涡干扰的发生时间,fsr为旋翼总噪声的采样频率。Among them, n BVI is the length of the propeller-vortex interference, t BVI is the occurrence time of the propeller-vortex interference, and f sr is the sampling frequency of the total rotor noise.
可选地,所述根据旋翼转速、直升机的桨叶片数及所述旋翼总噪声的采样频率,确定桨-涡干扰间距,具体包括:Optionally, according to the rotor speed, the number of blades of the helicopter, and the sampling frequency of the total noise of the rotor, the paddle-vortex interference spacing is determined, specifically including:
根据旋翼转速及直升机的桨叶片数,确定桨-涡干扰周期;Determine the propeller-vortex interference period according to the rotor speed and the number of propeller blades of the helicopter;
根据所述桨-涡干扰周期及所述旋翼总噪声的采样频率,确定桨-涡干扰间距。According to the propeller-vortex interference period and the sampling frequency of the total noise of the rotor, the propeller-vortex interference distance is determined.
可选地,采用以下公式,确定桨-涡干扰周期:Optionally, the following formula is used to determine the propeller-vortex disturbance period:
TBVI=60/nrbr;T BVI =60/n r br ;
其中,TBVI为桨-涡干扰周期,nr为旋翼转速,br为桨叶片数。Among them, T BVI is the propeller-vortex interference period, n r is the rotor speed, and br is the number of propeller blades.
可选地,采用以下公式,确定桨-涡干扰间距:Optionally, the following formula is used to determine the propeller-vortex interference spacing:
NBVI=TBVI/fsr;N BVI =T BVI /f sr ;
其中,NBVI为桨-涡干扰间距,TBVI为桨-涡干扰周期,fsr为旋翼总噪声的采样频率。Among them, N BVI is the propeller-vortex interference distance, T BVI is the propeller-vortex interference period, and f sr is the sampling frequency of the total rotor noise.
可选地,所述根据所述桨-涡干扰平均强度、所述高频噪声平均强度及所述高频噪声中各采样点处的声压,在所述高频噪声中确定多个初始桨-涡干扰区间,具体包括:Optionally, according to the average intensity of the propeller-vortex interference, the average intensity of the high-frequency noise, and the sound pressure at each sampling point in the high-frequency noise, a plurality of initial propellers are determined in the high-frequency noise. - Eddy interference interval, which includes:
根据所述桨-涡干扰平均强度及所述高频噪声平均强度,确定常数;其中,所述常数满足以下条件:mnc>mL,c∈(0,1),c为常数,mn为桨-涡干扰平均强度,mL为高频噪声平均强度;According to the average intensity of the propeller-vortex interference and the average intensity of the high-frequency noise, a constant is determined; wherein, the constant satisfies the following conditions: m n c > m L , c∈(0,1), c is a constant, m n is the average intensity of propeller-vortex interference, and m L is the average intensity of high-frequency noise;
根据所述桨-涡干扰平均强度、所述常数及所述高频噪声中各采样点处的声压,确定多个初始桨-涡干扰区间;其中,第i个初始桨-涡干扰区间内的声压满足以下条件:|f(x)|≥mnc,x∈[lia,lib],[lia,lib]为第i个初始桨-涡干扰区间,lia为第i个初始桨-涡干扰区间的起始采样点,lib为第i个初始桨-涡干扰区间的终止采样点,f(x)为第i个初始桨-涡干扰区间内采样点x处的声压,| |为取模运算。According to the average propeller-vortex interference intensity, the constant, and the sound pressure at each sampling point in the high-frequency noise, a plurality of initial propeller-vortex interference intervals are determined; wherein, within the i-th initial propeller-vortex interference interval The sound pressure of satisfies the following conditions: |f(x)|≥m n c, x∈[l ia , l ib ], [l ia , l ib ] is the ith initial propeller-vortex interference interval, and l ia is the ith The starting sampling point of the i initial propeller-vortex interference interval, l ib is the ending sampling point of the ith initial propeller-vortex interference interval, and f(x) is the sampling point x in the ith initial propeller-vortex interference interval The sound pressure of , | | is the modulo operation.
可选地,所述根据各初始桨-涡干扰区间内的声压最大值及所述桨-涡干扰间距,确定多个最终桨-涡干扰区间,具体包括:Optionally, determining a plurality of final propeller-vortex interference intervals according to the maximum sound pressure in each initial paddle-vortex interference interval and the paddle-vortex interference interval, specifically including:
根据各初始桨-涡干扰区间内的声压最大值,确定相邻两个初始桨-涡干扰区间的距离;According to the maximum sound pressure in each initial propeller-vortex interference interval, determine the distance between two adjacent initial propeller-vortex interference intervals;
若相邻两个初始桨-涡干扰区间的距离小于或等于所述桨-涡干扰间距的一半,则将相邻两个初始桨-涡干扰区间中声压最大值小的初始桨-涡干扰区间舍弃,以得到多个最终桨-涡干扰区间。If the distance between two adjacent initial propeller-vortex interference intervals is less than or equal to half of the propeller-vortex interference interval, the initial propeller-vortex interference with the smaller maximum sound pressure in the two adjacent initial propeller-vortex interference intervals Intervals are discarded to obtain multiple final propeller-vortex interference intervals.
可选地,采用以下公式,确定第i个初始桨-涡干扰区间与第j个初始桨-涡干扰区间的距离:Optionally, the following formula is used to determine the distance between the ith initial propeller-vortex interference interval and the jth initial propeller-vortex interference interval:
dij=|argmax|f(x*)|-argmax|f(y*)||,x*∈[lia,lib],y*∈[lja,ljb];d ij = |argmax|f(x * )|-argmax|f(y * )||, x * ∈ [l ia , l ib ], y * ∈ [l ja , l jb ];
其中,dij为第i个初始桨-涡干扰区间与第j个初始桨-涡干扰区间的距离,f(x*)为采样点x*处的声压,f(y*)为采样点y*处的声压,argmax|f(x*)|为第i个初始桨-涡干扰区间内的声压最大值对应的采样点,argmax|f(y*)|为第j个初始桨-涡干扰区间内的声压最大值对应的采样点,[lia,lib]为第i个初始桨-涡干扰区间,[lja,ljb]为第j个初始桨-涡干扰区间,i≠j。Among them, d ij is the distance between the i-th initial propeller-vortex interference interval and the j-th initial propeller-vortex interference interval, f(x * ) is the sound pressure at the sampling point x * , and f(y * ) is the sampling point The sound pressure at y * , argmax|f(x * )| is the sampling point corresponding to the maximum sound pressure in the ith initial propeller-vortex interference interval, argmax|f(y * )| is the jth initial propeller - The sampling point corresponding to the maximum sound pressure in the vortex interference interval, [l ia , l ib ] is the ith initial propeller-vortex interference interval, [l ja , l jb ] is the jth initial propeller-vortex interference interval , i≠j.
可选地,所述根据各桨-涡干扰中心及所述桨-涡干扰长度,在所述高频噪声中确定最终的桨-涡干扰噪声,具体包括:Optionally, according to each propeller-vortex interference center and the propeller-vortex interference length, the final propeller-vortex interference noise is determined in the high-frequency noise, specifically including:
根据各桨-涡干扰中心及所述桨-涡干扰长度,确定多个桨-涡干扰发生区间;第k个桨-涡干扰发生区间为[wk-nBVI/2,wk+nBVI/2],其中,wk为第k个桨-涡干扰中心,nBVI为桨-涡干扰长度;According to each propeller-vortex interference center and the propeller-vortex interference length, multiple propeller-vortex interference occurrence intervals are determined; the kth propeller-vortex interference occurrence interval is [w k -n BVI /2, wk+n BVI / 2], where w k is the k-th propeller-vortex interference center, n BVI is the propeller-vortex interference length;
将所述高频噪声中桨-涡干扰发生区间之外的信号赋值为0,得到最终的桨-涡干扰噪声。The signal outside the occurrence interval of the propeller-vortex interference in the high-frequency noise is assigned as 0, and the final propeller-vortex interference noise is obtained.
为实现上述目的,本发明还提供了如下方案:For achieving the above object, the present invention also provides the following scheme:
一种旋翼桨-涡干扰噪声提取系统,包括:A rotor-vortex interference noise extraction system, comprising:
信号获取单元,用于获取现场直升机的旋翼总噪声及旋翼总噪声中桨-涡干扰的发生时间;The signal acquisition unit is used to acquire the total rotor noise of the on-site helicopter and the occurrence time of the propeller-vortex interference in the total rotor noise;
高频噪声确定单元,与所述信号获取单元连接,用于采用交错投影算法对所述旋翼总噪声进行滤波,确定高频噪声;所述高频噪声包括多个采样点及各采样点处的声压;A high-frequency noise determination unit, connected with the signal acquisition unit, is used to filter the total noise of the rotor by using an interleaved projection algorithm to determine the high-frequency noise; the high-frequency noise includes a plurality of sampling points and a signal at each sampling point. Sound pressure;
干扰长度确定单元,与所述信号获取单元连接,用于根据所述桨-涡干扰的发生时间及所述旋翼总噪声的采样频率,确定桨-涡干扰长度;an interference length determination unit, connected with the signal acquisition unit, for determining the length of the propeller-vortex interference according to the occurrence time of the propeller-vortex interference and the sampling frequency of the total noise of the rotor;
干扰间距确定单元,与所述信号获取单元连接,用于根据旋翼转速、直升机的桨叶片数及所述旋翼总噪声的采样频率,确定桨-涡干扰间距;an interference distance determination unit, connected with the signal acquisition unit, for determining the paddle-vortex interference distance according to the rotating speed of the rotor, the number of propeller blades of the helicopter and the sampling frequency of the total noise of the rotor;
模极大值确定单元,与所述高频噪声确定单元连接,用于在所述高频噪声中确定多个模极大值;各模极大值为所述高频噪声中声压大于设定阈值的声压;A modulus maximum value determination unit, connected with the high-frequency noise determination unit, is used for determining a plurality of modulus maximum values in the high-frequency noise; Sound pressure at a certain threshold;
干扰平均强度确定单元,与所述模极大值确定单元连接,用于根据各模极大值,确定桨-涡干扰平均强度;an interference average intensity determination unit, connected with the mode maximum value determination unit, and used for determining the average propeller-vortex interference intensity according to each mode maximum value;
高频噪声平均强度确定单元,与所述高频噪声确定单元连接,用于根据所述高频噪声中各采样点处的声压,确定高频噪声平均强度;a high-frequency noise average intensity determination unit, connected to the high-frequency noise determination unit, and configured to determine the high-frequency noise average intensity according to the sound pressure at each sampling point in the high-frequency noise;
初始区间确定单元,与所述干扰平均强度确定单元、高频噪声平均强度确定单元及高频噪声确定单元连接,用于根据所述桨-涡干扰平均强度、所述高频噪声平均强度及所述高频噪声中各采样点处的声压,在所述高频噪声中确定多个初始桨-涡干扰区间;The initial interval determination unit is connected with the interference average intensity determination unit, the high frequency noise average intensity determination unit and the high frequency noise determination unit, and is used for determining the average intensity of the paddle-vortex interference, the high frequency noise average intensity and the the sound pressure at each sampling point in the high-frequency noise, and determine a plurality of initial propeller-vortex interference intervals in the high-frequency noise;
最终区间确定单元,与所述初始区间确定单元及所述干扰间距确定单元连接,用于根据各初始桨-涡干扰区间内的声压最大值及所述桨-涡干扰间距,确定多个最终桨-涡干扰区间;The final interval determination unit is connected to the initial interval determination unit and the interference distance determination unit, and is used for determining a plurality of final intervals according to the maximum value of sound pressure in each initial paddle-vortex interference interval and the paddle-vortex interference distance Propeller-vortex interference range;
干扰中心确定单元,与所述最终区间确定单元连接,用于根据各最终桨-涡干扰区间内声压的模最大值,确定多个桨-涡干扰中心;an interference center determination unit, connected to the final interval determination unit, for determining a plurality of propeller-vortex interference centers according to the maximum value of the sound pressure in each final propeller-vortex interference interval;
干扰噪声确定单元,与所述干扰中心确定单元及所述干扰长度确定单元连接,用于根据各桨-涡干扰中心及所述桨-涡干扰长度,在所述高频噪声中确定最终的桨-涡干扰噪声。An interference noise determination unit, connected with the interference center determination unit and the interference length determination unit, and used for determining the final propeller in the high-frequency noise according to each propeller-vortex interference center and the propeller-vortex interference length - Eddy disturbance noise.
根据本发明提供的具体实施例,本发明公开了以下技术效果:先从现场直升机的旋翼总噪声中提取高频噪声,再根据桨-涡干扰的发生时间及旋翼总噪声的采样频率确定桨-涡干扰长度;根据旋翼转速、直升机的桨叶片数及旋翼总噪声的采样频率确定桨-涡干扰间距;在高频噪声中确定多个模极大值;根据各模极大值确定桨-涡干扰平均强度;根据高频噪声中各采样点处的声压确定高频噪声平均强度;根据桨-涡干扰平均强度、高频噪声平均强度及高频噪声中各采样点处的声压,在高频噪声中确定多个初始桨-涡干扰区间;根据各初始桨-涡干扰区间内的声压最大值及桨-涡干扰间距确定多个最终桨-涡干扰区间;根据各最终桨-涡干扰区间内声压的模最大值确定多个桨-涡干扰中心;根据各桨-涡干扰中心及所述桨-涡干扰长度,在高频噪声中确定最终的桨-涡干扰噪声。采用直升机现场的旋翼总噪声,在有环境噪声干扰的情况下对桨-涡干扰噪声进行提取,提高了桨-涡干扰噪声的可靠性。According to the specific embodiment provided by the present invention, the present invention discloses the following technical effects: first extract high-frequency noise from the total rotor noise of the helicopter on site, and then determine the propeller-vortex interference occurrence time and the sampling frequency of the total rotor noise. Vortex interference length; determine the propeller-vortex interference distance according to the rotor speed, the number of propeller blades of the helicopter and the sampling frequency of the total rotor noise; determine multiple mode maxima in high-frequency noise; determine the propeller-vortex interference according to the maximum value of each mode Average intensity of interference; determine the average intensity of high-frequency noise according to the sound pressure at each sampling point in the high-frequency noise; according to the average intensity of propeller-vortex interference, the average intensity of high-frequency noise and the sound pressure at each sampling point in Determine multiple initial propeller-vortex interference intervals in the high-frequency noise; determine multiple final propeller-vortex interference intervals according to the maximum sound pressure in each initial propeller-vortex interference interval and the propeller-vortex interference distance; according to each final propeller-vortex interference interval The maximum value of the sound pressure in the interference interval determines multiple propeller-vortex interference centers; according to each propeller-vortex interference center and the propeller-vortex interference length, the final propeller-vortex interference noise is determined in the high-frequency noise. Using the total rotor noise of the helicopter site, the propeller-vortex interference noise is extracted under the condition of environmental noise interference, which improves the reliability of the propeller-vortex interference noise.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明旋翼桨-涡干扰噪声提取方法的流程图;Fig. 1 is the flow chart of the rotor propeller-vortex interference noise extraction method of the present invention;
图2为本发明旋翼桨-涡干扰噪声提取过程的整体示意图;Fig. 2 is the overall schematic diagram of the rotor propeller-vortex interference noise extraction process of the present invention;
图3为旋翼总噪声示意图;Figure 3 is a schematic diagram of the total noise of the rotor;
图4为低频噪声示意图;Figure 4 is a schematic diagram of low frequency noise;
图5为高频噪声示意图;Figure 5 is a schematic diagram of high frequency noise;
图6为桨-涡干扰噪声的间距及长度示意图;Figure 6 is a schematic diagram of the spacing and length of the propeller-vortex interference noise;
图7为从高频噪声中提取桨-涡干扰噪声的示意图;7 is a schematic diagram of extracting propeller-vortex interference noise from high-frequency noise;
图8为模极大值点的示意图;8 is a schematic diagram of a modulus maximum point;
图9为桨-涡干扰区间示意图;Figure 9 is a schematic diagram of the propeller-vortex interference interval;
图10为桨-涡干扰噪声中心点示意图;Figure 10 is a schematic diagram of the center point of the propeller-vortex interference noise;
图11为最终的桨-涡干扰噪声示意图;Figure 11 is a schematic diagram of the final propeller-vortex interference noise;
图12为交错投影算法示意图;FIG. 12 is a schematic diagram of a staggered projection algorithm;
图13为本发明旋翼桨-涡干扰噪声提取系统的模块结构示意图。13 is a schematic diagram of the module structure of the rotor-vortex interference noise extraction system of the present invention.
符号说明:Symbol Description:
信号获取单元-1,高频噪声确定单元-2,干扰长度确定单元-3,干扰间距确定单元-4,模极大值确定单元-5,干扰平均强度确定单元-6,高频噪声平均强度确定单元-7,初始区间确定单元-8,最终区间确定单元-9,干扰中心确定单元-10,干扰噪声确定单元-11。Signal acquisition unit-1, high frequency noise determination unit-2, interference length determination unit-3, interference distance determination unit-4, modulus maximum value determination unit-5, interference average intensity determination unit-6, high frequency noise average intensity A determination unit-7, an initial interval determination unit-8, a final interval determination unit-9, an interference center determination unit-10, and an interference noise determination unit-11.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种旋翼桨-涡干扰噪声提取方法及系统,通过采用直升机现场的旋翼总噪声,在有环境噪声干扰的情况下对桨-涡干扰噪声进行提取,提高了桨-涡干扰噪声的可靠性。The purpose of the present invention is to provide a method and system for extracting rotor-vortex interference noise. By using the total rotor noise at the helicopter site, the rotor-vortex interference noise is extracted under the condition of environmental noise interference, which improves the performance of the rotor-vortex interference noise. Reliability of disturbing noise.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
如图1和图2所示,本发明旋翼桨-涡干扰噪声提取方法包括:As shown in Figure 1 and Figure 2, the method for extracting rotor propeller-vortex interference noise of the present invention includes:
S1:获取现场直升机的旋翼总噪声及旋翼总噪声中桨-涡干扰的发生时间。在本实施例中,旋翼总噪声为传声器中的总噪声,如图3所示为总噪声的示意图。S1: Obtain the total rotor noise of the on-site helicopter and the occurrence time of the propeller-vortex interference in the total rotor noise. In this embodiment, the total noise of the rotor is the total noise in the microphone, and FIG. 3 is a schematic diagram of the total noise.
S2:采用交错投影算法对所述旋翼总噪声进行滤波,确定高频噪声。所述高频噪声包括多个采样点及各采样点处的声压。具体地,交错投影算法首先从旋翼总噪声中分离出低频噪声,用旋翼总噪声减去低频噪声得到高频噪声,低频噪声和高频噪声如图4和图5所示。在本实施例中,假设高频噪声信号的长度为L,高频噪声信号在第r个点的声压大小为f(r),则高频噪声信号为 S2: Use an interlaced projection algorithm to filter the total noise of the rotor to determine high-frequency noise. The high-frequency noise includes a plurality of sampling points and the sound pressure at each sampling point. Specifically, the interlaced projection algorithm first separates the low-frequency noise from the total rotor noise, and subtracts the low-frequency noise from the total rotor noise to obtain the high-frequency noise. The low-frequency noise and the high-frequency noise are shown in Figures 4 and 5. In this embodiment, assuming that the length of the high-frequency noise signal is L, and the sound pressure of the high-frequency noise signal at the r-th point is f(r), the high-frequency noise signal is
S3:根据所述桨-涡干扰的发生时间及所述旋翼总噪声的采样频率,确定桨-涡干扰长度。S3: Determine the length of the propeller-vortex interference according to the occurrence time of the propeller-vortex interference and the sampling frequency of the total noise of the rotor.
具体地,可以通过传声器的总噪声估算出桨-涡干扰噪声的发生时间tBVI,进而根据桨-涡干扰的发生时间及旋翼总噪声的采样频率,估算出每个桨-涡干扰噪声在高频噪声中的长度:nBVI≈tBVI/fsr。其中,麦克风的采样频率是已知的,则采样间隔已知,计算任意一个桨-涡干扰噪声的采样点数,采样间隔和桨-涡干扰噪声存在的点数乘积即为估算的桨-涡干扰噪声的发生时间。Specifically, the occurrence time t BVI of the propeller-vortex interference noise can be estimated by the total noise of the microphone, and then according to the occurrence time of the propeller-vortex interference and the sampling frequency of the total noise of the rotor, it is estimated that each propeller-vortex interference noise is at high Length in frequency noise: n BVI ≈t BVI /f sr . Among them, the sampling frequency of the microphone is known, and the sampling interval is known. Calculate the number of sampling points of any propeller-vortex interference noise. The product of the sampling interval and the number of points existing in the propeller-vortex interference noise is the estimated propeller-vortex interference noise. time of occurrence.
S4:根据旋翼转速、直升机的桨叶片数及所述旋翼总噪声的采样频率,确定桨-涡干扰间距。S4: Determine the propeller-vortex interference distance according to the rotational speed of the rotor, the number of propeller blades of the helicopter, and the sampling frequency of the total noise of the rotor.
具体地,根据旋翼转速及直升机的桨叶片数,确定桨-涡干扰周期。根据所述桨-涡干扰周期及所述旋翼总噪声的采样频率,确定桨-涡干扰间距。其中,采用公式TBVI=60/nrbr确定桨-涡干扰周期,TBVI为桨-涡干扰周期,nr为旋翼转速,br为桨叶片数。采用公式NBVI=TBVI/fsr确定桨-涡干扰间距,NBVI为桨-涡干扰间距,如图6所示。Specifically, the propeller-vortex interference period is determined according to the rotational speed of the rotor and the number of propeller blades of the helicopter. According to the propeller-vortex interference period and the sampling frequency of the total noise of the rotor, the propeller-vortex interference distance is determined. The propeller-vortex interference period is determined by the formula T BVI =60/n r br , where T BVI is the propeller-vortex interference period, n r is the rotational speed of the rotor, and br is the number of propeller blades. The propeller-vortex interference spacing is determined by the formula N BVI =T BVI /f sr , where N BVI is the propeller-vortex interference spacing, as shown in Fig. 6 .
由于桨-涡干扰噪声具有很明显的特征,如周期性出现,强度明显高于湍流噪声和电磁干扰噪声等宽带噪声,因此本发明步骤S5-S11根据桨-涡干扰噪声的特点,在高频噪声中确定桨-涡干扰噪声,如图7所示。Since the propeller-vortex interference noise has obvious characteristics, such as periodic appearance, the intensity is obviously higher than that of broadband noise such as turbulent noise and electromagnetic interference noise, so steps S5-S11 of the present invention are based on the characteristics of the propeller-vortex interference noise. The propeller-vortex interference noise is determined in the noise, as shown in Figure 7.
S5:在所述高频噪声中确定多个模极大值。各模极大值为所述高频噪声中声压大于设定阈值的声压,如图8所示。即寻找高频噪声信号中的一些较大值的点,目的是为了确定桨-涡干扰噪声的强弱程度。S5: Determine a plurality of modulo maxima in the high-frequency noise. The maximum value of each mode is the sound pressure in the high-frequency noise whose sound pressure is greater than the set threshold, as shown in FIG. 8 . That is to find some points with larger values in the high-frequency noise signal, the purpose is to determine the strength of the propeller-vortex interference noise.
具体地,寻找高频噪声中的有限个模极大值点(x1,x2,...,xn),n<<L,使这n个模极大值的乘积最大,即满足本发明将第g个模极大值记为Mg=|f(xg)|。Specifically, find a finite number of modulo maxima points (x 1 , x 2 ,..., x n ) in high-frequency noise, n<<L, and maximize the product of these n modulo maxima, that is, satisfy In the present invention, the g-th modulus maximum value is denoted as M g =|f(x g )|.
S6:根据各模极大值,确定桨-涡干扰平均强度。具体地,采用公式 确定桨-涡干扰平均强度。其中,mn为桨-涡干扰平均强度,n为模极大值的数量。S6: According to the maximum value of each mode, determine the average intensity of propeller-vortex interference. Specifically, using the formula Determine the mean strength of the paddle-vortex disturbance. where m n is the average intensity of the propeller-vortex interference, and n is the number of modulo maxima.
S7:根据所述高频噪声中各采样点处的声压,确定高频噪声平均强度。具体地,采用公式确定高频噪声平均强度。其中,mL为高频噪声平均强度,L为高频噪声的长度,f(xi)为高频噪声中采样点xi处的声压。S7: Determine the average intensity of high-frequency noise according to the sound pressure at each sampling point in the high-frequency noise. Specifically, using the formula Determines the average intensity of high frequency noise. Among them, m L is the average intensity of high-frequency noise, L is the length of high-frequency noise, and f( xi ) is the sound pressure at the sampling point xi in the high-frequency noise.
S8:根据所述桨-涡干扰平均强度、所述高频噪声平均强度及所述高频噪声中各采样点处的声压,在所述高频噪声中确定多个初始桨-涡干扰区间,如图9所示。S8: Determine a plurality of initial propeller-vortex interference intervals in the high-frequency noise according to the average intensity of the propeller-vortex interference, the average intensity of the high-frequency noise, and the sound pressure at each sampling point in the high-frequency noise , as shown in Figure 9.
具体地,首先根据所述桨-涡干扰平均强度及所述高频噪声平均强度,确定常数。其中,所述常数满足以下条件:mnc>mL,c∈(0,1),c为常数,mn为桨-涡干扰平均强度,mL为高频噪声平均强度。一般取c=0.1~0.5。实际上,c的取值对算法的结果没有任何影响,但是可以减少收敛需要迭代的次数。Specifically, the constant is first determined according to the average intensity of the propeller-vortex interference and the average intensity of the high-frequency noise. Wherein, the constant satisfies the following conditions: m n c>m L , c∈(0,1), c is a constant, m n is the average intensity of propeller-vortex interference, and m L is the average intensity of high-frequency noise. Generally take c=0.1~0.5. In fact, the value of c has no effect on the result of the algorithm, but it can reduce the number of iterations required for convergence.
步骤S6-S8粗略估计高频噪声信号中的桨-涡干扰噪声平均强度与高频信号平均强度,并估计出常数c的取值,为缩小桨-涡干扰噪声存在的区间提供依据。Steps S6-S8 roughly estimate the average intensity of the propeller-vortex interference noise and the average intensity of the high-frequency signal in the high-frequency noise signal, and estimate the value of the constant c, which provides a basis for narrowing the range where the propeller-vortex interference noise exists.
然后根据所述桨-涡干扰平均强度、所述常数及所述高频噪声中各采样点处的声压,确定多个初始桨-涡干扰区间。即寻找高频噪声信号中存在声压幅值较大区间,缩小桨-涡干扰噪声存在的区间。其中,第i个初始桨-涡干扰区间内的声压满足以下条件:|f(x)|≥mnc,x∈[lia,lib],[lia,lib]为第i个初始桨-涡干扰区间,lia为第i个初始桨-涡干扰区间的起始采样点,lib为第i个初始桨-涡干扰区间的终止采样点,f(x)为第i个初始桨-涡干扰区间内采样点x处的声压,||为取模运算。进一步地,区间 I为初始桨-涡干扰区间的总数。Then, according to the average intensity of the propeller-vortex interference, the constant, and the sound pressure at each sampling point in the high-frequency noise, a plurality of initial propeller-vortex interference intervals are determined. That is to search for the high-frequency noise signal with a large sound pressure amplitude range, and narrow the range where the propeller-vortex interference noise exists. Among them, the sound pressure in the ith initial propeller-vortex interference interval satisfies the following conditions: |f(x)|≥m n c, x∈[l ia , l ib ], [l ia , l ib ] is the ith initial propeller-vortex interference interval, l ia is the starting sampling point of the ith initial propeller-vortex interference interval, l ib is the end sampling point of the ith initial propeller-vortex interference interval, f(x) is the ith initial propeller-vortex interference interval The sound pressure at the sampling point x in the initial propeller-vortex interference interval, || is the modulo operation. Further, the interval I is the total number of initial propeller-vortex interference intervals.
S9:根据各初始桨-涡干扰区间内的声压最大值及所述桨-涡干扰间距,确定多个最终桨-涡干扰区间。S9: According to the maximum value of sound pressure in each initial propeller-vortex interference interval and the propeller-vortex interference interval, determine a plurality of final propeller-vortex interference intervals.
具体地,根据各初始桨-涡干扰区间内的声压最大值,确定相邻两个初始桨-涡干扰区间的距离。在本实施例中,根据桨-涡干扰噪声周期性出现的特征,可以推测任意两个桨-涡干扰噪声出现的区间存在周期性,为便于问题的描述,记任意两个不同区间[lia,lib],[lja,ljb],的距离dij为两个区间的声压最大值所在时刻差的模。采用以下公式,确定第i个初始桨-涡干扰区间与第j个初始桨-涡干扰区间的距离:Specifically, according to the maximum value of sound pressure in each initial propeller-vortex interference interval, the distance between two adjacent initial propeller-vortex interference intervals is determined. In this embodiment, according to the characteristic of the periodic appearance of propeller-vortex interference noise, it can be inferred that any two intervals in which propeller- vortex interference noise occurs are periodic. , l ib ], [l ja , l jb ], The distance d ij is the modulus of the time difference of the maximum sound pressure of the two intervals. The following formula is used to determine the distance between the ith initial propeller-vortex interference interval and the jth initial propeller-vortex interference interval:
dij=|argmax|f(x*)|-argmax|f(y*)||,x*∈[lia,lib],y*∈[lja,ljb];d ij = |argmax|f(x * )|-argmax|f(y * )||, x * ∈ [l ia , l ib ], y * ∈ [l ja , l jb ];
其中,dij为第i个初始桨-涡干扰区间与第j个初始桨-涡干扰区间的距离,f(x*)为采样点x*处的声压,f(y*)为采样点y*处的声压,argmax|f(x*)|为第i个初始桨-涡干扰区间内的声压最大值对应的采样点,argmax|f(y*)|为第j个初始桨-涡干扰区间内的声压最大值对应的采样点,[lia,lib]为第i个初始桨-涡干扰区间,[lja,ljb]为第j个初始桨-涡干扰区间。Among them, d ij is the distance between the i-th initial propeller-vortex interference interval and the j-th initial propeller-vortex interference interval, f(x * ) is the sound pressure at the sampling point x * , and f(y * ) is the sampling point The sound pressure at y * , argmax|f(x * )| is the sampling point corresponding to the maximum sound pressure in the ith initial propeller-vortex interference interval, argmax|f(y * )| is the jth initial propeller - The sampling point corresponding to the maximum sound pressure in the vortex interference interval, [l ia , l ib ] is the ith initial propeller-vortex interference interval, [l ja , l jb ] is the jth initial propeller-vortex interference interval .
由于并不能确定各初始桨-涡干扰区间中都有桨-涡干扰信号,且有些初始桨-涡干扰区间中可能都是其余的高频噪声,因此本发明根据桨-涡干扰噪声周期性出现的特点,可以提前估算出桨-涡干扰的间距NBVI。如果两个初始桨-涡干扰区间的距离远远小于桨-涡干扰的间距NBVI,即dij≤NBVI/2则确定这两个初始桨-涡干扰区间里面最多存在一个桨-涡干扰噪声,也可能一个桨-涡干扰噪声都没有。这时就选择保留声压的模值相对比较大的区间,舍去另一个区间,如果存在桨-涡干扰噪声,一定在信号模值最大的点所对应的区间。在两个临近区间之间不断进行区间舍取,则区间的距离会不断地增大,根据桨-涡干扰噪声的周期性特点,可以确定在所有相邻区间的距离dij>NBVI/2时即可得到最终桨-涡干扰区间。确保每个区间都存在唯一一个桨-涡干扰噪声,同时留下的区间数即为桨-涡干扰噪声的数量。Since it is not certain that there are propeller-vortex interference signals in each initial propeller-vortex interference interval, and some initial propeller-vortex interference intervals may contain other high-frequency noises, the present invention periodically appears according to the propeller-vortex interference noise. , the propeller-vortex interference spacing N BVI can be estimated in advance. If the distance between the two initial propeller-vortex interference intervals is much smaller than the propeller-vortex interference interval N BVI , that is, d ij ≤N BVI /2, it is determined that there is at most one propeller-vortex interference in the two initial propeller-vortex interference intervals Noise, and possibly a paddle-vortex interference noise at all. At this time, the interval with a relatively large modulus value of the sound pressure is selected, and the other interval is discarded. If there is propeller-vortex interference noise, it must be in the interval corresponding to the point with the largest signal modulus value. If the interval is continuously rounded between two adjacent intervals, the distance between the intervals will continue to increase. According to the periodic characteristics of the propeller-vortex interference noise, it can be determined that the distance d ij >N BVI /2 in all adjacent intervals Then the final propeller-vortex interference interval can be obtained. Make sure that there is only one propeller-vortex interference noise in each interval, and the number of remaining intervals is the number of propeller-vortex interference noise.
S10:根据各最终桨-涡干扰区间内声压的模最大值,确定多个桨-涡干扰中心,如图10所示。实现了对桨-涡干扰噪声的精确定位。具体地,求出各最终桨-涡干扰区间(lka,lkb)的声压的模最大值|f(x)|所对应的时刻坐标。即wk=argmin|f(w)|,w∈(lka,lkb)。wk亦是第k个桨-涡干扰噪声中心所在的坐标,f(w)为采样点w处的声压,遍历所有最终桨-涡干扰区间即可求得所有桨-涡干扰噪声中心坐标。S10: Determine multiple propeller-vortex interference centers according to the modulo maximum value of the sound pressure in each final propeller-vortex interference interval, as shown in Figure 10. Accurate positioning of propeller-vortex interference noise is achieved. Specifically, the time coordinates corresponding to the modulo maximum value |f(x)| of the sound pressure in each final propeller-vortex interference interval (l ka , l kb ) are obtained. That is, w k =argmin|f(w)|,w∈(l ka ,l kb ). w k is also the coordinate of the k-th propeller-vortex interference noise center, f(w) is the sound pressure at the sampling point w, and the coordinates of all propeller-vortex interference noise centers can be obtained by traversing all final propeller-vortex interference intervals .
S11:根据各桨-涡干扰中心及所述桨-涡干扰长度,在所述高频噪声中确定最终的桨-涡干扰噪声,如图11所示。S11: According to each propeller-vortex interference center and the propeller-vortex interference length, determine the final propeller-vortex interference noise in the high-frequency noise, as shown in FIG. 11 .
具体地,根据各桨-涡干扰中心及所述桨-涡干扰长度,确定多个桨-涡干扰发生区间。第k个桨-涡干扰发生区间为[wk-nBVI/2,wk+nBVI/2],其中,wk为第k个桨-涡干扰中心,nBVI为桨-涡干扰长度。Specifically, according to each propeller-vortex interference center and the propeller-vortex interference length, a plurality of propeller-vortex interference occurrence intervals are determined. The occurrence interval of the k-th propeller-vortex interference is [w k -n BVI /2,w k +n BVI /2], where w k is the k-th propeller-vortex interference center, and n BVI is the length of the propeller-vortex interference .
将所述高频噪声中桨-涡干扰发生区间之外的信号赋值为0,得到最终的桨-涡干扰噪声。即其中,K(t)为桨-涡干扰噪声中t时刻的声压。The signal outside the occurrence interval of the propeller-vortex interference in the high-frequency noise is assigned as 0, and the final propeller-vortex interference noise is obtained. which is Among them, K(t) is the sound pressure at time t in the propeller-vortex interference noise.
另外,图3-图5、图8-图11中的横坐标为采样时间,纵坐标为声压。In addition, the abscissa in FIGS. 3-5 and 8-11 is the sampling time, and the ordinate is the sound pressure.
本发明首先利用小波理论分离高频和低频噪声,再根据直升机旋翼的桨-涡干扰噪声的固有特点,从高频噪声中提取出桨-涡干扰噪声,考虑到工程的可行性,根据桨-涡干扰噪声信号存在时间短、强度比普通噪声强度高很多的特殊性,直接从旋翼实验现场传声器的声信号中提取出桨-涡干扰噪声,提取算法简单可靠,具备工程应用的能力,提高了桨-涡干扰噪声的可靠性,进而根据桨-涡干扰噪声对直升机进行改进,以准确降低旋翼的桨-涡干扰噪声,降低飞行员的工作强度及直升机的维护成本。The present invention first uses wavelet theory to separate high-frequency and low-frequency noise, and then extracts the propeller-vortex interference noise from the high-frequency noise according to the inherent characteristics of the propeller-vortex interference noise of the helicopter rotor. Considering the feasibility of the project, according to the propeller-vortex interference noise The vortex interference noise signal has the particularity that the existence time is short and the intensity is much higher than that of ordinary noise. The propeller-vortex interference noise is directly extracted from the acoustic signal of the rotor experimental site microphone. The extraction algorithm is simple and reliable, and has the ability of engineering application. The reliability of the propeller-vortex interference noise, and then the helicopter is improved according to the propeller-vortex interference noise to accurately reduce the propeller-vortex interference noise of the rotor, reduce the pilot's work intensity and the maintenance cost of the helicopter.
进一步地,步骤S2中,采用Mallat的交错投影算法确定旋翼总噪声中的高频噪声,交错投影算法是小波分析中的滤波算法,如图12所示,具体如下:Further, in step S2, the interlaced projection algorithm of Mallat is used to determine the high-frequency noise in the total noise of the rotor, and the interlaced projection algorithm is a filtering algorithm in wavelet analysis, as shown in Figure 12, and the details are as follows:
记h(t)的二进小波变换为WTh(j,t),h(t)是假设的低频噪声信号,是未知量。对集合{h(t);h(t)∈L2(R)}的约束条件为:Note that the binary wavelet transform of h(t) is WT h (j, t), and h(t) is a hypothetical low-frequency noise signal, which is an unknown quantity. The constraints on the set {h(t); h(t)∈L 2 (R)} are:
条件1:对应每一个尺度j,在所有的模极大值横坐标(tj,n)n∈Z处,都有|WTh(j,tj,n)|=|WTf(j,tj,n)|。其中,WTf(j,tj,n)为噪声f的小波变换,j是尺度缩放参数,tj,n是平移参数。Condition 1: Corresponding to each scale j, at all the abscissas (t j, n ) n∈Z of the modulo maxima, there is |WT h (j, t j, n )|=|WT f (j, t j,n )|. Among them, WT f (j, t j, n ) is the wavelet transform of the noise f, j is the scaling parameter, and t j, n is the translation parameter.
条件2:对应每一个尺度j,WTh(j,t)的局部极值都应位于模极大值横坐标(tj,n)n∈Z处。Condition 2: Corresponding to each scale j, the local extrema of WT h (j, t) should be located at the abscissa (t j, n ) n∈Z of the modulo maxima.
其中,L2(R)是所有平方可积的噪声信号所在的空间;Z是整数集合。where L 2 (R) is the space in which all square-integrable noise signals reside; Z is the set of integers.
令V是L2(R)空间上所有函数的二进小波变换组成的空间,K是序列gj(t)所构成的空间,gj(t)满足: Let V be the space composed of the binary wavelet transforms of all functions on the L 2 (R) space, K be the space composed of the sequence g j (t), and g j (t) satisfies:
显然,对比序列gj(t)应是某一个序列的小波变换。再令Γ是空间K上的一个闭包,其中的元素gj(t)满足gj(tj,n)=WTf(j,tj,n),和均为中间变量,即代指等式后面的结果。Obviously, Compared The sequence g j (t) should be the wavelet transform of a certain sequence. Let Γ be a closure on space K, and the element g j (t) in it satisfies g j (t j, n )=WT f (j, t j, n ), and Both are intermediate variables, that is, refer to the result after the equation.
或者,可以更完全地表示为Alternatively, it can be expressed more completely as
Γ={{gj(t)}∈K|gj(tj,n)=WTf(j,tj,n),j,n∈Z}。Γ={{g j (t)}∈K|g j (t j,n )=WT f (j,t j,n ),j,n∈Z}.
这样,满足条件1的小波变换应是空间Λ=V∩Γ中的元素。现在的任务转变为求Λ中的元素,使其范数最小。实现这一方法的便是V和Γ的交替投影。In this way, the wavelet transform satisfying condition 1 should be an element in the space Λ=V∩Γ. The task now turns into finding the elements in Λ such that their norm is the smallest. What accomplishes this is the alternating projection of V and Γ.
令是空间V和Γ之间的交替投影算子,是P的n次迭代,则对任一序列X={gj(t)}j∈Z∈K,可以证明,有 PΛ是总噪声在空间Λ上的投影算子。其中,PV是投影算子,表示噪声在y空间上的投影,PΓ是也是投影算子,表示噪声在Γ空间上的投影。make is the alternate projection operator between spaces V and Γ, is n iterations of P, then for any sequence X={g j (t)} j∈Z ∈K , it can be proved that there is P Λ is the projection operator of the total noise on space Λ. Among them, P V is the projection operator, which represents the projection of the noise on the y space, and P Γ is also the projection operator, which represents the projection of the noise on the Γ space.
因此,空间V和Γ之间的交替投影收敛到空间Λ的正交投影。迭代开始时,选取gj(t)=0,则交替投影之后收敛到对空间Λ的元素的范数接近于零,实现了信号二进小波变换系数的重构。Thus, the alternating projection between spaces V and Γ converges to the orthogonal projection of space Λ. At the beginning of the iteration, g j (t) = 0 is selected, then the norm of the elements converged to the space Λ is close to zero after the alternate projection, and the reconstruction of the signal binary wavelet transform coefficient is realized.
再用重构的二进小波系数进行逆变换即可分离出低频噪声,用总噪声减去低频噪声得到所有高频噪声(包含桨-涡干扰噪声)。Then use the reconstructed binary wavelet coefficients to perform inverse transformation to separate the low-frequency noise, and subtract the low-frequency noise from the total noise to obtain all the high-frequency noise (including the propeller-vortex interference noise).
如图13所示,本发明旋翼桨-涡干扰噪声提取系统包括:信号获取单元1、高频噪声确定单元2、干扰长度确定单元3、干扰间距确定单元4、模极大值确定单元5、干扰平均强度确定单元6、高频噪声平均强度确定单元7、初始区间确定单元8、最终区间确定单元9、干扰中心确定单元10及干扰噪声确定单元11。As shown in FIG. 13 , the rotor-vortex interference noise extraction system of the present invention includes: a signal acquisition unit 1, a high-frequency
其中,信号获取单元1用于获取现场直升机的旋翼总噪声及旋翼总噪声中桨-涡干扰的发生时间。Wherein, the signal acquisition unit 1 is used to acquire the total rotor noise of the on-site helicopter and the occurrence time of the propeller-vortex interference in the total rotor noise.
高频噪声确定单元2与所述信号获取单元1连接,高频噪声确定单元2用于采用交错投影算法对所述旋翼总噪声进行滤波,确定高频噪声;所述高频噪声包括多个采样点及各采样点处的声压。The high-frequency
干扰长度确定单元3与所述信号获取单元1连接,干扰长度确定单元3用于根据所述桨-涡干扰的发生时间及所述旋翼总噪声的采样频率,确定桨-涡干扰长度。The interference length determination unit 3 is connected to the signal acquisition unit 1, and the interference length determination unit 3 is configured to determine the propeller-vortex interference length according to the occurrence time of the propeller-vortex interference and the sampling frequency of the total noise of the rotor.
干扰间距确定单元4与所述信号获取单元1连接,干扰间距确定单元4用于根据旋翼转速、直升机的桨叶片数及所述旋翼总噪声的采样频率,确定桨-涡干扰间距。The interference distance determination unit 4 is connected to the signal acquisition unit 1, and the interference distance determination unit 4 is used for determining the propeller-vortex interference distance according to the rotating speed of the rotor, the number of propeller blades of the helicopter and the sampling frequency of the total noise of the rotor.
具体地,干扰间距确定单元4包括:干扰周期确定模块及间距确定模块。Specifically, the interference distance determination unit 4 includes: an interference period determination module and a distance determination module.
其中,干扰周期确定模块用于根据旋翼转速及直升机的桨叶片数,确定桨-涡干扰周期。Among them, the interference period determination module is used to determine the propeller-vortex interference period according to the rotor speed and the number of propeller blades of the helicopter.
间距确定模块与所述信号获取单元1及干扰周期确定模块连接,间距确定模块用于根据所述桨-涡干扰周期及所述旋翼总噪声的采样频率,确定桨-涡干扰间距。The distance determination module is connected with the signal acquisition unit 1 and the interference period determination module, and the distance determination module is used for determining the propeller-vortex interference distance according to the propeller-vortex interference period and the sampling frequency of the total noise of the rotor.
模极大值确定单元5与所述高频噪声确定单元2连接,模极大值确定单元5用于在所述高频噪声中确定多个模极大值。各模极大值为所述高频噪声中声压大于设定阈值的声压。The modulus maximum
干扰平均强度确定单元6与所述模极大值确定单元5连接,干扰平均强度确定单元6用于根据各模极大值,确定桨-涡干扰平均强度。The average interference
高频噪声平均强度确定单元7与所述高频噪声确定单元2连接,高频噪声平均强度确定单元7用于根据所述高频噪声中各采样点处的声压,确定高频噪声平均强度。The high-frequency noise average intensity determination unit 7 is connected to the high-frequency
初始区间确定单元8与所述干扰平均强度确定单元6、高频噪声平均强度确定单元7及高频噪声确定单元2连接,初始区间确定单元8用于根据所述桨-涡干扰平均强度、所述高频噪声平均强度及所述高频噪声中各采样点处的声压,在所述高频噪声中确定多个初始桨-涡干扰区间。The initial interval determination unit 8 is connected with the interference average
具体地,初始区间确定单元8包括常数确定模块及区间确定模块。Specifically, the initial interval determination unit 8 includes a constant determination module and an interval determination module.
其中,常数确定模块与干扰平均强度确定单元6及高频噪声平均强度确定单元7,常数确定模块用于根据所述桨-涡干扰平均强度及所述高频噪声平均强度,确定常数。其中,所述常数满足以下条件:mnc>mL,c∈(0,1),c为常数,mn为桨-涡干扰平均强度,mL为高频噪声平均强度。Among them, the constant determination module, the average interference
区间确定模块与常数确定模块、干扰平均强度确定单元6及高频噪声确定单元2连接,区间确定模块用于根据所述桨-涡干扰平均强度、所述常数及所述高频噪声中各采样点处的声压,确定多个初始桨-涡干扰区间。其中,第i个初始桨-涡干扰区间内的声压满足以下条件:|f(x)|≥mnc,x∈[lia,lib],[lia,lib]为第i个初始桨-涡干扰区间,lia为第i个初始桨-涡干扰区间的起始采样点,lib为第i个初始桨-涡干扰区间的终止采样点,f(x)为第i个初始桨-涡干扰区间内采样点x处的声压,| |为取模运算。The interval determination module is connected with the constant determination module, the interference average
最终区间确定单元9与所述初始区间确定单元8及所述干扰间距确定单元4连接,最终区间确定单元9用于根据各初始桨-涡干扰区间内的声压最大值及所述桨-涡干扰间距,确定多个最终桨-涡干扰区间。The final
具体地,最终区间确定单元9包括:距离确定模块及区间取舍模块。Specifically, the final
其中,距离确定模块与所述初始区间确定单元8连接,距离确定模块用于根据各初始桨-涡干扰区间内的声压最大值,确定相邻两个初始桨-涡干扰区间的距离。The distance determination module is connected to the initial interval determination unit 8, and the distance determination module is used to determine the distance between two adjacent initial paddle-vortex interference intervals according to the maximum sound pressure in each initial paddle-vortex interference interval.
区间取舍模块与距离确定模块及干扰间距确定单元4连接,区间取舍模块用于若相邻两个初始桨-涡干扰区间的距离小于或等于所述桨-涡干扰间距的一半,则将相邻两个初始桨-涡干扰区间中声压最大值小的初始桨-涡干扰区间舍弃,以得到多个最终桨-涡干扰区间。The interval selection module is connected to the distance determination module and the interference distance determination unit 4, and the interval selection module is used to select the adjacent two initial propeller-vortex interference intervals if the distance between them is less than or equal to half of the propeller-vortex interference interval. In the two initial propeller-vortex interference intervals, the initial propeller-vortex interference interval with the smaller maximum sound pressure is discarded to obtain multiple final propeller-vortex interference intervals.
干扰中心确定单元10与所述最终区间确定单元9连接,干扰中心确定单元10用于根据各最终桨-涡干扰区间内声压的模最大值,确定多个桨-涡干扰中心。The interference
干扰噪声确定单元11与所述干扰中心确定单元10及所述干扰长度确定单元3连接,干扰噪声确定单元11用于根据各桨-涡干扰中心及所述桨-涡干扰长度,在所述高频噪声中确定最终的桨-涡干扰噪声。The interference noise determination unit 11 is connected to the interference
具体地,干扰噪声确定单元11包括发生区间确定模块及最终噪声确定模块。Specifically, the interference noise determination unit 11 includes an occurrence interval determination module and a final noise determination module.
其中,发生区间确定模块与干扰中心确定单元10及所述干扰长度确定单元3连接,发生区间确定模块用于根据各桨-涡干扰中心及所述桨-涡干扰长度,确定多个桨-涡干扰发生区间。第k个桨-涡干扰发生区间为[wk-nBVI/2,wk+nBVI/2],其中,wk为第k个桨-涡干扰中心,nBVI为桨-涡干扰长度。Wherein, the occurrence interval determination module is connected with the interference
最终噪声确定模块与发生区间确定模块连接,最终噪声确定模块用于将所述高频噪声中桨-涡干扰发生区间之外的信号赋值为0,得到最终的桨-涡干扰噪声。The final noise determination module is connected with the occurrence interval determination module, and the final noise determination module is used for assigning a value of 0 to the signal outside the occurrence interval of the propeller-vortex interference in the high-frequency noise to obtain the final propeller-vortex interference noise.
相对于现有技术,本发明旋翼桨-涡干扰噪声提取系统与上述旋翼桨-涡干扰噪声提取方法的有益效果相同,在此不再赘述。Compared with the prior art, the rotor-vortex interference noise extraction system of the present invention has the same beneficial effects as the above-mentioned rotor-vortex interference noise extraction method, which will not be repeated here.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The principles and implementations of the present invention are described herein using specific examples. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210935286.7A CN115186221B (en) | 2022-08-05 | 2022-08-05 | Rotor blade-vortex interference noise extraction method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210935286.7A CN115186221B (en) | 2022-08-05 | 2022-08-05 | Rotor blade-vortex interference noise extraction method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115186221A true CN115186221A (en) | 2022-10-14 |
CN115186221B CN115186221B (en) | 2024-01-12 |
Family
ID=83521479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210935286.7A Active CN115186221B (en) | 2022-08-05 | 2022-08-05 | Rotor blade-vortex interference noise extraction method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115186221B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191995A (en) * | 2000-01-07 | 2001-07-17 | Kawada Kogyo Kk | Bvi noise reducing method and device for helicopter |
US6283406B1 (en) * | 1999-09-10 | 2001-09-04 | Gte Service Corporation | Use of flow injection and extraction to control blade vortex interaction and high speed impulsive noise in helicopters |
WO2002059497A2 (en) * | 2000-12-29 | 2002-08-01 | General Dynamics Advanced Technology Systems, Inc. | Neural net controller for noise and vibration reduction |
CN108051659A (en) * | 2017-12-01 | 2018-05-18 | 中国直升机设计研究所 | A kind of method of separation and Extraction rotor noise |
CN110133600A (en) * | 2019-06-17 | 2019-08-16 | 电子科技大学 | A method for extracting physical parameters of helicopter rotor |
CN110765867A (en) * | 2019-09-18 | 2020-02-07 | 山东建筑大学 | A method for extracting low frequency features of propeller radiated noise |
CN111563299A (en) * | 2020-04-30 | 2020-08-21 | 南京航空航天大学 | Rotor noise determination method and system |
CN113643679A (en) * | 2021-10-14 | 2021-11-12 | 中国空气动力研究与发展中心低速空气动力研究所 | Rotor wing and tail rotor aerodynamic noise separation method based on cascade filter |
-
2022
- 2022-08-05 CN CN202210935286.7A patent/CN115186221B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6283406B1 (en) * | 1999-09-10 | 2001-09-04 | Gte Service Corporation | Use of flow injection and extraction to control blade vortex interaction and high speed impulsive noise in helicopters |
JP2001191995A (en) * | 2000-01-07 | 2001-07-17 | Kawada Kogyo Kk | Bvi noise reducing method and device for helicopter |
WO2002059497A2 (en) * | 2000-12-29 | 2002-08-01 | General Dynamics Advanced Technology Systems, Inc. | Neural net controller for noise and vibration reduction |
CN108051659A (en) * | 2017-12-01 | 2018-05-18 | 中国直升机设计研究所 | A kind of method of separation and Extraction rotor noise |
CN110133600A (en) * | 2019-06-17 | 2019-08-16 | 电子科技大学 | A method for extracting physical parameters of helicopter rotor |
CN110765867A (en) * | 2019-09-18 | 2020-02-07 | 山东建筑大学 | A method for extracting low frequency features of propeller radiated noise |
CN111563299A (en) * | 2020-04-30 | 2020-08-21 | 南京航空航天大学 | Rotor noise determination method and system |
CN113643679A (en) * | 2021-10-14 | 2021-11-12 | 中国空气动力研究与发展中心低速空气动力研究所 | Rotor wing and tail rotor aerodynamic noise separation method based on cascade filter |
Also Published As
Publication number | Publication date |
---|---|
CN115186221B (en) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022165737A1 (en) | Method for diagnosing early weak fault signal features of marine machinery | |
CN101882964B (en) | De-noising method of transient electromagnetic detecting echo signal | |
CN112162273B (en) | A method for extracting physical parameters of multi-rotor UAV based on singular vector | |
CN115081109B (en) | Hypersonic velocity boundary layer transition suppression method based on acoustic hypersurface and micro blow-suction | |
CN110855374B (en) | A method for extracting radiated noise modulation features of underwater acoustic targets | |
CN103944174A (en) | Low frequency oscillation online identification method based on cross-correlation function denoising algorithm | |
Qin et al. | Radar waveform recognition based on deep residual network | |
CN111624556A (en) | Meteorological radar WTC (wind turbine controller) inhibition method based on morphological component analysis | |
CN108875685A (en) | A kind of underwater AUV detection method of Adaptive matching accidental resonance | |
CN115434872B (en) | A wind turbine gearbox composite fault diagnosis method based on AVMD and improved RSSD | |
CN112034434A (en) | Radar radiation source identification method based on sparse time-frequency detection convolutional neural network | |
CN112598593B (en) | Seismic noise suppression method based on non-equilibrium depth expectation block log-likelihood network | |
CN107390193A (en) | Frequency modulated continuous wave radar Aircraft Targets sorting technique based on the fusion of more range cells | |
CN115186221A (en) | Rotor blade-vortex interference noise extraction method and system | |
CN115017940A (en) | A Target Detection Method Based on Empirical Mode Decomposition and 1(1/2) Spectral Analysis | |
CN113095113B (en) | A wavelet line spectrum feature extraction method and system for underwater target recognition | |
CN109085595A (en) | A method of signal, which is received, using hydrophone estimates aerial sports sound source velocity | |
CN109471084B (en) | Electromagnetic scattering mechanism decomposition method | |
CN108090270A (en) | A kind of transient oscillation parameter identification method based on morphologic filtering and blind source separating | |
CN107040269A (en) | Pole based on variance medium filtering/ultralow frequency channel atmospheric noise suppressing method | |
CN107369444A (en) | A kind of underwater manoeuvre Small object recognition methods based on MFCC and artificial neural network | |
CN111538087A (en) | Dynamic self-adaptive attenuation compensation method and system based on deep learning frequency spectrum segmentation | |
Wang et al. | LFM signal perception based on Wavelet transform and Time-Frequency Technology | |
Huang et al. | An improved method to enhance SNR of non-stationary signal based on nonuniform windows adaptive modulation for measurement | |
CN108919355B (en) | High-dimensional S transformation method based on structure tensor guidance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |