CN115185317A - A load-adaptive wide-load intelligent high-precision temperature control device - Google Patents
A load-adaptive wide-load intelligent high-precision temperature control device Download PDFInfo
- Publication number
- CN115185317A CN115185317A CN202211100326.2A CN202211100326A CN115185317A CN 115185317 A CN115185317 A CN 115185317A CN 202211100326 A CN202211100326 A CN 202211100326A CN 115185317 A CN115185317 A CN 115185317A
- Authority
- CN
- China
- Prior art keywords
- load
- module
- power output
- main controller
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Temperature (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种负载自适应的宽负载智能高精度温度控制装置,包括主控制器模块、模数转换模块、温度传感器探头模块、负载模块、DAC模块、3个可调功率输出模块、上位机模块。所选模数转换模块带有两路电流源,一路给温度传感器探头,用于计算当前温度值;另一路给负载,用于计算当前负载值。3个可调功率输出模块覆盖0‑100W的功率输出范围,用DAC模块对其控制;主控制器依据当前负载值,选择其中一个可调功率输出模块,并根据上位机模块的配置信息和当前温度信息,通过内部PID算法计算输出功率,调整被控目标的温度。采用本发明,温控系统可以自动识别负载,并选择最合适的加热/制冷功率,实现了宽负载范围内的高精度温度控制。
The invention discloses a wide-load intelligent high-precision temperature control device with adaptive load, comprising a main controller module, an analog-to-digital conversion module, a temperature sensor probe module, a load module, a DAC module, three adjustable power output modules, a host machine module. The selected analog-to-digital conversion module has two current sources, one is for the temperature sensor probe, which is used to calculate the current temperature value; the other is for the load, which is used to calculate the current load value. The three adjustable power output modules cover the power output range of 0-100W, and are controlled by the DAC module; the main controller selects one of the adjustable power output modules according to the current load value, and according to the configuration information of the host computer module and the current Temperature information, calculate the output power through the internal PID algorithm, and adjust the temperature of the controlled target. By adopting the invention, the temperature control system can automatically identify the load and select the most suitable heating/cooling power, thereby realizing high-precision temperature control in a wide load range.
Description
技术领域technical field
本发明涉及精密测量技术和高精度温度控制的技术领域,具体涉及一种负载自适应的宽负载智能高精度温度控制装置,可以推广应用到其他的温度测量、温度控制的相关领域。The invention relates to the technical field of precision measurement technology and high-precision temperature control, in particular to a wide-load intelligent high-precision temperature control device with adaptive load, which can be applied to other related fields of temperature measurement and temperature control.
背景技术Background technique
随着原子自旋操控、精密光谱、材料学等技术的迅速发展,基于原子自旋效应的量子精密测量技术以其超高的检测灵敏度受到越来越多研究者的关注。在量子精密测量领域中,绝大部分系统都会遇到对目标物体的温度进行精密控制的难题,诸如激光器温度控制、原子反应气室的温度控制,这些系统所需的温度指标不尽相同,如不同的原子气室由于体积不同,需要加热的目标温度不同,它们所需的温控功率也就不同,但是这些领域的温度控制系统大多有一个特点,就是它们对温度控制精度的要求都非常高,往往都在±0.01℃以上。With the rapid development of atomic spin manipulation, precision spectroscopy, materials science and other technologies, quantum precision measurement technology based on atomic spin effect has attracted more and more researchers' attention due to its ultra-high detection sensitivity. In the field of quantum precision measurement, most systems will encounter the problem of precise control of the temperature of the target object, such as laser temperature control, atomic reaction gas chamber temperature control, these systems require different temperature indicators, such as Different atomic gas chambers have different target temperatures to be heated due to different volumes, and their required temperature control powers are also different. However, most of the temperature control systems in these fields have a feature that they have very high requirements for temperature control accuracy. , often above ±0.01°C.
