[go: up one dir, main page]

CN115180951A - 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法 - Google Patents

一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法 Download PDF

Info

Publication number
CN115180951A
CN115180951A CN202210622212.8A CN202210622212A CN115180951A CN 115180951 A CN115180951 A CN 115180951A CN 202210622212 A CN202210622212 A CN 202210622212A CN 115180951 A CN115180951 A CN 115180951A
Authority
CN
China
Prior art keywords
silicon carbide
heat exchanger
exchanger tube
thermal shock
shock resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210622212.8A
Other languages
English (en)
Inventor
刘欢
李文杰
朱晓雪
栾秀静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Baichuan Intelligent Technology Co ltd
Original Assignee
Shandong Baichuan Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Baichuan Intelligent Technology Co ltd filed Critical Shandong Baichuan Intelligent Technology Co ltd
Priority to CN202210622212.8A priority Critical patent/CN115180951A/zh
Publication of CN115180951A publication Critical patent/CN115180951A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法,无压烧结高抗热震碳化硅陶瓷换热器管的材料按质量百分比计,包括50%‑80%的碳化硅微粉、0%‑20%的氧化锆微粉、3‑9%的炭黑、3%‑7%的二硼化钛、2%‑6%的粘合剂、0.5~2%的润滑剂和8%‑25%的去离子水;所述碳化硅微粉的粒径为0.45‑0.5微米,所述炭黑的粒径为1‑25纳米;所述的氧化锆微粉的纯度为4n,规格为5um,所述二硼化钛的规格为1um。所述无压烧结高抗热震碳化硅陶瓷换热器管提高了陶瓷换热器管的高抗热震性,所述加工方法,该加工方法的制备工艺简单、生产效率高、成本低,生产的换热器管具有热导率高、耐腐蚀、耐高温、抗热震性好、热膨胀系数低的特性。

Description

一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法
技术领域
本发明属于陶瓷制备技术领域,具体为一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法。
背景技术
换热器管是换热器的核心部件,其热导率的高低决定着换热器换热效率的高低,其耐腐蚀性决定着换热器耐腐蚀性,其耐高温性影响着换热器的耐高温性,其抗热震性能的好坏将直接影响着换热器的使用寿命。
陶瓷以高硬度、高强度、耐高温、耐腐蚀及良好的化学稳定性等优点而备受人们青睐,尤其是在高温工程领域有着广泛的应用,如高温窑具、发动机涡轮片、高温轴承、燃气喷管、高温过滤器、陶瓷隔热瓦、陶瓷换热器等,陶瓷材料主要是由离子键、共价键,或者他们的混合键组成。陶瓷材料再生产和使用过程中都要受到一定温度变化的影响,只是温度骤变的程度各不相同,材料承受温度骤变而不致破坏的能力称之为抗热震性或抗热冲击性。陶瓷材料最明显的弱点是脆性大,也即抗热震性差,而且导热性能差、弹性模量大,容易导致材料的失效或破坏。
目前,换热器管的材质为不锈钢、碳质和陶瓷材料等。不锈钢材质换热管使用温度低于800℃,耐酸碱腐蚀性差;石墨耐腐蚀性好但热导率低、强度低、抗氧化性能差,这使得碳质材料换热管换热效率低,易损坏,而且不能在高温氧化气氛下使用,一般在低温环境获保护气氛下的高温环境应用。陶瓷换热管具有高温强度高,抗氧化、抗热震性能好、寿命长等优点,因而广泛用于冶金、石化、食品、制药等行业。目前产用制作陶瓷换热管的陶瓷材料主要有堇青石、莫来石、高铝石、焦宝石、碳化硅等,由于堇青石、莫来石、高铝石、焦宝石等材料制备的换热器管抗热震性能差、耐腐蚀性能差的问题。
因此,研究一种兼具抗热震性及耐腐蚀性的换热器管是目前陶瓷换热器管需要解决的一个技术难题。
发明内容
本发明的目的就在于为了解决上述问题而提供一种无压烧结高抗热震碳化硅陶瓷换热器管,所述无压烧结高抗热震碳化硅陶瓷换热器管提高了陶瓷换热器管的高抗热震性。
本发明还提出了一种无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,该加工方法的制备工艺简单、生产效率高、成本低,生产的换热器管具有热导率高、耐腐蚀、耐高温、抗热震性好、热膨胀系数低的特性。
根据本发明第一方面实施例的无压烧结高抗热震碳化硅陶瓷换热器管,无压烧结高抗热震碳化硅陶瓷换热器管的材料按质量百分比计,包括50%-80%的碳化硅微粉、0%-20%的氧化锆微粉、3-9%的炭黑、3%-7%的二硼化钛、2%-6%的粘合剂、0.5~2%的润滑剂和8%-25%的去离子水;所述碳化硅微粉的粒径为0.45-0.5微米,所述炭黑的粒径为1-25纳米;所述的氧化锆微粉的纯度为4n,规格为5um,所述二硼化钛的规格为1um;所述粘合剂为聚乙烯醇、酚醛树脂和甲基纤维素中的一种或多种的混合物;所述的润滑剂为甘油、氮化硼、油酸或植物油中的一种或多种的混合物。
根据本发明的一些具体实施例,所述无压烧结高抗热震碳化硅陶瓷换热器管各材料的质量占比如下:55.5%-64%的碳化硅微粉、12%-16%的氧化锆微粉、3-5%的炭黑、4%-5%的二硼化钛、3%-5%的粘合剂、0.5~1%的润滑剂和9%-17%的去离子水。
根据本发明的一些具体实施例,所述无压烧结高抗热震碳化硅陶瓷换热器管各材料的质量占比如下:65%-77%的碳化硅微粉、3%-6%的炭黑、4%-6%的二硼化钛、3%-5%的粘合剂、0.5~1.3%的润滑剂和12%-24%的去离子水。
根据本发明实施例所述的无压烧结高抗热震碳化硅陶瓷换热器管,碳化硅微粉、炭黑、二硼化钛、氧化锆均匀分散,确保烧成后陶瓷材料体积密度、硬度、强度、热导率等性能的均匀统一,均匀分散的炭黑为还原碳化硅粉体表面的氧化膜对换热器管的烧结提供可靠稳定的收缩率,降低换热器管的变形量。粘合剂起到粘结粉料和碳的作用,二硼化钛和氧化锆在换热器管的烧结过程中可以降低烧结温度,提高烧结密度。去离子水起到增加混合物流动性能,便于挤出。润滑剂在混合物挤出过程中起到润滑的作用,提高挤出效率,降低模具磨损。经无压烧结后的碳化硅陶瓷由于烧结温度高、碳化硅粉体颗粒度细、添加氧化锆、二硼化钛致使陶瓷材料密度高,这些原因的存在分散和消耗了材料受到热冲击时的热弹性应变能,而粉体颗粒度细造成气孔的存在有利于应力的松弛,很大程度上提高了陶瓷换热器管的高抗热震性。
根据本发明第二方面实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,包括以下步骤:S1、混料:按配比取原料混合均匀,获得混合泥料A;S2、炼泥:将步骤S1获得的混合泥料A炼制1-4h,炼制温度为10-60℃,炼制压强在真空度为0.06-0.1MPa的环境中进行,得炼制后的泥料B;S3、陈化:步骤S3炼制后的泥料B于无氧条件下密封陈化45-50小时;S4、挤出:将步骤S4中陈化后的泥料装入挤出机中真空挤出成型,得换热器管生坯,挤出机的挤出压力为12MPa,真空度为0.09MPa;S5、干燥:将步骤S4获得换热器管生坯放入微波干燥设备中进行中低温烘干,烘干温度为70℃,干燥时间为2-3小时;S6、烧结:将步骤S5获得的干燥后的换热器管生坯置于烧结炉中进行烧结,烧结过程中通入氩气作为保护气体,冷却至室温,获得无压烧结高抗热震碳化硅陶瓷换热器管。
根据本发明的一些具体实施例,所述步骤S1包括:S11、将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混1-3小时;S12、将润滑剂、去离子水分批加入混料机中继续混制6-8小时。
根据本发明的一些具体实施例,在所述步骤S6中,所述烧结炉为无压烧结炉,所述步骤S6包括:S61、将步骤S5获得的干燥后的换热器管生坯置于无压烧结炉中进行烧结;S62、将无压烧结炉的烧结温度升温至2170℃并保温120min,降温后得到高抗热震性碳化硅复合陶瓷换热器管。
根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,一方面,采用碳化硅泥料为制备原料,经干混、湿混、炼泥、挤出、干燥、烧结,制得的高抗热震碳化硅复合陶瓷换热器管生产效率高、成本低,价格低廉,可以连续化生产,另一方面,采用碳化硅泥料作为制备原料,选用挤出成型机成型代替注浆浇筑成型,效率明显提高,适合连续生产,制得的换热器管壁厚均匀,密度、硬度、强度、热导率等性能均匀统一,通过上述加工方法获得的碳化硅陶瓷换热器管,体积密度在3.05g/cm3以上,抗热震性(1600℃,空冷)10次循环以上,轻质且高致密度,换热性能好。
附图说明
图1为根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面参照附图1描述根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法。
根据本发明第一方面实施例的无压烧结高抗热震碳化硅陶瓷换热器管,无压烧结高抗热震碳化硅陶瓷换热器管的原料包括:碳化硅微粉、氧化锆微粉、炭黑、二硼化钛、粘合剂、润滑剂和去离子水,其中碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂、润滑剂、去离子水均为市售原料。
各原料的质量占比如下,80%-90%的碳化硅微粉、10%-20%的氧化锆微粉、0-9%的炭黑、1%-10%的二硼化钛、2%-9%的粘合剂、0.5~2%的润滑剂和8%-25%的去离子水,各组分重量百分比之和为100%。
无压烧结高抗热震碳化硅陶瓷换热器管各材料的质量占比也可以如下设置:80%-90%的碳化硅微粉、8%-15%的氧化锆微粉、2-9%的炭黑、1%-10%的二硼化钛、2%-9%的粘合剂、0.5~2%的润滑剂和8%-20%的去离子水。
其中,所述碳化硅微粉的粒径为0.45-0.5微米,所述炭黑的粒径为1-25纳米;所述的氧化锆微粉的纯度为4n,规格为5um,所述二硼化钛的规格为1um。
根据本发明的一些具体实施例,所述的粘合剂为聚乙烯醇、聚乙二醇或甲基纤维素中的一种或两种以上的混合物,例如,粘合剂可以是聚乙烯醇,可以是聚乙二醇,也可以是甲基纤维素,或者是聚乙烯醇、聚乙二醇和甲基纤维素中任意两种的混合物,或者是聚乙烯醇、聚乙二醇与甲基纤维素三种的混合物。
根据本发明的一些具体实施例,所述的润滑剂为甘油、氮化硼、油酸或植物油中的一种或两种以上的混合物,也就是说,润滑剂可以是甘油、氮化硼、油酸或植物油中的一种,也可以是甘油、氮化硼、油酸或植物油中多种材料的混合物。其中,所述植物油可以是大豆油,可以是市面上直接购买的食用大豆油,食用大豆油的成本较低,且容易获得,不仅降低了生产成本,而且可以简化加工工艺的难度。
根据本发明实施例所述的无压烧结高抗热震碳化硅陶瓷换热器管,碳化硅微粉、炭黑、二硼化钛、氧化锆均匀分散,确保烧成后陶瓷材料体积密度、硬度、强度、热导率等性能的均匀统一,均匀分散的炭黑为还原碳化硅粉体表面的氧化膜对换热器管的烧结提供可靠稳定的收缩率,降低换热器管的变形量。粘合剂起到粘结粉料和碳的作用,二硼化钛和氧化锆在换热器管的烧结过程中可以降低烧结温度,提高烧结密度。去离子水起到增加混合物流动性能,便于挤出。润滑剂在混合物挤出过程中起到润滑的作用,提高挤出效率,降低模具磨损。经无压烧结后的碳化硅陶瓷由于烧结温度高、碳化硅粉体颗粒度细、添加氧化锆、二硼化钛致使陶瓷材料密度高,这些原因的存在分散和消耗了材料受到热冲击时的热弹性应变能,而粉体颗粒度细造成气孔的存在有利于应力的松弛,很大程度上提高了陶瓷换热器管的高抗热震性。
根据本发明第二方面实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,包括以下步骤:S1、混料:按配比取原料混合均匀,获得混合泥料A;S2、炼泥:将步骤S1获得的混合泥料A炼制1-4h,炼制温度为10-60℃,炼制压强在真空度为0.06-0.1MPa的环境中进行,得炼制后的泥料B;S3、陈化:步骤S3炼制后的泥料B于无氧条件下密封陈化45-50小时;S4、挤出:将步骤S4中陈化后的泥料装入挤出机中真空挤出成型,得换热器管生坯,挤出机的挤出压力为12MPa,真空度为0.09MPa;S5、干燥:将步骤S4获得换热器管生坯放入微波干燥设备中进行中低温烘干,烘干温度为70℃,干燥时间为2-3小时;S6、将步骤S5获得的干燥后的换热器管生坯置于烧结炉中进行烧结,烧结过程中通入氩气作为保护气体,冷却至室温,获得无压烧结高抗热震碳化硅陶瓷换热器管。
根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,该加工方法的制备工艺简单、生产效率高、成本低,生产的换热器管具有热导率高、耐腐蚀、耐高温、抗热震性好、热膨胀系数低的特性。
根据本发明的一些具体实施例,所述步骤S1包括:S11、将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混1-3小时;S12、将润滑剂、去离子水分批加入混料机中继续混制6-8小时。
根据本发明的一些具体实施例,在所述步骤S6中,所述烧结炉为无压烧结炉,所述步骤S6包括:S61、将步骤S5获得的干燥后的换热器管生坯置于无压烧结炉中进行烧结;S62、将无压烧结炉的烧结温度升温至2170℃并保温120min,降温后得到高抗热震性碳化硅复合陶瓷换热器管。
根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,一方面,采用碳化硅泥料为制备原料,经干混、湿混、炼泥、挤出、干燥、烧结,制得的高抗热震碳化硅复合陶瓷换热器管生产效率高、成本低,价格低廉,可以连续化生产,另一方面,采用碳化硅泥料作为制备原料,选用挤出成型机成型代替注浆浇筑成型,效率明显提高,适合连续生产,制得的换热器管壁厚均匀,密度、硬度、强度、热导率等性能均匀统一,通过上述加工方法获得的碳化硅陶瓷换热器管,体积密度在3.05g/cm3以上,抗热震性(1600℃,空冷)10次循环以上,轻质且高致密度,换热性能好。
下面结合具体实施例描述根据本发明实施例的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法。
实施例一
一种无压烧结高抗热震碳化硅陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料原料组分及其重量百分比组成如下:碳化硅微粉55.5%、氧化锆粉体15%、二硼化钛4%、炭黑5%、聚乙烯醇3%,甘油0.5%,去离子水17%。
加工方法的步骤如下:
S1、混料:将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混1.5h;将润滑剂、去离子水分批加入混料机中继续混制6h;
S2、炼泥:将混好的泥料转移至炼泥机中真空条件下炼制1.5h,炼制温度为20℃,真空度为0.08MPa;
S3、陈化:将炼制好的泥料装入料罐中密封陈化3天;
S4、挤出:将陈腐好的泥料装入挤出机中真空挤出成型,挤出压力为10MPa,真空度为0.08MPa;
S5、干燥:将挤出成型的碳化硅换热器管转移至微波干燥机中干燥,温度为60℃,干燥时间为2小时;
S6、烧结:将干燥后的碳化硅换热器管坯体置于真空反应烧结炉中,升温至烧结温度2180℃保温120min,烧结过程中通入氩气作为保护气体,所述的升温速率为5℃/min,自然降温后得本发明的高抗热震碳化硅复合陶瓷换热器管,体积密度为3.05g/cm3,抗热震性(1600℃,空冷)20次循环无开裂。
实施例二
一种无压烧结高抗热震碳化硅陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料原料组分及其重量百分比组成如下:碳化硅微粉63%、氧化锆粉体12%、二硼化钛5%、炭黑4%、聚乙二醇4%,甘油0.9%,去离子水11.1%。
加工方法的步骤如下:
S1、混料:将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混2h;将润滑剂、去离子水分批加入混料机中继续混制8h;
S2、炼泥:将混好的泥料转移至炼泥机中真空条件下炼制2h,炼制温度为30℃,真空度为0.09MPa;
S3、陈腐:将炼制好的泥料装入料罐中密封陈腐48小时;
S4、挤出:将陈腐好的泥料装入挤出机中真空挤出成型,挤出压力为12MPa,真空度为0.09MPa;
S5、干燥:将挤出成型的碳化硅换热器管转移至微波干燥机中干燥,温度为70℃,干燥时间为2.5小时;
S6、烧结:将干燥后的碳化硅换热器管坯体置于真空反应烧结炉中,升温至烧结温度2170℃保温120min,烧结过程中通入氩气作为保护气体,所述的升温速率为4℃/min,自然降温后得本发明的高抗热震性碳化硅复合陶瓷换热器管,体积密度为3.04g/cm3,抗热震性(1500℃,空冷)16次循环无开裂
实施例三
一种无压烧结高抗热震碳化硅陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料原料组分及其重量百分比组成如下:碳化硅微粉64%、氧化锆16%、炭黑3%、二硼化钛4%、甲基纤维素3%,油酸1%,去离子水9%;
制备方法步骤如下:
S1、混料:将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混2h;将润滑剂、去离子水分批加入混料机中继续混制8h;
S2、炼泥:将混好的泥料转移至炼泥机中真空条件下炼制2h,炼制温度45℃,真空度为0.09MPa;
S3、陈腐:将炼制好的泥料装入料罐中密封陈腐48小时;
S4、挤出:将陈腐好的泥料装入挤出机中真空挤出成型,挤出压力为12MPa,真空度为0.09MPa;
S5、干燥:将挤出成型的碳化硅换热器管转移至微波干燥机中干燥,温度为70℃,干燥时间为2.5小时;
S6、烧结:将干燥后的碳化硅换热器管坯体置于无压烧结炉中,升温至烧结温度2100℃保温90min,烧结过程中通入氩气作为保护气体,所述的升温速率为6℃/min,自然降温后得本发明的高热导率耐腐蚀耐高温碳化硅陶瓷换热器管,体积密度为3.06g/cm3,抗热震性(1400℃,空冷)15次循环无开裂。
实施例四
一种无压烧结高抗热震碳化硅陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料同实施例一,不同之处在于:原料组分及其重量百分比组成如下:碳化硅微粉65%、炭黑5.88%、二硼化钛4.71%、粘合剂3.53%,润滑剂0.59%,去离子水20.29%(即实施例1中,不加氧化锆粉体,对应的各组分加入量)。
实施例五
一种无压烧结高抗热震碳化硅陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料同实施例二,不同之处在于:原料组分及其重量百分比组成如下:碳化硅微粉71.50%、炭黑4.55%、二硼化钛5.68%、粘合剂4.55%,润滑剂1.02%,去离子水12.7%(即实施例2中,不加氧化锆粉体,对应的各组分加入量)。
实施例六
一种高抗热震碳化硅复合陶瓷换热器管,采用碳化硅泥料为原料制得,所述的碳化硅泥料同实施例三,不同之处在于:原料组分及其重量百分比组成如下:碳化硅微粉76.19%、炭黑3.57%、二硼化钛4.76%、粘合剂3.57%,润滑剂1.19%,去离子水24%(即实施例3中,不加氧化锆,对应的各组分加入量)。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种无压烧结高抗热震碳化硅陶瓷换热器管,其特征在于:无压烧结高抗热震碳化硅陶瓷换热器管的材料按质量百分比计,包括50%-80%的碳化硅微粉、0%-20%的氧化锆微粉、3-9%的炭黑、3%-7%的二硼化钛、2%-6%的粘合剂、0.5~2%的润滑剂和8%-25%的去离子水;
所述碳化硅微粉的粒径为0.45-0.5微米,所述炭黑的粒径为1-25纳米;
所述的氧化锆微粉的纯度为4n,规格为5um,所述二硼化钛的规格为1um;
所述粘合剂为聚乙烯醇、酚醛树脂和甲基纤维素中的一种或多种的混合物;
所述的润滑剂为甘油、氮化硼、油酸或植物油中的一种或多种的混合物。
2.根据权利要求1所述的一种无压烧结高抗热震碳化硅陶瓷换热器管,其特征在于:所述无压烧结高抗热震碳化硅陶瓷换热器管各材料的质量占比如下:55.5%-64%的碳化硅微粉、12%-16%的氧化锆微粉、3-5%的炭黑、4%-5%的二硼化钛、3%-5%的粘合剂、0.5~1%的润滑剂和9%-17%的去离子水。
3.根据权利要求1所述的一种无压烧结高抗热震碳化硅陶瓷换热器管,其特征在于:所述无压烧结高抗热震碳化硅陶瓷换热器管各材料的质量占比如下:65%-77%的碳化硅微粉、3%-6%的炭黑、4%-6%的二硼化钛、3%-5%的粘合剂、0.5~1.3%的润滑剂和12%-24%的去离子水。
4.根据权利要求1-3中任一项所述的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,其特征在于,包括以下步骤:
S1、混料:按配比取原料混合均匀,获得混合泥料A;
S2、炼泥:将步骤S1获得的混合泥料A炼制1-4h,炼制温度为10-60℃,炼制压强在真空度为0.06-0.1MPa的环境中进行,得炼制后的泥料B;
S3、陈化:步骤S3炼制后的泥料B于无氧条件下密封陈化45-50小时;
S4、挤出:将步骤S4中陈化后的泥料装入挤出机中真空挤出成型,得换热器管生坯,挤出机的挤出压力为12MPa,真空度为0.09MPa;
S5、干燥:将步骤S4获得换热器管生坯放入微波干燥设备中进行中低温烘干,烘干温度为70℃,干燥时间为2-3小时;
S6、烧结:将步骤S5获得的干燥后的换热器管生坯置于烧结炉中进行烧结,烧结过程中通入氩气作为保护气体,冷却至室温,获得无压烧结高抗热震碳化硅陶瓷换热器管。
5.根据权利要求4所述的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,其特征在于:所述步骤S1包括:
S11、将碳化硅微粉、氧化锆粉体、炭黑、二硼化钛、粘合剂填入混料机中干混1-3小时;
S12、将润滑剂、去离子水分批加入混料机中继续混制6-8小时。
6.根据权利要求5所述的无压烧结高抗热震碳化硅陶瓷换热器管的加工方法,其特征在于:在所述步骤S6中,所述烧结炉为无压烧结炉,所述步骤S6包括:
S61、将步骤S5获得的干燥后的换热器管生坯置于无压烧结炉中进行烧结;
S62、将无压烧结炉的烧结温度升温至2170℃并保温120min,降温后得到高抗热震性碳化硅复合陶瓷换热器管。
CN202210622212.8A 2022-06-01 2022-06-01 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法 Pending CN115180951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210622212.8A CN115180951A (zh) 2022-06-01 2022-06-01 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210622212.8A CN115180951A (zh) 2022-06-01 2022-06-01 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法

Publications (1)

Publication Number Publication Date
CN115180951A true CN115180951A (zh) 2022-10-14

Family

ID=83514085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210622212.8A Pending CN115180951A (zh) 2022-06-01 2022-06-01 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法

Country Status (1)

Country Link
CN (1) CN115180951A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327186A (en) * 1980-06-23 1982-04-27 Kennecott Corporation Sintered silicon carbide-titanium diboride mixtures and articles thereof
CN101560104A (zh) * 2009-05-12 2009-10-21 宁波欧翔精细陶瓷技术有限公司 碳化硅陶瓷管或棒的制备方法
CN102515768A (zh) * 2011-12-26 2012-06-27 宁波伏尔肯机械密封件制造有限公司 一种碳化硅陶瓷管的制备方法
WO2016037316A1 (zh) * 2014-09-09 2016-03-17 南京工业大学 一种sic多孔陶瓷材料的制备方法及由其制得的多孔陶瓷材料
CN105461306A (zh) * 2015-11-16 2016-04-06 石婷 高强度碳化硅陶瓷管材及其制造方法
CN105712727A (zh) * 2016-01-19 2016-06-29 山东宝纳新材料有限公司 一种高抗热震碳化硅复合陶瓷换热器管及其制备方法
CN113831136A (zh) * 2021-11-04 2021-12-24 南通三责精密陶瓷有限公司 一种固相烧结碳化硅制品及其制备方法
CN114478014A (zh) * 2020-10-26 2022-05-13 深圳市万普拉斯科技有限公司 碳化硅陶瓷材料、陶瓷模具及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327186A (en) * 1980-06-23 1982-04-27 Kennecott Corporation Sintered silicon carbide-titanium diboride mixtures and articles thereof
CN101560104A (zh) * 2009-05-12 2009-10-21 宁波欧翔精细陶瓷技术有限公司 碳化硅陶瓷管或棒的制备方法
CN102515768A (zh) * 2011-12-26 2012-06-27 宁波伏尔肯机械密封件制造有限公司 一种碳化硅陶瓷管的制备方法
WO2016037316A1 (zh) * 2014-09-09 2016-03-17 南京工业大学 一种sic多孔陶瓷材料的制备方法及由其制得的多孔陶瓷材料
CN105461306A (zh) * 2015-11-16 2016-04-06 石婷 高强度碳化硅陶瓷管材及其制造方法
CN105712727A (zh) * 2016-01-19 2016-06-29 山东宝纳新材料有限公司 一种高抗热震碳化硅复合陶瓷换热器管及其制备方法
CN114478014A (zh) * 2020-10-26 2022-05-13 深圳市万普拉斯科技有限公司 碳化硅陶瓷材料、陶瓷模具及其制备方法
CN113831136A (zh) * 2021-11-04 2021-12-24 南通三责精密陶瓷有限公司 一种固相烧结碳化硅制品及其制备方法

Similar Documents

Publication Publication Date Title
CN105712727B (zh) 一种高抗热震碳化硅复合陶瓷换热器管及其制备方法
CN113061051B (zh) 一种气浮轴承用多孔陶瓷及其制备方法和应用
CN102030532A (zh) 表面微孔SiC陶瓷材料及其制备方法
CN101928148B (zh) 一种基于硅烷偶联剂低温高致密碳化硅陶瓷制造方法
CN108017409A (zh) 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
CN104003751B (zh) 表面多孔碳化硅材料及其制备方法
CN103739289A (zh) 碳化硅陶瓷热电偶保护管及其制备方法
CN105198444B (zh) 薄带连铸用氮化硼基陶瓷侧封板材料的制备方法
CN108774065B (zh) 一种SiC/MCMBs复合材料及其制备方法和应用
CN107573074A (zh) 一种RMI法低温制备层状SiC基抗冲击复合陶瓷材料的方法
CN112179147B (zh) 碳化硅陶瓷管烧结用石墨槽、高性能碳化硅陶瓷管及其制备方法
CN111848179B (zh) 一种可在超高温环境中使用的高强度氮化硼陶瓷的制备方法
CN115180951A (zh) 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法
CN1087010C (zh) 一种用流延法制造高热导率集成电路氮化铝陶瓷基片的方法
CN101928147B (zh) 一种基于硅烷铝酸酯双组份偶联剂碳化硅陶瓷制造方法
CN108907204B (zh) 一种Al2O3-Cr高温结构陶瓷热电偶保护套管的制备工艺
CN115010505A (zh) 一种无压烧结高抗热震碳化硅陶瓷换热器管及其加工方法
CN118580081A (zh) 一种高弹性模量的硅-碳化硅陶瓷材料
CN107673765A (zh) 氮化硅陶瓷的制备方法
CN113200759B (zh) 非氧化物max相强韧化氮化硅陶瓷复合材料及其制备方法
CN111269015A (zh) 一种致密化的莫来石-刚玉-SiC太阳能热发电用复相储热陶瓷材料及其制备方法
CN111423235B (zh) 一种环保型高密度碳化硅陶瓷热交换管、生产方法及其在热交换器中的应用
CN104529469A (zh) 一种坩埚用陶瓷材料及其制备方法
CN103693979A (zh) 一种氧化锆复合氮化硼耐火材料制品
CN115180952A (zh) 一种高耐热震性无压烧结碳化硅归集口及其加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221014