传统的温度控制系统大都是针对特定温控需求研发,它们的温控负载大都固定,或者在一个小范围内变化。且一般系统的功率输出本质上都是一个电源模块,电源模块的电感电容这些参数针对不同的输出负载有它们最佳的匹配参数,如果负载变化很大,那么系统的输出功率会有波动,这种波动本身会导致温控精度的下降。因此如何让温度控制系统针对不同的温控负载都有一样的高精度性能,以便让开发的温控装置能适应更多不同的应用场景,这对于温度控制系统来说具有非常积极的意义。Most of the traditional temperature control systems are developed for specific temperature control requirements, and their temperature control loads are mostly fixed or vary within a small range. In addition, the power output of the general system is essentially a power module. The parameters of the inductance and capacitance of the power module have their best matching parameters for different output loads. If the load changes greatly, the output power of the system will fluctuate. This kind of fluctuation itself will lead to the decrease of temperature control accuracy. Therefore, how to make the temperature control system have the same high-precision performance for different temperature control loads, so that the developed temperature control device can adapt to more different application scenarios, which has a very positive significance for the temperature control system.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明提供一种负载自适应的宽负载智能高精度温度控制装置,该装置使用电流源输出电流给系统当前负载,然后再用ADC模块采集负载两端电压,这样就可以检测出当前的负载大小信息,再根据不同的负载选择合适的功率输出模块,这样就能使得系统输出功率的波动尽可能小,从而在电路硬件上提高温度控制精度,满足不同负载情况下对于高精度温度控制系统的要求。In view of the deficiencies of the prior art, the present invention provides a wide-load intelligent high-precision temperature control device with adaptive load. The device uses a current source to output current to the current load of the system, and then uses an ADC module to collect the voltage across the load, so that the The current load size information can be detected, and then the appropriate power output module can be selected according to different loads, so that the fluctuation of the output power of the system can be as small as possible, thereby improving the temperature control accuracy on the circuit hardware and meeting the requirements of different loads. Requirements for high-precision temperature control systems.
为解决上述技术问题,本发明发用的技术方案是:一种负载自适应的宽负载智能高精度温度控制装置,主要由主控制器、模数转换模块、温度传感器探头、负载、被控目标、DAC模块、可调功率输出模块和上位机模块组成;所述模数转换模块与主控制器和温度传感器探头、负载相连,模数转换模块受主控制器控制,输出电流给温度传感器探头和负载;模数转换模块同时采集温度传感器探头两端的电压;所述温度传感器探头分别与模数转换模块和被控目标相连,温度传感器探头将被控目标的温度信号转换成电压信号,被模数转换模块采集;所述负载与被控目标、模数转换模块、可调功率输出模块和主控制器相连,负载的电压被主控制器内部的ADC模块采集,用于计算当前温控系统负载的大小;可调功率输出模块在主控制器的控制下,输出功率给负载,负载包裹在被控目标表面,调节被控目标的温度;所述被控目标与负载、温度传感器探头相连接,负载输出的功率加载到被控目标上,改变被控目标的温度,同时温度传感器探头感应被控目标的温度;所述DAC模块与主控制器、可调功率输出模块相连接,主控制器输出控制信息给DAC模块,使其输出不同的模拟信号来控制可调功率输出模块的输出功率;所述可调功率输出模块与DAC模块、负载和主控制器相连,可调功率输出模块受主控制器的GPIO接口控制其开关状态,受DAC模块控制输出功率大小;所述上位机模块与主控制器相连接,上位机模块发送指令给主控制器,并接收主控制器发送的当前温度值信息。In order to solve the above-mentioned technical problems, the technical scheme used in the present invention is: a wide-load intelligent high-precision temperature control device with adaptive load, which mainly consists of a main controller, an analog-to-digital conversion module, a temperature sensor probe, a load, and a controlled target. , DAC module, adjustable power output module and host computer module; the analog-to-digital conversion module is connected with the main controller, the temperature sensor probe and the load, the analog-to-digital conversion module is controlled by the main controller, and outputs current to the temperature sensor probe and the load. load; the analog-to-digital conversion module simultaneously collects the voltage across the temperature sensor probe; the temperature sensor probe is respectively connected with the analog-to-digital conversion module and the controlled target, the temperature sensor probe converts the temperature signal of the controlled target into a voltage signal, and the analog-digital The conversion module is collected; the load is connected to the controlled target, the analog-to-digital conversion module, the adjustable power output module and the main controller, and the voltage of the load is collected by the ADC module inside the main controller, which is used to calculate the current temperature control system load. Under the control of the main controller, the adjustable power output module outputs power to the load, and the load is wrapped on the surface of the controlled target to adjust the temperature of the controlled target; the controlled target is connected with the load and the temperature sensor probe, and the load The output power is loaded on the controlled target to change the temperature of the controlled target, and the temperature sensor probe senses the temperature of the controlled target; the DAC module is connected with the main controller and the adjustable power output module, and the main controller outputs the control information to the DAC module, so that it outputs different analog signals to control the output power of the adjustable power output module; the adjustable power output module is connected with the DAC module, the load and the main controller, and the adjustable power output module is controlled by the main controller The GPIO interface controls its switch state, and the output power is controlled by the DAC module; the host computer module is connected with the main controller, the host computer module sends instructions to the main controller, and receives the current temperature value information sent by the main controller.
作为优选,所述可调功率输出模块包括可调低功率输出模块、可调中功率输出模块、可调高功率输出模块,所述可调低功率输出模块的功率输出为0W-30W,所述可调中功率输出模块的功率输出为30W-60W,所述可调高功率输出模块的功率输出为60W-100W。Preferably, the adjustable power output module includes an adjustable low power output module, an adjustable medium power output module, and an adjustable high power output module, the power output of the adjustable low power output module is 0W-30W, and the The power output of the adjustable medium power output module is 30W-60W, and the power output of the adjustable high power output module is 60W-100W.
作为优选,所述主控制器为工业微处理器,其具有片上ADC模块、SPI接口、I2C接口、GPIO接口和UART接口,包括ARM处理器、DSP处理器或者FPGA处理器,主控制器主要用来配置模数转换模块、DAC模块,控制可调功率输出模块的开关状态,还用来与上位机模块进行数据和指令交互。Preferably, the main controller is an industrial microprocessor with on-chip ADC module, SPI interface, I2C interface, GPIO interface and UART interface, including ARM processor, DSP processor or FPGA processor. The main controller mainly uses It is used to configure the analog-to-digital conversion module and DAC module, to control the switch state of the adjustable power output module, and to interact with the host computer module for data and instructions.
作为优选,所述模数转换模块为输出多路独立电流源,电流源从10uA至10mA可配置,且该模块带有24位的温度采集模块ADC,可以对外部信号进行高精度采集。Preferably, the analog-to-digital conversion module is an output multi-channel independent current source, the current source can be configured from 10uA to 10mA, and the module has a 24-bit temperature acquisition module ADC, which can collect external signals with high precision.
作为优选,所述温度传感器探头为PT1000铂电阻传感器,PT1000是工业中常用的温度传感器,它的阻值与温度密切相关,可以用来探测-200℃-800℃内的温度值,常用于高精度温度传感领域。Preferably, the temperature sensor probe is a PT1000 platinum resistance sensor. PT1000 is a temperature sensor commonly used in the industry. Its resistance value is closely related to temperature, and can be used to detect the temperature value within -200℃-800℃. Precision temperature sensing field.
作为优选,所述负载为加热膜或者制冷片,具体需要根据当前环境温度和目标温度值确定,如果当前环境温度小于目标温度值,则应该用加热膜给被控目标加热;如果当前温度值大于目标温度值,则应该使用制冷片给被控目标制冷。加热膜和制冷片的负载阻值根据需要加热或制冷的功率确定。Preferably, the load is a heating film or a cooling sheet, which needs to be determined according to the current ambient temperature and the target temperature value. If the current ambient temperature is less than the target temperature value, the heating film should be used to heat the controlled target; if the current temperature value is greater than If the target temperature value is set, the cooling chip should be used to cool the controlled target. The load resistance of the heating film and the cooling sheet is determined according to the power required for heating or cooling.
作为优选,所述DAC模块用于将主控制器产生的控制信号转换为模拟信号,用于精确控制可调功率输出模块的输出功率大小。DAC模块的接口为I2C接口,其转换精度取决于实际温控精度的要求。在±0.01℃的控制精度要求下,一般选择12位或者14位的DAC芯片。Preferably, the DAC module is used to convert the control signal generated by the main controller into an analog signal, so as to precisely control the output power of the adjustable power output module. The interface of the DAC module is an I2C interface, and its conversion accuracy depends on the actual temperature control accuracy requirements. Under the control accuracy requirement of ±0.01°C, a 12-bit or 14-bit DAC chip is generally selected.
作为优选,所述可调功率输出模块为一种带电压跟随引脚的电源模块,其输出电压受DAC模块输出的模拟电压信号控制,可以精确调整对外输出功率大小,考虑到可调功率输出模块输出电压电流的纹波因素,一般在设计中进行电感电容参数选型计算时,可调低功率输出模块选择输出功率20W作为参数计算基准,可调中功率输出模块选择输出功率50W作为参数计算基准,可调高功率输出模块选择输出功率85W作为参数计算基准,这样可以保证在0-100W的输出范围内,输出电压电流的纹波尽可能小,从而在硬件上保证系统的温控精度性能。该模块的选型可以参考LM5146芯片进行设计。Preferably, the adjustable power output module is a power module with a voltage follower pin, and its output voltage is controlled by the analog voltage signal output by the DAC module, and the external output power can be accurately adjusted. Considering the adjustable power output module The ripple factor of the output voltage and current, generally in the design of the inductor and capacitor parameter selection calculation, the adjustable low power output module selects the output power 20W as the parameter calculation benchmark, and the adjustable medium power output module selects the output power 50W as the parameter calculation benchmark , the adjustable high power output module selects the output power of 85W as the parameter calculation benchmark, which can ensure that the ripple of the output voltage and current is as small as possible within the output range of 0-100W, thereby ensuring the temperature control accuracy performance of the system in hardware. The selection of this module can refer to the LM5146 chip for design.
作为优选,所述上位机模块与主控制器通过RS232接口通信,上位机模块完成人机交互功能,具有对温度控制系统参数修改和温度数据实时显示、存储等功能。Preferably, the host computer module communicates with the main controller through the RS232 interface, the host computer module completes the human-computer interaction function, and has functions such as modifying the parameters of the temperature control system and displaying and storing temperature data in real time.
本发明具有的优点和积极效果是:该负载自适应的宽负载智能高精度温度控制装置和目前市面上常见的温度控制系统相比,具备了其所有功能,并且在其功能基础上,利用模数转换模块的电流源和主控制器的ADC模块,增加了系统的负载感知功能,且增加了多个可调功率输出模块,因此该装置可以自主感知当前系统接入的负载,并在0-30W、30W-60W、60W-100W三个可调功率输出模块中选择一个最优的模块作为整个系统的功率输出模块,这样就可以在0-100W这样一个较宽的负载范围内实现高精度的温度控制,有效弥补了传统温度系统只能在某个小负载范围内具备高精度温控精度的缺陷,极大地拓宽了温控系统的使用范围,使之适用于更多的温度控制场合。The advantages and positive effects of the invention are as follows: compared with the temperature control system commonly used in the market, the load-adaptive wide-load intelligent high-precision temperature control device has all its functions, and on the basis of its functions, it uses the module The current source of the digital conversion module and the ADC module of the main controller increase the load sensing function of the system, and add a number of adjustable power output modules, so the device can autonomously sense the load currently connected to the system, and at 0- 30W, 30W-60W, 60W-100W three adjustable power output modules, select an optimal module as the power output module of the whole system, so that it can achieve high precision in a wide load range such as 0-100W. Temperature control effectively makes up for the defect that the traditional temperature system can only have high-precision temperature control accuracy within a small load range, greatly broadens the use range of the temperature control system, and makes it suitable for more temperature control occasions.
附图说明Description of drawings
图1是本发明的一种负载自适应的宽负载智能高精度温度控制装置的整体功能框图;1 is an overall functional block diagram of a load-adaptive wide-load intelligent high-precision temperature control device of the present invention;
图2是本发明的一种负载自适应的宽负载智能高精度温度控制装置的步骤流程图。FIG. 2 is a flow chart of the steps of a load-adaptive wide-load intelligent high-precision temperature control device of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1所示,一种负载自适应的宽负载智能高精度温度控制装置,包括主控制器1、模数转换模块2、温度传感器探头3、负载4、被控目标5、DAC模块6、可调功率输出模块和上位机模块10,其中可调功率输出模块包括可调低功率输出模块7、可调中功率输出模块8、可调高功率输出模块9,模数转换模块2可采用ADS1248模数转换器,其连接关系如下:模数转换模块2与主控制器1和温度传感器探头3、负载4相连,模数转换模块2受主控制器1控制,输出电流给温度传感器探头3和负载4;模数转换模块2同时采集温度传感器探头3两端的电压;温度传感器探头3分别与模数转换模块2和被控目标5相连,温度传感器探头3将被控目标5的温度信号转换成电压信号,被模数转换模块2采集;负载4与被控目标5、模数转换模块2、可调功率输出模块和主控制器1相连,负载4的电压被主控制器1的ADC模块采集,由此计算当前所连接负载的大小;可调功率输出模块在主控制器1的控制下,输出功率给负载4,负载4包裹在被控目标5表面,调节被控目标5的温度;被控目标5与负载4和温度传感器探头3相连接,负载4输出的功率加载到被控目标5上,改变被控目标的温度,同时温度传感器探头3感应被控目标5的温度;DAC模块6与主控制器1和可调功率输出模块相连接,主控制器1输出控制信息给DAC模块6,使其输出不同的模拟信号来精确控制可调功率输出模块的输出功率大小;可调低功率输出模块7与DAC模块6、负载4和主控制器1相连,其受主控制器1的GPIO接口控制开关状态,受DAC模块6控制输出功率大小,可输出0W-30W的功率给负载。可调中功率输出模块8与DAC模块6、负载4和主控制器1相连,其功率输出区间是30W-60W,其开关状态受主控制器1的GPIO接口控制,输出功率受DAC模块6控制;可调高功率输出模块9与DAC模块6、负载4和主控制器1相连,其功率输出区间是60W-100W,其开关状态受主控制器1的GPIO接口控制,输出功率受DAC模块6控制;上位机模块10与主控制器1相连接,发送指令给主控制器1,并接收主控制器1发送的当前温度信息。As shown in Figure 1, a load-adaptive wide-load intelligent high-precision temperature control device includes a main controller 1, an analog-to-
如图2所示,该装置在工作时,首先需要检测当前系统的负载大小,具体方式如下,主控制器1配置模数转换模块2输出100uA的电流给负载4,并通过主控制器1自带的ADC模块采集当前负载两端的电压值,这样就可以计算得到当前负载大小。根据当前负载的大小,我们可以通过计算得知当前最佳的加热/制冷功率,然后在可调低功率输出模块7、可调中功率输出模块8、可调高功率输出模块9三个输出功率模块中选择最合适的一个,并关闭另外两个模块,模块的开关用主控制器1的GPIO接口来控制。选择好合适的功率输出模块之后,意味着系统温控的硬件模块已经选择完毕。接下来主控制器1需要接收上位机模块10的配置信息,这里的配置信息主要包括温控目标温度值配置、PID算法参数配置等,配置完毕后,主控制器1需要配置模数转换模块2输出1mA电流给温度传感器探头,让其两端产生电压,并在被模数转换模块2采集后由主控制器1读取采集的温度值结果,得到当前被控目标5的温度信息。主控制器1结合当前温度值和目标温度值信息进行PID运算,输出PID算法计算后的结果,DAC模块6将该结果转换成模拟信号,精确控制可调功率输出模块对外输出加热/制冷功率给负载4,调整被控目标5的温度。同时,被调整后的温度又被系统采集,进行下一循环自动控制过程,直到温控系统关闭。As shown in Figure 2, when the device is working, it first needs to detect the load size of the current system. The specific method is as follows. The main controller 1 configures the analog-to-
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。Those of ordinary skill in the art can understand that the above are only preferred examples of the invention and are not intended to limit the invention. Although the invention has been described in detail with reference to the foregoing examples, those skilled in the art can still understand the Modifications are made to the technical solutions described in the foregoing examples, or equivalent replacements are made to some of the technical features. All modifications and equivalent replacements made within the spirit and principle of the invention shall be included within the protection scope of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211100326.2A CN115185317B (en) | 2022-09-09 | 2022-09-09 | Load-adaptive wide-load intelligent high-precision temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211100326.2A CN115185317B (en) | 2022-09-09 | 2022-09-09 | Load-adaptive wide-load intelligent high-precision temperature control device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115185317A true CN115185317A (en) | 2022-10-14 |
CN115185317B CN115185317B (en) | 2022-12-13 |
Family
ID=83524820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211100326.2A Active CN115185317B (en) | 2022-09-09 | 2022-09-09 | Load-adaptive wide-load intelligent high-precision temperature control device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115185317B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5287292A (en) * | 1992-10-16 | 1994-02-15 | Picopower Technology, Inc. | Heat regulator for integrated circuits |
CN101178604A (en) * | 2007-12-04 | 2008-05-14 | 南京大学 | Temperature Controller Based on Load Characteristic Detection |
JP2011108596A (en) * | 2009-11-20 | 2011-06-02 | Kokusai Electric Semiconductor Service Inc | Power supply system |
CN102495650A (en) * | 2011-12-19 | 2012-06-13 | 湖南工业大学 | Multi-stage refined precise temperature control device and control method |
CN105225984A (en) * | 2014-06-27 | 2016-01-06 | 东京毅力科创株式会社 | Comprise the temperature-controlled process of the system of the machine table of temperature controllable, semiconductor-fabricating device and machine table |
CN206546421U (en) * | 2017-03-07 | 2017-10-10 | 新华三技术有限公司 | A kind of load blocks and test system |
CN109239784A (en) * | 2018-11-08 | 2019-01-18 | 山东大学 | A kind of intelligent-type constant stream variable rheostat for electrical survey (-ing) |
CN109755852A (en) * | 2017-11-07 | 2019-05-14 | 核工业理化工程研究院 | Multi-mode controllable solid-state laser output control device and control method |
CN215895326U (en) * | 2021-04-23 | 2022-02-22 | 武汉联感科技有限公司 | Nitrogen oxygen sensor heating device and nitrogen oxygen sensor |
TW202209528A (en) * | 2020-05-05 | 2022-03-01 | 美商應用材料股份有限公司 | Methods and systems for temperature control for a substrate |
CN217360992U (en) * | 2022-04-02 | 2022-09-02 | 江苏省丹阳高级中学 | Vortex themogenesis exploration demonstration device |
-
2022
- 2022-09-09 CN CN202211100326.2A patent/CN115185317B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5287292A (en) * | 1992-10-16 | 1994-02-15 | Picopower Technology, Inc. | Heat regulator for integrated circuits |
CN101178604A (en) * | 2007-12-04 | 2008-05-14 | 南京大学 | Temperature Controller Based on Load Characteristic Detection |
JP2011108596A (en) * | 2009-11-20 | 2011-06-02 | Kokusai Electric Semiconductor Service Inc | Power supply system |
CN102495650A (en) * | 2011-12-19 | 2012-06-13 | 湖南工业大学 | Multi-stage refined precise temperature control device and control method |
CN105225984A (en) * | 2014-06-27 | 2016-01-06 | 东京毅力科创株式会社 | Comprise the temperature-controlled process of the system of the machine table of temperature controllable, semiconductor-fabricating device and machine table |
CN206546421U (en) * | 2017-03-07 | 2017-10-10 | 新华三技术有限公司 | A kind of load blocks and test system |
CN109755852A (en) * | 2017-11-07 | 2019-05-14 | 核工业理化工程研究院 | Multi-mode controllable solid-state laser output control device and control method |
CN109239784A (en) * | 2018-11-08 | 2019-01-18 | 山东大学 | A kind of intelligent-type constant stream variable rheostat for electrical survey (-ing) |
TW202209528A (en) * | 2020-05-05 | 2022-03-01 | 美商應用材料股份有限公司 | Methods and systems for temperature control for a substrate |
CN215895326U (en) * | 2021-04-23 | 2022-02-22 | 武汉联感科技有限公司 | Nitrogen oxygen sensor heating device and nitrogen oxygen sensor |
CN217360992U (en) * | 2022-04-02 | 2022-09-02 | 江苏省丹阳高级中学 | Vortex themogenesis exploration demonstration device |
Non-Patent Citations (2)
Title |
---|
李之彬 等: "电压源、电流源与负载的合理匹配", 《电测与仪表》 * |
范志永 等: "基于BUCK电路的功率驱动装置设计", 《电子技术与软件工程》 * |
Also Published As
Publication number | Publication date |
---|---|
CN115185317B (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105911228B (en) | A kind of portable electric nose system and its control method | |
CN102354172B (en) | Multi-temperature area resistor furnace intelligent comprehensive temperature control system | |
CN104460469B (en) | A kind of environmental sensor and a kind of measurement of ambient parameter and Forecasting Methodology | |
CN204667117U (en) | A kind of based on the adaptive analog quantity detecting device of general A/D sensing range | |
CN114859997B (en) | Temperature control method, device, system, equipment and storage medium | |
CN101881742B (en) | Device for measuring multi-passage heat conductivity | |
CN114879775A (en) | Temperature control method, device, system, equipment and storage medium | |
CN104950950A (en) | Multi-heating point coordinate temperature control device for realizing uniform temperature field of gyroscope | |
CN104916083A (en) | Internet of things based intelligent combustible gas inspection detector and calibration method thereof | |
CN105277292A (en) | Temperature measurement device | |
CN115185317A (en) | A load-adaptive wide-load intelligent high-precision temperature control device | |
CN103116370B (en) | Pressure regulating device | |
CN101692465A (en) | Thermostatic control method and thermostatic control device for photodiode | |
CN118191036A (en) | A resistance humidity sensor calibration experiment box and construction method thereof | |
JP7169294B2 (en) | Apparatus and method for measuring target power value | |
CN205785249U (en) | The system of resistance sensor measured by bridge circuit | |
CN107302181B (en) | The paster apparatus and method of laser chip | |
WO2024109264A1 (en) | Aerosol generating device, and temperature control method and device therefor | |
JP6388113B2 (en) | Sensor circuit | |
CN102982721B (en) | Experiment teaching device capable of controlling temperature feedback of oven automatically | |
CN101178604A (en) | Temperature Controller Based on Load Characteristic Detection | |
CN203535468U (en) | Detector for temperature and humidity controller | |
CN102998024B (en) | Novel temperature measuring method based on resistor-inductor (RL) circuit zero-input response | |
CN204479545U (en) | A kind of nichrome film heating humiture self compensation gas integrated sensor | |
Chen et al. | A Programmable Interface Circuit for MOS Gas Sensor Array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |