CN115166941A - Optical lens, camera module and electronic equipment - Google Patents
Optical lens, camera module and electronic equipment Download PDFInfo
- Publication number
- CN115166941A CN115166941A CN202210806529.7A CN202210806529A CN115166941A CN 115166941 A CN115166941 A CN 115166941A CN 202210806529 A CN202210806529 A CN 202210806529A CN 115166941 A CN115166941 A CN 115166941A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- optical lens
- optical axis
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。The invention relates to the technical field of optical imaging, in particular to an optical lens, a camera module and an electronic device.
背景技术Background technique
随着社会的进步和发展,人们对电子设备的摄像能力要求越来越高,大光圈镜头因具有较大的通光量,能够适应暗光的拍摄条件,因此被广泛应用于电子设备中,然而,光学镜头要实现大光圈的功能,通常体积较大,无法兼容电子设备的小型化设计要求。With the progress and development of society, people have higher and higher requirements for the imaging capabilities of electronic devices. Large aperture lenses are widely used in electronic devices because of their large light flux and can adapt to dark light shooting conditions. , In order to realize the function of large aperture, the optical lens is usually bulky and cannot be compatible with the miniaturization design requirements of electronic equipment.
发明内容SUMMARY OF THE INVENTION
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够在确保成像质量的同时,具有大光圈、小型化的特点。The embodiment of the invention discloses an optical lens, a camera module and an electronic device, which can ensure the imaging quality and have the characteristics of large aperture and miniaturization.
为了实现上述目的,第一方面,本发明公开了一种光学镜头,共有五片具有屈折力的透镜,沿光轴由物侧至像侧依次包括:In order to achieve the above object, in the first aspect, the present invention discloses an optical lens, which has five lenses with refractive power, and includes in sequence from the object side to the image side along the optical axis:
第一透镜,具有负屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面,所述第一透镜的物侧面于近圆周处为凹面;The first lens has a negative refractive power, the object side of the first lens is convex at the near optical axis, the image side of the first lens is concave at the near optical axis, and the object side of the first lens is at Near the circumference is concave;
第二透镜,具有正屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;The second lens has a positive refractive power, the object side of the second lens is convex at the near optical axis, and the image side of the second lens is concave at the near optical axis;
第三透镜,具有负屈折力;The third lens has negative refractive power;
第四透镜,具有正屈折力,所述第四透镜的物侧面于近光轴处为凸面,所述第四透镜的像侧面于近光轴处为凹面;The fourth lens has a positive refractive power, the object side of the fourth lens is convex at the near optical axis, and the image side of the fourth lens is concave at the near optical axis;
第五透镜,具有正屈折力,所述第五透镜的物侧面于近光轴处为凸面,所述第五透镜的像侧面于近光轴处为凹面;The fifth lens has a positive refractive power, the object side of the fifth lens is convex at the near optical axis, and the image side of the fifth lens is concave at the near optical axis;
所述光学镜头满足以下关系式:The optical lens satisfies the following relationship:
0.9<f/EPD<1.3;0.9<f/EPD<1.3;
其中,f为所述光学镜头的焦距,EPD为所述光学镜头的入瞳直径。Wherein, f is the focal length of the optical lens, and EPD is the entrance pupil diameter of the optical lens.
通过限定光学镜头的第一透镜具有负屈折力,结合第一透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,能够使得较大角度的入射光线进入到光学镜头,扩大光学镜头的视场角范围,同时可以使入射光线得到有效会聚,从而有利于控制第一透镜在垂直光轴方向上的尺寸,确保第一透镜具有较小的口径,以满足光学镜头小型化的设计;此外,第一透镜的物侧面于近圆周处的凹面设置,有利于降低大角度入射光线的入射角度,并降低物侧端产生像散的风险,以减小像侧透镜(即第二透镜至第五透镜)消除像差的压力;结合具有负屈折力的第二透镜,第二透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,能够使得第二透镜与第一透镜的面型更加匹配,以使入射光线平缓过渡,有利于校正轴外像差,降低光学镜头的公差敏感度,同时,还有利于合理配置前后透镜之间的空气间隙,以降低产生鬼像的风险,从而提高光学镜头的成像质量;结合具有负屈折力的第三透镜,能够使得第一透镜至第三透镜具有负正负的屈折力分布,有利于修正光学镜头的球差与彗差,提高光学镜头的成像质量;第四透镜具有正屈折力,结合第四透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,既能使得边缘视场光线得到有效会聚,减小边缘视场光线的偏折,以矫正入射光线经过第一透镜至第三透镜所产生的边缘视场像差,又能矫正光线经第三透镜扩散所产生的球差与彗差,从而提高光学镜头的成像质量,同时,还能缩短光学镜头的总长,以有利于光学镜头的小型化;第五透镜具有正屈折力,且第五透镜的物侧面、像侧面于近光轴处分别为凸面和凹面,能够使得第五透镜与第四透镜的面型高度匹配,降低光学镜头的公差敏感度,并进一步平衡前透镜组(第一透镜至第四透镜)产生的难以矫正的像差,促进光学镜头的像差平衡,从而提高光学镜头的成像质量,同时,第五透镜的像侧面于近光轴处为凹面,能够在确保光学镜头的成像范围的同时避免第五透镜的透镜外径过大,从而实现光学镜头的小型化。By limiting the first lens of the optical lens to have a negative refractive power, combined with the setting of the object side and the image side of the first lens to be convex and concave respectively at the near optical axis, it is possible to make the incident light with a larger angle enter the optical lens and expand the The range of the field of view of the optical lens, and at the same time, the incident light can be effectively converged, which is beneficial to control the size of the first lens in the direction of the vertical optical axis, and ensure that the first lens has a small diameter to meet the requirements of the miniaturization of the optical lens. In addition, the concave surface of the object side of the first lens at the near circumference is beneficial to reduce the incident angle of large-angle incident light, and reduce the risk of astigmatism at the object side, so as to reduce the image side lens (ie the second lens to fifth lens) to eliminate the pressure of aberration; combined with the second lens with negative refractive power, the object side and image side of the second lens are respectively convex and concave at the near optical axis, which can make the second lens and The surface shape of the first lens is more matched, so that the incident light transitions smoothly, which is conducive to correcting off-axis aberration and reducing the tolerance sensitivity of the optical lens. The risk of ghost images can be reduced, thereby improving the imaging quality of the optical lens. Combined with the third lens with negative refractive power, the first lens to the third lens can have negative and positive refractive power distribution, which is beneficial to correct the spherical aberration of the optical lens and Coma aberration improves the imaging quality of the optical lens; the fourth lens has a positive refractive power, combined with the setting of the object side and the image side of the fourth lens to be convex and concave respectively at the near optical axis, which can not only make the marginal field of view light effectively Convergence, reducing the deflection of the light in the marginal field of view, to correct the marginal field of view aberration caused by the incident light passing through the first lens to the third lens, and can correct the spherical aberration and coma aberration caused by the diffusion of light through the third lens. , thereby improving the imaging quality of the optical lens, and at the same time, it can also shorten the total length of the optical lens, which is conducive to the miniaturization of the optical lens; the fifth lens has a positive refractive power, and the object side and the image side of the fifth lens are in the near optical axis. are convex and concave respectively, which can make the surface shape of the fifth lens and the fourth lens highly match, reduce the tolerance sensitivity of the optical lens, and further balance the difficult-to-correction caused by the front lens group (the first lens to the fourth lens). Aberration promotes the aberration balance of the optical lens, thereby improving the imaging quality of the optical lens. At the same time, the image side of the fifth lens is concave at the near optical axis, which can ensure the imaging range of the optical lens and avoid the fifth lens. The outer diameter of the lens is too large, thereby realizing the miniaturization of the optical lens.
此外,光学镜头满足0.9<f/EPD<1.3,通过限制光学镜头的焦距与入瞳直径的比值,能够有效增大光学镜头的进光量,提高光学镜头的相对照度,使得光学镜头具有大光圈的特性,以使光学镜头能够适应暗光的拍摄条件,减小暗角的产生,同时,还能缩小艾利斑的尺寸,提高光学镜头的解像力,从而提高光学镜头的成像质量,以满足高像素的设计需求。In addition, the optical lens satisfies 0.9<f/EPD<1.3. By limiting the ratio of the focal length of the optical lens to the diameter of the entrance pupil, it can effectively increase the amount of light entering the optical lens, improve the relative illuminance of the optical lens, and make the optical lens have a large aperture. Features, so that the optical lens can adapt to the shooting conditions of dark light, reduce the generation of vignetting, at the same time, it can also reduce the size of the Airy disk, improve the resolution of the optical lens, and improve the imaging quality of the optical lens to meet the high pixel design requirements.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
1.9<TTL/IMGH<2.2;和/或,0.11<BFL/TTL<0.17;1.9<TTL/IMGH<2.2; and/or, 0.11<BFL/TTL<0.17;
其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离(即光学镜头的总长),IMGH为所述光学镜头的最大有效成像圆的半径(即光学镜头的像高),BFL为所述第五透镜的像侧面至所述光学镜头的成像面在平行于所述光轴方向上的最小距离(即光学镜头的后焦)。Wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis (that is, the total length of the optical lens), and IMGH is the radius of the maximum effective imaging circle of the optical lens ( That is, the image height of the optical lens), and BFL is the minimum distance from the image side of the fifth lens to the imaging surface of the optical lens in a direction parallel to the optical axis (ie, the back focus of the optical lens).
通过约束光学镜头的总长与像高的比值,能够有效缩短光学镜头的总尺寸,使得光学镜头在获得较小尺寸的同时,还能够具有大像面的特点,从而有利于提高光学镜头的成像质量。当其比值低于下限时,光学镜头的总长过小,各透镜之间的空气间隙较小,使得各透镜之间的敏感度增大,不利于透镜的设计与组装,同时,光学镜头的排布空间不足,使得透镜的面型过于弯曲,从而易产生高阶像差,不利于光学镜头的像差平衡,进而导致光学镜头的成像质量下降;当其比值高于上限时,所述光学镜头的总长过大,不利于光学镜头的小型化设计。By constraining the ratio of the total length to the image height of the optical lens, the total size of the optical lens can be effectively shortened, so that the optical lens can have the characteristics of a large image surface while obtaining a smaller size, which is beneficial to improve the imaging quality of the optical lens . When the ratio is lower than the lower limit, the total length of the optical lens is too small, and the air gap between the lenses is small, which increases the sensitivity between the lenses, which is not conducive to the design and assembly of the lenses. Insufficient cloth space makes the surface of the lens too curved, which is prone to high-order aberrations, which is not conducive to the aberration balance of the optical lens, which in turn leads to a decrease in the imaging quality of the optical lens; when the ratio is higher than the upper limit, the optical lens The total length is too large, which is not conducive to the miniaturized design of the optical lens.
此外,通过限制光学镜头的后焦与总长的比值,能够合理配置光学镜头的后焦与总长的占比,以使光线具有足够的距离汇聚至成像面,从而能够使得光学镜头在满足小型化的同时,有效控制最外视场至成像面上的主光线入射角度,以减小成像面的主光线入射角度,提高光学镜头的相对照度,进而提高光学镜头的成像质量。In addition, by limiting the ratio of the back focus to the total length of the optical lens, the ratio of the back focus to the total length of the optical lens can be reasonably configured so that the light has a sufficient distance to converge to the imaging surface, so that the optical lens can meet the requirements of miniaturization. At the same time, the incident angle of the chief ray from the outermost field of view to the imaging plane is effectively controlled, so as to reduce the incident angle of the chief ray on the imaging plane, improve the relative illuminance of the optical lens, and further improve the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
-0.5<f2/f1<0,且,-0.4<f2/f3<0;-0.5<f2/f1<0, and, -0.4<f2/f3<0;
其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f3为所述第三透镜的焦距。Wherein, f1 is the focal length of the first lens, f2 is the focal length of the second lens, and f3 is the focal length of the third lens.
通过约束第二透镜与第一透镜的焦距的比值,以及第二透镜与第三透镜的焦距的比值,能够使得第一透镜至第三透镜的屈折力保持一定的差距,一方面能够有利于经第一透镜汇聚的入射光线平滑过渡至后透镜组(即第四透镜与第五透镜),另一方面,还能有利于后透镜组平衡球差与彗差,以提高光学镜头的成像质量。当其比值低于下限或高于上限时,第一透镜至第三透镜产生的像差无法相互协同消除,同时,入射光线过于聚拢或未能合理扩散,从而对后透镜组的光线控制产生较大的压力,导致第四透镜与第五透镜过于弯曲,影响光学镜头的成像质量。By constraining the ratio of the focal length of the second lens to the first lens, and the ratio of the focal length of the second lens to the third lens, the refractive power of the first lens to the third lens can be kept a certain gap, which is beneficial to the The incident light collected by the first lens smoothly transitions to the rear lens group (ie, the fourth lens and the fifth lens). When the ratio is lower than the lower limit or higher than the upper limit, the aberrations generated by the first lens to the third lens cannot be eliminated synergistically, and at the same time, the incident light rays are too concentrated or cannot be reasonably diffused, which will affect the light control of the rear lens group. The large pressure causes the fourth lens and the fifth lens to bend too much, which affects the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
0.8<CT2/CT3<1.9,且,-0.4<f2/f3<0;0.8<CT2/CT3<1.9, and, -0.4<f2/f3<0;
其中,CT2为所述第二透镜于所述光轴上的厚度(即第二透镜的中心厚度),CT3为所述第三透镜于所述光轴上的厚度(即第三透镜的中心厚度),f2为所述第二透镜的焦距,f3为所述第三透镜的焦距。Wherein, CT2 is the thickness of the second lens on the optical axis (ie the central thickness of the second lens), CT3 is the thickness of the third lens on the optical axis (ie the central thickness of the third lens) ), f2 is the focal length of the second lens, and f3 is the focal length of the third lens.
通过合理控制第二透镜与第三透镜的中心厚度的比值,能够使得第二透镜与第三透镜的中心厚度较为接近,以使光线能够平缓过渡,有利于矫正光学镜头的色差与球差,从而提高光学镜头的成像质量。By reasonably controlling the ratio of the center thickness of the second lens and the third lens, the center thicknesses of the second lens and the third lens can be made closer, so that the light can transition smoothly, which is beneficial to correct the chromatic aberration and spherical aberration of the optical lens. Improve the imaging quality of optical lenses.
结合对第二透镜与第三透镜的焦距的比值的控制,能够合理配置第二透镜与第三透镜的屈折力,以适当调整光线的偏转角度和走势,从而进一步提高光学镜头的成像质量。Combined with the control of the ratio of the focal lengths of the second lens and the third lens, the refractive power of the second lens and the third lens can be reasonably configured to properly adjust the deflection angle and trend of the light, thereby further improving the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
1.9<∑CT/∑AT<5,且,-0.4<f2/f3<0;1.9<∑CT/∑AT<5, and, -0.4<f2/f3<0;
其中,∑CT为所述第一透镜至所述第五透镜于所述光轴上的厚度之和(即光学镜头的各透镜的中心厚度之和),∑AT为所述第一透镜至所述第五透镜于所述光轴上的空气间隙之和(即光学镜头的各透镜的空气间隙之和),f2为所述第二透镜的焦距,f3为所述第三透镜的焦距。Among them, ΣCT is the sum of the thicknesses of the first lens to the fifth lens on the optical axis (that is, the sum of the central thicknesses of each lens of the optical lens), and ΣAT is the first lens to the The sum of the air gaps of the fifth lens on the optical axis (ie, the sum of the air gaps of the lenses of the optical lens), f2 is the focal length of the second lens, and f3 is the focal length of the third lens.
通过约束光学镜头的各透镜的中心厚度之和与空气间隙之和的比值,能够提高光学镜头的结构紧凑度,有利于光学镜头的小型化,同时,还能合理配置各透镜之间的空气间隙(前一透镜的像侧面至后一透镜的物侧面的距离),从而一方面能够确保光学镜头的各透镜的均匀分布,有利于光线平滑过渡,改善光学镜头的像差和畸变,以提高光学镜头的成像质量,另一方面,能够降低光学镜头的公差敏感度,使得光学镜头具有良好的光学性能,进一步提高光学镜头的成像质量。By constraining the ratio of the sum of the center thicknesses of the lenses of the optical lens to the sum of the air gaps, the structure compactness of the optical lens can be improved, which is beneficial to the miniaturization of the optical lens, and at the same time, the air gaps between the lenses can be reasonably configured (the distance from the image side of the former lens to the object side of the latter lens), so as to ensure the uniform distribution of each lens of the optical lens, facilitate the smooth transition of light, improve the aberration and distortion of the optical lens, and improve the optical The imaging quality of the lens, on the other hand, can reduce the tolerance sensitivity of the optical lens, so that the optical lens has good optical performance, and further improves the imaging quality of the optical lens.
结合对第二透镜与第三透镜的焦距的比值的控制,能够合理配置第二透镜与第三透镜的屈折力,有利于消除高阶像差,提高光学镜头的成像质量。Combined with the control of the ratio of the focal length of the second lens and the third lens, the refractive power of the second lens and the third lens can be reasonably configured, which is beneficial to eliminate high-order aberrations and improve the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
-5<f1/f34<0.5,且,1<CT3/CT4<3;-5<f1/f34<0.5, and, 1<CT3/CT4<3;
其中,f1为所述第一透镜的焦距,f34为所述第三透镜与所述第四透镜的组合焦距,CT3为所述第三透镜于所述光轴上的厚度(即第三透镜的中心厚度),CT4为所述第四透镜于所述光轴上的厚度(即第四透镜的中心厚度)。Wherein, f1 is the focal length of the first lens, f34 is the combined focal length of the third lens and the fourth lens, and CT3 is the thickness of the third lens on the optical axis (that is, the thickness of the third lens central thickness), CT4 is the thickness of the fourth lens on the optical axis (ie, the central thickness of the fourth lens).
通过约束第一透镜的焦距和第三透镜与第四透镜的组合焦距的比值,可利用第一透镜以修正光线由第三透镜进入第四透镜时产生的慧差与场曲,以提高光学镜头的成像质量。By constraining the ratio of the focal length of the first lens and the combined focal length of the third lens and the fourth lens, the first lens can be used to correct the coma and field curvature generated when the light enters the fourth lens from the third lens, so as to improve the optical lens image quality.
结合对第三透镜与第四透镜的中心厚度的比值的约束,能够避免第三透镜与第四透镜的中心厚度的差距过大,有利于光线在第三透镜的内部平缓扩张,并使得光线在第四透镜的内部进行传播方向修正时具有足够的行程,以有助于光学镜头校正色差和球差,从而有利于提高光学镜头的成像质量。Combined with the constraint on the ratio of the central thickness of the third lens and the fourth lens, it can avoid that the difference between the central thicknesses of the third lens and the fourth lens is too large, which is conducive to the gentle expansion of light in the interior of the third lens, and makes the light in the The inside of the fourth lens has sufficient travel when correcting the propagation direction, so as to help the optical lens to correct chromatic aberration and spherical aberration, thereby helping to improve the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
0.5<SD11/IMGH<0.6,且,0<f/f5<1;0.5<SD11/IMGH<0.6, and, 0<f/f5<1;
其中,SD11为所述第一透镜的物侧面的最大有效半口径,IMGH为所述光学镜头的最大有效成像圆的半径(即光学镜头的像高),f5为所述第五透镜的焦距。Wherein, SD11 is the maximum effective semi-diameter of the object side of the first lens, IMGH is the radius of the maximum effective imaging circle of the optical lens (ie, the image height of the optical lens), and f5 is the focal length of the fifth lens.
通过约束第一透镜的物侧面的最大有效半口径与光学镜头的像高的比值,能够减小光学镜头的各透镜之间的段差,有利于使得光线在光学镜头的透镜间平缓过渡,同时,还能增大光学镜头的通光量,提高光学镜头的相对照度,以提高光学镜头的成像质量。当其比值低于下限或高于上限时,对入射光线的控制难度增大,需要较长的结构以实现光线的平缓过渡,不利于光学镜头的小型化,并且无法确保光学镜头的相对照度,导致光学镜头的成像质量下降。By constraining the ratio of the maximum effective half-aperture of the object side of the first lens to the image height of the optical lens, the step difference between the lenses of the optical lens can be reduced, which is conducive to smooth transition of light between the lenses of the optical lens. It can also increase the amount of light passing through the optical lens and improve the relative illuminance of the optical lens, so as to improve the imaging quality of the optical lens. When the ratio is lower than the lower limit or higher than the upper limit, it is more difficult to control the incident light, and a longer structure is required to achieve a smooth transition of light, which is not conducive to the miniaturization of the optical lens, and cannot ensure the relative illuminance of the optical lens. Deteriorating the image quality of the optical lens.
同时,结合对光学镜头的焦距与第五透镜的焦距的比值的控制,能够合理配置第五透镜的屈折力,有利于平衡大光圈特性带来的像差问题,以进一步提高光学镜头的成像质量。At the same time, combined with the control of the ratio of the focal length of the optical lens to the focal length of the fifth lens, the refractive power of the fifth lens can be reasonably configured, which is conducive to balancing the aberration problem caused by the large aperture characteristics and further improving the imaging quality of the optical lens. .
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
SAG42/SAG51<3,且,0<f/f5<1;SAG42/SAG51<3, and, 0<f/f5<1;
其中,SAG42为所述第四透镜的像侧面的最大有效口径处至所述第四透镜的像侧面与所述光轴的交点在平行于所述光轴方向上的距离(即第四透镜的像侧面的最大有效半口径处的矢高),SAG51为所述第五透镜的物侧面的最大有效口径处至所述第五透镜的物侧面与所述光轴的交点在平行于所述光轴方向上的距离(即第五透镜的物侧面的最大有效半口径处的矢高),f5为所述第五透镜的焦距。Wherein, SAG42 is the distance from the maximum effective aperture of the image side of the fourth lens to the intersection of the image side of the fourth lens and the optical axis in a direction parallel to the optical axis (that is, the fourth lens’s The sag at the maximum effective semi-aperture of the image side), SAG51 is from the maximum effective aperture of the object side of the fifth lens to the intersection of the object side of the fifth lens and the optical axis parallel to the optical axis The distance in the direction (that is, the sag at the largest effective semi-aperture on the object side of the fifth lens), f5 is the focal length of the fifth lens.
通过约束第四透镜的像侧面与第五透镜的物侧面的最大有效半口径处的矢高的比值,能够有效控制第四透镜的像侧面与第五透镜的物侧面的弯曲程度,以使第四透镜的像侧面与第五透镜的物侧面更加匹配,有利于减小光线的偏转角度,减少轴外色差的产生,同时,还能提高第四透镜与第五透镜的通光量,以提高光学镜头的相对照度,从而提高光学镜头的成像质量。By constraining the ratio of the sag at the maximum effective semi-aperture of the image side of the fourth lens to the object side of the fifth lens, the degree of curvature of the image side of the fourth lens and the object side of the fifth lens can be effectively controlled, so that the fourth The image side of the lens is more matched with the object side of the fifth lens, which is conducive to reducing the deflection angle of light and reducing the generation of off-axis chromatic aberration. At the same time, it can also improve the light throughput of the fourth lens and the fifth lens. the relative illuminance, thereby improving the imaging quality of the optical lens.
同时,结合对光学镜头的焦距与第五透镜的焦距的比值的控制,能够合理配置第五透镜的屈折力,有利于平衡大光圈特性带来的像差问题,以进一步提高光学镜头的成像质量。At the same time, combined with the control of the ratio of the focal length of the optical lens to the focal length of the fifth lens, the refractive power of the fifth lens can be reasonably configured, which is conducive to balancing the aberration problem caused by the large aperture characteristics and further improving the imaging quality of the optical lens. .
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship:
56deg<FOV/FNO<90deg;56deg<FOV/FNO<90deg;
其中,FOV为所述光学镜头的视场角,FNO为所述光学镜头的光圈数;Wherein, FOV is the field of view of the optical lens, and FNO is the aperture number of the optical lens;
通过约束光学镜头的视场角与光圈数的比值,能够在确保光学镜头的大光圈特性的同时限制光学镜头的视场角,以合理控制光线的入射角度,从而有利于实现光线的平缓过渡,提高光学镜头的成像质量。当其比值低于下限时,光学镜头的视场角过小,导致光学镜头的视野范围减小,不利于光学镜头对物空间的获取,或者,光学镜头的光圈过小,光学镜头的通光量不足,以使光学镜头产生暗角,导致光学镜头的成像质量下降;当其比值高于上限时,光学镜头的视场角过大,使得光学镜头的光圈过大,不利于控制进入光学镜头的光线,易产生难以校正的像差和畸变,从而降低光学镜头的成像质量。By constraining the ratio of the angle of view of the optical lens to the number of apertures, it is possible to limit the angle of view of the optical lens while ensuring the large aperture characteristics of the optical lens, so as to reasonably control the incident angle of light, which is conducive to the realization of a smooth transition of light, Improve the imaging quality of optical lenses. When the ratio is lower than the lower limit, the field of view of the optical lens is too small, resulting in a reduction in the field of view of the optical lens, which is not conducive to the acquisition of the object space by the optical lens, or the aperture of the optical lens is too small, and the amount of light passing through the optical lens When the ratio is higher than the upper limit, the field of view of the optical lens is too large, so that the aperture of the optical lens is too large, which is not conducive to controlling the amount of light entering the optical lens. Light, easy to produce aberrations and distortions that are difficult to correct, thereby reducing the imaging quality of optical lenses.
第二方面,本发明公开了一种摄像模组,所述摄像模组包括图像传感器以及如上述第一方面所述的光学镜头,所述图像传感器设置于所述光学镜头的像侧。具有该光学镜头的摄像模组在确保成像质量的同时,具有大光圈、小型化的特点。In a second aspect, the present invention discloses a camera module, the camera module includes an image sensor and the optical lens according to the first aspect above, and the image sensor is disposed on the image side of the optical lens. The camera module with the optical lens has the characteristics of large aperture and miniaturization while ensuring image quality.
第三方面,本发明公开了一种电子设备,所述电子设备包括壳体以及如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有该摄像模组的电子设备在确保成像质量的同时,具有大光圈、小型化的特点。In a third aspect, the present invention discloses an electronic device, the electronic device includes a casing and the camera module according to the second aspect above, wherein the camera module is arranged on the casing. The electronic device with the camera module has the characteristics of large aperture and miniaturization while ensuring the imaging quality.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的一种光学镜头、摄像模组及电子设备,该光学镜头的第一透镜具有负屈折力,结合第一透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,能够使得较大角度的入射光线进入到光学镜头,扩大光学镜头的视场角范围,同时可以使入射光线得到有效会聚,从而有利于控制第一透镜在垂直光轴方向上的尺寸,确保第一透镜具有较小的口径,以满足光学镜头小型化的设计;此外,第一透镜的物侧面于近圆周处的凹面设置,有利于降低大角度入射光线的入射角度,并降低物侧端产生像散的风险,以减小像侧透镜(即第二透镜至第五透镜)消除像差的压力;结合具有负屈折力的第二透镜,第二透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,能够使得第二透镜与第一透镜的面型更加匹配,以使入射光线平缓过渡,有利于校正轴外像差,降低光学镜头的公差敏感度,同时,还有利于合理配置前后透镜之间的空气间隙,以降低产生鬼像的风险,从而提高光学镜头的成像质量;结合具有负屈折力的第三透镜,能够使得第一透镜至第三透镜具有负正负的屈折力分布,有利于修正光学镜头的球差与彗差,提高光学镜头的成像质量;第四透镜具有正屈折力,结合第四透镜的物侧面、像侧面于近光轴处分别为凸面和凹面的设置,既能使得边缘视场光线得到有效会聚,减小边缘视场光线的偏折,以矫正入射光线经过第一透镜至第三透镜所产生的边缘视场像差,又能矫正光线经第三透镜扩散所产生的球差与彗差,从而提高光学镜头的成像质量,同时,还能缩短光学镜头的总长,以有利于光学镜头的小型化;第五透镜具有正屈折力,且第五透镜的物侧面、像侧面于近光轴处分别为凸面和凹面,能够使得第五透镜与第四透镜的面型高度匹配,降低光学镜头的公差敏感度,并进一步平衡前透镜组(第一透镜至第四透镜)产生的难以矫正的像差,促进光学镜头的像差平衡,从而提高光学镜头的成像质量,同时,第五透镜的像侧面于近光轴处为凹面,能够在确保光学镜头的成像范围的同时避免第五透镜的透镜外径过大,从而实现光学镜头的小型化。The invention provides an optical lens, a camera module and an electronic device. The first lens of the optical lens has a negative refractive power, and the object side and the image side of the first lens are respectively convex and concave at the near optical axis. , which can make the incident light of a larger angle enter the optical lens, expand the field of view of the optical lens, and at the same time, the incident light can be effectively converged, which is conducive to controlling the size of the first lens in the direction of the vertical optical axis, ensuring the first The first lens has a smaller diameter to meet the miniaturization design of the optical lens; in addition, the object side of the first lens is set on the concave surface near the circumference, which is beneficial to reduce the incident angle of large-angle incident light and reduce the generation of light generated by the object side. The risk of astigmatism is reduced to reduce the pressure on the image-side lenses (ie, the second lens to the fifth lens) to eliminate aberrations; combined with the second lens with negative refractive power, the object side and image side of the second lens are on the near optical axis The convex surface and the concave surface are respectively arranged at the two places, which can make the surface shape of the second lens and the first lens more matched, so that the incident light transitions smoothly, which is conducive to correcting off-axis aberration and reducing the tolerance sensitivity of the optical lens. It is beneficial to reasonably configure the air gap between the front and rear lenses to reduce the risk of ghost images, thereby improving the imaging quality of the optical lens; in combination with the third lens with negative refractive power, the first lens to the third lens can have negative and positive The negative refractive power distribution is conducive to correcting the spherical aberration and coma aberration of the optical lens and improving the imaging quality of the optical lens; the fourth lens has a positive refractive power, and the object side and the image side of the fourth lens at the near optical axis are respectively The arrangement of convex and concave surfaces can not only effectively converge the light in the marginal field of view, reduce the deflection of the light in the marginal field of view, so as to correct the marginal field of view aberration caused by the incident light passing through the first lens to the third lens, but also Correct the spherical aberration and coma aberration caused by the diffusion of light through the third lens, thereby improving the imaging quality of the optical lens, and at the same time, it can shorten the overall length of the optical lens, which is conducive to the miniaturization of the optical lens; the fifth lens has a positive refractive power , and the object side and image side of the fifth lens are convex and concave respectively at the near optical axis, which can make the surface of the fifth lens and the fourth lens highly match, reduce the tolerance sensitivity of the optical lens, and further balance the front lens The difficult-to-correct aberrations generated by the group (the first lens to the fourth lens) promote the aberration balance of the optical lens, thereby improving the imaging quality of the optical lens. At the same time, the image side of the fifth lens is concave at the near optical axis, The outer diameter of the fifth lens can be prevented from being too large while ensuring the imaging range of the optical lens, thereby realizing miniaturization of the optical lens.
此外,光学镜头满足0.9<f/EPD<1.3,通过限制光学镜头的焦距与入瞳直径的比值,能够有效增大光学镜头的进光量,提高光学镜头的相对照度,使得光学镜头具有大光圈的特性,以使光学镜头能够适应暗光的拍摄条件,减小暗角的产生,同时,还能缩小艾利斑的尺寸,提高光学镜头的解像力,从而提高光学镜头的成像质量,以满足高像素的设计需求。In addition, the optical lens satisfies 0.9<f/EPD<1.3. By limiting the ratio of the focal length of the optical lens to the diameter of the entrance pupil, it can effectively increase the amount of light entering the optical lens, improve the relative illuminance of the optical lens, and make the optical lens have a large aperture. Features, so that the optical lens can adapt to the shooting conditions of dark light, reduce the generation of vignetting, at the same time, it can also reduce the size of the Airy disk, improve the resolution of the optical lens, and improve the imaging quality of the optical lens to meet the high pixel design requirements.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the drawings required in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1是本申请第一实施例公开的光学镜头的结构示意图;1 is a schematic structural diagram of an optical lens disclosed in a first embodiment of the present application;
图2是本申请第一实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);2 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the first embodiment of the present application;
图3是本申请第二实施例公开的光学镜头的结构示意图;3 is a schematic structural diagram of an optical lens disclosed in a second embodiment of the present application;
图4是本申请第二实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);4 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the second embodiment of the present application;
图5是本申请第三实施例公开的光学镜头的结构示意图;5 is a schematic structural diagram of an optical lens disclosed in a third embodiment of the present application;
图6是本申请第三实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);6 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the third embodiment of the present application;
图7是本申请第四实施例公开的光学镜头的结构示意图;7 is a schematic structural diagram of an optical lens disclosed in a fourth embodiment of the present application;
图8是本申请第四实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);8 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fourth embodiment of the present application;
图9是本申请第五实施例公开的光学镜头的结构示意图;9 is a schematic structural diagram of an optical lens disclosed in a fifth embodiment of the present application;
图10是本申请第五实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);10 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fifth embodiment of the present application;
图11是本申请公开的摄像模组的结构示意图;11 is a schematic structural diagram of a camera module disclosed in the present application;
图12是本申请公开的电子设备的结构示意图。FIG. 12 is a schematic structural diagram of the electronic device disclosed in the present application.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In the present invention, the terms "upper", "lower", "left", "right", "front", "rear", "top", "bottom", "inner", "outer", "middle", The orientation or positional relationship indicated by "vertical", "horizontal", "horizontal", "longitudinal", etc. is based on the orientation or positional relationship shown in the drawings. These terms are primarily used to better describe the invention and its embodiments, and are not intended to limit the fact that the indicated device, element or component must have a particular orientation, or be constructed and operated in a particular orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。In addition, some of the above-mentioned terms may be used to express other meanings besides orientation or positional relationship. For example, the term "on" may also be used to express a certain attachment or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the present invention can be understood according to specific situations.
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。Furthermore, the terms "installed", "arranged", "provided", "connected", "connected" should be construed broadly. For example, it may be a fixed connection, a detachable connection, or a unitary structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。In addition, the terms "first", "second", etc. are mainly used to distinguish different devices, elements or components (the specific types and configurations may be the same or different), and are not used to indicate or imply the indicated devices, elements, etc. or the relative importance and number of components. Unless stated otherwise, "plurality" means two or more.
下面将结合实施例和附图对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below with reference to the embodiments and the accompanying drawings.
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,光学镜头100共有五片具有屈折力的透镜,包括沿光轴O由物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5,并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Referring to FIG. 1 , according to a first aspect of the present application, the present application discloses an
进一步地,第一透镜L1的物侧面11于近光轴O处为凸面,第一透镜L1的像侧面12于近光轴O处为凹面;第二透镜L2的物侧面21于近光轴O处为凸面,第二透镜L2的像侧面22于近光轴O处为凹面;第三透镜L3的物侧面31于近光轴O处为凹面或凸面,第三透镜L3的像侧面32于近光轴O处为凹面或凸面;第四透镜L4的物侧面41于近光轴O处为凸面,第四透镜L4的像侧面42于近光轴O处为凹面;第五透镜L5的物侧面51于近光轴O处为凸面,第五透镜L5的像侧面52于近光轴O处为凹面。Further, the
第一透镜L1的物侧面11于圆周处为凹面,第一透镜L1的像侧面12于圆周处为凸面;第二透镜L2的物侧面21于圆周处为凹面,第二透镜L2的像侧面22于圆周处为凸面;第三透镜L3的物侧面31于圆周处为凹面,第三透镜L3的像侧面32于圆周处为凸面;第四透镜L4的物侧面41于圆周处为凹面,第四透镜L4的像侧面42于圆周处为凸面;第五透镜L5的物侧面51于圆周处为凹面,第五透镜L5的像侧面52于圆周处为凸面。The
通过合理配置第一透镜L1至第五透镜L5之间的各透镜的面型和屈折力,从而能够使光学镜头100在确保成像质量的同时,具有大光圈、小型化的特点。By properly configuring the surface shapes and refractive powers of the lenses between the first lens L1 and the fifth lens L5 , the
进一步地,在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5的材质均为塑料,此时,光学镜头100能够减少重量并降低成本。在其他实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5的材质也可为玻璃,此时,能够使得光学镜头100具有良好的光学效果,同时还可以降低光学镜头100的温漂敏感度。Further, in some embodiments, the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all made of plastic. In this case, the
在一些实施例中,为了便于加工成型,上述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可均为非球面透镜。可以理解地,在其他实施例中,上述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5也可采用球面透镜。In some embodiments, in order to facilitate processing and molding, the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 may all be aspherical lenses. It can be understood that, in other embodiments, the above-mentioned first lens L1 , second lens L2 , third lens L3 , fourth lens L4 and fifth lens L5 can also adopt spherical lenses.
一些实施例中,光学镜头100还包括光阑STO,光阑STO可为孔径光阑和/或视场光阑,例如光阑STO可为孔径光阑,或者,光阑STO可为视场光阑,或者,光阑STO可为孔径光阑和视场光阑。通过将光阑STO设置在第一透镜L1的物侧,能够使出射光瞳远离成像面101,在不降低光学镜头100的远心性的情况下还能减小光学镜头100的有效直径,从而实现小型化。可以理解的是,在其他实施例中,该光阑STO也可设置在其他透镜之间,根据实际情况调整设置,本实施例对此不作具体限定。In some embodiments, the
一些实施例中,光学镜头100还包括红外带通滤光片60,红外带通滤光片60设置于第五透镜L5与光学镜头100的成像面101之间。选用红外带通滤光片60,能够透过红外光,并反射可见光,以实现光学镜头100的红外成像,使得光学镜头100能够适应于阴雨天、夜晚等暗光拍摄环境。In some embodiments, the
可以理解的是,红外滤带通光片60可以是光学玻璃镀膜制成的,也可以是有色玻璃制成的,或者其他材质的红外带通滤光片60,可根据实际需要进行选择,在本实施例不作具体限定。It can be understood that the infrared
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
0.9<f/EPD<1.3;0.9<f/EPD<1.3;
其中,f为光学镜头100的焦距,EPD为光学镜头100的入瞳直径。Wherein, f is the focal length of the
通过限定光学镜头100的第一透镜L1具有负屈折力,结合第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面的设置,能够使得较大角度的入射光线进入到光学镜头100,扩大光学镜头100的视场角范围,同时可以使入射光线得到有效会聚,从而有利于控制第一透镜L1在垂直光轴O方向上尺寸,确保第一透镜L1具有较小的口径,以满足光学镜头100小型化的设计;此外,第一透镜L1的物侧面11于近圆周处的凹面设置,有利于降低大角度入射光线的入射角度,并降低物侧端产生像散的风险,以减小像侧透镜(即第二透镜L2至第五透镜L5)消除像差的压力;结合具有负屈折力的第二透镜L2,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面的设置,能够使得第二透镜L2与第一透镜L1的面型更加匹配,以使入射光线平缓过渡,有利于校正轴外像差,降低光学镜头100的公差敏感度,同时,还有利于合理配置前后透镜之间的空气间隙,以降低产生鬼像的风险,从而提高光学镜头100的成像质量;结合具有负屈折力的第三透镜L3,能够使得第一透镜L1至第三透镜L3具有负正负的屈折力分布,有利于修正光学镜头100的球差与彗差,提高光学镜头100的成像质量;第四透镜L4具有正屈折力,结合第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面的设置,既能使得边缘视场光线得到有效会聚,减小边缘视场光线的偏折,以矫正入射光线经过第一透镜L1至第三透镜L3所产生的边缘视场像差,又能矫正光线经第三透镜L3扩散所产生的球差与彗差,从而提高光学镜头100的成像质量,同时,还能缩短光学镜头100的总长,以有利于光学镜头100的小型化;第五透镜L5具有正屈折力,且第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面,能够使得第五透镜L5与第四透镜L4的面型高度匹配,降低光学镜头100的公差敏感度,并进一步平衡前透镜组(第一透镜L1至第四透镜L4)产生的难以矫正的像差,促进光学镜头100的像差平衡,从而提高光学镜头100的成像质量,同时,第五透镜L5的像侧面52于近光轴O处为凹面,能够在确保光学镜头100的成像范围的同时避免第五透镜L5的透镜外径过大,从而实现光学镜头100的小型化。By defining that the first lens L1 of the
此外,光学镜头100满足0.9<f/EPD<1.3,通过限制光学镜头100的焦距与入瞳直径的比值,能够有效增大光学镜头100的进光量,提高光学镜头100的相对照度,使得光学镜头100具有大光圈的特性,以使光学镜头100能够适应暗光的拍摄条件,减小暗角的产生,同时,还能缩小艾利斑的尺寸,提高光学镜头100的解像力,从而提高光学镜头100的成像质量,以满足高像素的设计需求。In addition, the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
1.9<TTL/IMGH<2.2;和/或,0.11<BFL/TTL<0.17;1.9<TTL/IMGH<2.2; and/or, 0.11<BFL/TTL<0.17;
其中,TTL为第一透镜L1的物侧面11至光学镜头100的成像面101在光轴O上的距离(即光学镜头100的总长),IMGH为光学镜头100的最大有效成像圆的半径(即光学镜头100的像高),BFL为第五透镜L5的像侧面52至光学镜头100的成像面101在平行于光轴O方向上的最小距离(即光学镜头100的后焦)。Among them, TTL is the distance from the
通过约束光学镜头100的总长与像高的比值,能够有效缩短光学镜头100的总尺寸,使得光学镜头100在获得较小尺寸的同时,还能够具有大像面的特点,从而有利于提高光学镜头100的成像质量。当其比值低于下限时,同时,光学镜头100的总长过小,各透镜之间的空气间隙较小,使得各透镜之间的敏感度增大,不利于透镜的设计与组装,同时,光学镜头100的排布空间不足,使得透镜的面型过于弯曲,从而易产生高阶像差,不利于光学镜头100的像差平衡,进而导致光学镜头100的成像质量下降;当其比值高于上限时,光学镜头100的总长过大,不利于光学镜头100的小型化设计。By constraining the ratio of the total length to the image height of the
此外,通过限制光学镜头100的后焦与总长的比值,能够合理配置光学镜头100的后焦与总长的占比,以使光线具有足够的距离汇聚至成像面101,从而能够使得光学镜头100在满足小型化的同时,有效控制最外视场至成像面101上的主光线入射角度,以减小成像面101的主光线入射角度,提高光学镜头100的相对照度,进而提高光学镜头100的成像质量。In addition, by limiting the ratio of the back focus to the total length of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
-0.5<f2/f1<0,且,-0.4<f2/f3<0;-0.5<f2/f1<0, and, -0.4<f2/f3<0;
其中,f1为第一透镜L1的焦距,f2为第二透镜L2的焦距,f3为第三透镜L3的焦距。Wherein, f1 is the focal length of the first lens L1, f2 is the focal length of the second lens L2, and f3 is the focal length of the third lens L3.
通过约束第二透镜L2与第一透镜L1的焦距的比值,以及第二透镜L2与第三透镜L3的焦距的比值,能够使得第一透镜L1至第三透镜L3的屈折力保持一定的差距,一方面能够有利于经第一透镜L1汇聚的入射光线平滑过渡至后透镜组(即第四透镜L4与第五透镜L5),另一方面,还能有利于后透镜组平衡球差与彗差,以提高光学镜头100的成像质量。当其比值低于下限或高于上限时,第一透镜L1至第三透镜L3产生的像差无法相互协同消除,同时,入射光线过于聚拢或未能合理扩散,从而对后透镜组的光线控制产生较大的压力,导致第四透镜L4与第五透镜L5过于弯曲,影响光学镜头100的成像质量。By constraining the ratio of the focal lengths of the second lens L2 and the first lens L1, and the ratio of the focal lengths of the second lens L2 and the third lens L3, the refractive power of the first lens L1 to the third lens L3 can be kept a certain gap, On the one hand, it can help the incident light converged by the first lens L1 to smoothly transition to the rear lens group (ie, the fourth lens L4 and the fifth lens L5), and on the other hand, it can also help the rear lens group to balance spherical aberration and coma aberration. , so as to improve the imaging quality of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
0.8<CT2/CT3<1.9,且,-0.4<f2/f3<0;0.8<CT2/CT3<1.9, and, -0.4<f2/f3<0;
其中,CT2为第二透镜L2于光轴O上的厚度(即第二透镜L2的中心厚度),CT3为第三透镜L3于光轴O上的厚度(即第三透镜L3的中心厚度),f2为第二透镜L2的焦距,f3为第三透镜L3的焦距。Wherein, CT2 is the thickness of the second lens L2 on the optical axis O (ie the central thickness of the second lens L2), CT3 is the thickness of the third lens L3 on the optical axis O (ie the central thickness of the third lens L3), f2 is the focal length of the second lens L2, and f3 is the focal length of the third lens L3.
通过合理控制第二透镜L2与第三透镜L3的中心厚度的比值,能够使得第二透镜L2与第三透镜L3的中心厚度较为接近,以使光线能够平缓过渡,有利于矫正光学镜头100的色差与球差,从而提高光学镜头100的成像质量。By reasonably controlling the ratio of the center thicknesses of the second lens L2 and the third lens L3, the center thicknesses of the second lens L2 and the third lens L3 can be made closer, so that the light can transition smoothly, which is beneficial to correct the chromatic aberration of the
结合对第二透镜L2与第三透镜L3的焦距的比值的控制,能够合理配置第二透镜L2与第三透镜L3的屈折力,以适当调整光线的偏转角度和走势,从而进一步提高光学镜头100的成像质量。Combined with the control of the ratio of the focal lengths of the second lens L2 and the third lens L3, the refractive power of the second lens L2 and the third lens L3 can be reasonably configured to properly adjust the deflection angle and trend of the light, thereby further improving the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
1.9<∑CT/∑AT<5,且,-0.4<f2/f3<0;1.9<∑CT/∑AT<5, and, -0.4<f2/f3<0;
其中,∑CT为第一透镜L1至第五透镜L5于光轴O上的厚度之和(即光学镜头100的各透镜的中心厚度之和),∑AT为第一透镜L1至第五透镜L5于光轴O上的空气间隙之和(即光学镜头100的各透镜的空气间隙之和),f2为第二透镜L2的焦距,f3为第三透镜L3的焦距。Among them, ΣCT is the sum of the thicknesses of the first lens L1 to the fifth lens L5 on the optical axis O (that is, the sum of the central thicknesses of the lenses of the optical lens 100 ), and ΣAT is the first lens L1 to the fifth lens L5 The sum of the air gaps on the optical axis O (ie, the sum of the air gaps of the lenses of the optical lens 100 ), f2 is the focal length of the second lens L2, and f3 is the focal length of the third lens L3.
通过约束光学镜头100的各透镜的中心厚度之和与空气间隙之和的比值,能够提高光学镜头100的结构紧凑度,有利于光学镜头100的小型化,同时,还能合理配置各透镜之间的空气间隙(前一透镜的像侧面至后一透镜的物侧面的距离),从而一方面能够确保光学镜头100的各透镜的均匀分布,有利于光线平滑过渡,改善光学镜头100的像差和畸变,以提高光学镜头100的成像质量,另一方面,能够降低光学镜头100的公差敏感度,使得光学镜头100具有良好的光学性能,进一步提高光学镜头100的成像质量。By constraining the ratio of the sum of the center thicknesses of the lenses of the
结合对第二透镜L2与第三透镜L3的焦距的比值的控制,能够合理配置第二透镜L2与第三透镜L3的屈折力,有利于消除高阶像差,提高光学镜头100的成像质量。Combined with the control of the ratio of the focal lengths of the second lens L2 and the third lens L3, the refractive power of the second lens L2 and the third lens L3 can be reasonably configured, which is conducive to eliminating high-order aberrations and improving the imaging quality of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
-5<f1/f34<0.5,且,1<CT3/CT4<3;-5<f1/f34<0.5, and, 1<CT3/CT4<3;
其中,f1为第一透镜L1的焦距,f34为第三透镜L3与第四透镜L4的组合焦距,CT3为第三透镜L3于光轴O上的厚度(即第三透镜L3的中心厚度),CT4为第四透镜L4于光轴O上的厚度(即第四透镜L4的中心厚度)。Wherein, f1 is the focal length of the first lens L1, f34 is the combined focal length of the third lens L3 and the fourth lens L4, CT3 is the thickness of the third lens L3 on the optical axis O (that is, the central thickness of the third lens L3), CT4 is the thickness of the fourth lens L4 on the optical axis O (ie, the central thickness of the fourth lens L4).
通过约束第一透镜L1的焦距和第三透镜L3与第四透镜L4的组合焦距的比值,可利用第一透镜L1以修正光线由第三透镜L3进入第四透镜L4时产生的慧差与场曲,以提高光学镜头100的成像质量。By constraining the ratio of the focal length of the first lens L1 and the combined focal length of the third lens L3 and the fourth lens L4, the first lens L1 can be used to correct the coma and field generated when the light enters the fourth lens L4 from the third lens L3 curve to improve the imaging quality of the
结合对第三透镜L3与第四透镜L4的中心厚度的比值的约束,能够避免第三透镜L3与第四透镜L4的中心厚度的差距过大,有利于光线在第三透镜L3的内部平缓扩张,并使得光线在第四透镜L4的内部进行传播方向修正时具有足够的行程,以有助于光学镜头100校正色差和球差,从而有利于提高光学镜头100的成像质量。Combining the constraints on the ratio of the central thicknesses of the third lens L3 and the fourth lens L4, it is possible to prevent the gap between the central thicknesses of the third lens L3 and the fourth lens L4 from being too large, which is conducive to the gentle expansion of light inside the third lens L3 , and make the light have enough travel when correcting the propagation direction inside the fourth lens L4 , so as to help the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
0.5<SD11/IMGH<0.6,且,0<f/f5<1;0.5<SD11/IMGH<0.6, and, 0<f/f5<1;
其中,SD11为第一透镜L1的物侧面11的最大有效半口径,IMGH为光学镜头100的最大有效成像圆的半径(即光学镜头100的像高),f5为第五透镜L5的焦距。SD11 is the maximum effective semi-diameter of the
通过约束第一透镜L1的物侧面11的最大有效半口径与光学镜头100的像高的比值,能够减小光学镜头100的各透镜之间的段差,有利于使得光线在光学镜头100的透镜间平缓过渡,同时,还能增大光学镜头100的通光量,提高光学镜头100的相对照度,以提高光学镜头100的成像质量。当其比值低于下限或高于上限时,对入射光线的控制难度增大,需要较长的结构以实现光线的平缓过渡,不利于光学镜头100的小型化,并且无法确保光学镜头100的相对照度,导致光学镜头100的成像质量下降。By constraining the ratio of the maximum effective half-aperture of the
同时,结合对光学镜头100的焦距与第五透镜L5的焦距的比值的控制,能够合理配置第五透镜L5的屈折力,有利于平衡大光圈特性带来的像差问题,以进一步提高光学镜头100的成像质量。At the same time, combined with the control of the ratio of the focal length of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
SAG42/SAG51<3,且,0<f/f5<1;SAG42/SAG51<3, and, 0<f/f5<1;
其中,SAG42为第四透镜L4的像侧面42的最大有效口径处至第四透镜L4的像侧面42与光轴O的交点在平行于光轴O方向上的距离(即第四透镜L4的像侧面42的最大有效半口径处的矢高),SAG51为第五透镜L5的物侧面51的最大有效口径处至第五透镜L5的物侧面51与光轴O的交点在平行于光轴O方向上的距离(即第五透镜L5的物侧面51的最大有效半口径处的矢高),f5为第五透镜L5的焦距。Wherein, SAG42 is the distance from the maximum effective aperture of the
通过约束第四透镜L4的像侧面42与第五透镜L5的物侧面51的最大有效半口径处的矢高的比值,能够有效控制第四透镜L4的像侧面42与第五透镜L5的物侧面51的弯曲程度,以使第四透镜L4的像侧面42与第五透镜L5的物侧面51更加匹配,有利于减小光线的偏转角度,减少轴外色差的产生,同时,还能提高第四透镜L4与第五透镜L5的通光量,以提高光学镜头100的相对照度,从而提高光学镜头100的成像质量。By constraining the ratio of the sag at the maximum effective semi-aperture of the
同时,结合对光学镜头100的焦距与第五透镜L5的焦距的比值的约束,能够合理配置第五透镜L5的屈折力,有利于平衡大光圈特性带来的像差问题,以进一步提高光学镜头100的成像质量。At the same time, combined with the constraints on the ratio of the focal length of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
56deg<FOV/FNO<90deg;56deg<FOV/FNO<90deg;
其中,FOV为光学镜头100的视场角,FNO为光学镜头100的光圈数;Wherein, FOV is the field of view of the
通过约束光学镜头100的视场角与光圈数的比值,能够在确保光学镜头100的大光圈特性的同时限制光学镜头100的视场角,以合理控制光线的入射角度,从而有利于实现光线的平缓过渡,提高光学镜头100的成像质量。当其比值低于下限时,光学镜头100的视场角过小,导致光学镜头100的视野范围减小,不利于光学镜头100对物空间的获取,或者,光学镜头100的光圈过小,光学镜头100的通光量不足,以使光学镜头100产生暗角,导致光学镜头100的成像质量下降;当其比值高于上限时,光学镜头100的视场角过大,使得光学镜头100的光圈过大,不利于控制进入光学镜头100的光线,易产生难以校正的像差和畸变,从而降低光学镜头100的成像质量。By constraining the ratio of the angle of view of the
另外,第一透镜L1至第五透镜L5的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型可利用但不限于以下非球面公式进行限定:In addition, the object side and the image side of any one of the first lens L1 to the fifth lens L5 are aspherical, and the surface type of each aspherical lens can be limited by but not limited to the following aspherical formula:
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上任一点到光轴的距离,c是非球面顶点的曲率,c=1/Y,Y为曲率半径(即,近轴曲率c为表1中的Y半径的倒数),k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。where Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the surface vertex, r is the distance from any point on the aspheric surface to the optical axis, c is the curvature of the aspheric vertex, c=1/Y, and Y is the radius of curvature (ie, The paraxial curvature c is the reciprocal of the Y radius in Table 1), k is the conic constant, and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface formula.
以下将结合具体参数对本实施例的光学镜头100进行详细说明。The
第一实施例first embodiment
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O由物侧至像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外带通滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of the
进一步地,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Further, the first lens L1 has negative refractive power, the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has positive refractive power.
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凹面和凸面;第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。Further, the
第一透镜L1的物侧面11、像侧面12于圆周处分别为凹面和凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凹面和凸面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。The
具体地,以光学镜头100的有效焦距f=2.04mm、光学镜头100的光圈数FNO=1.07,光学镜头100的视场角FOV=81.01deg,光学镜头100的总长TTL=3.62mm为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧至像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号2和3分别对应第一透镜L1的物侧面和像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚透镜像侧面的方向为光轴O的正方向,当该值为负时,表明光阑STO设置于后一表面顶点的像侧,若光阑STO厚度为正值时,光阑STO在后一表面顶点的物侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm,且表1中的折射率、阿贝数在参考波长587nm下得到,而焦距则在参考波长920nm下得到。Specifically, taking the effective focal length of the optical lens 100 f=2.04mm, the aperture number of the
表2中的k为圆锥常数,表2给出了可用于第一实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。k in Table 2 is the conic constant, and Table 2 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspherical mirror surface in the first embodiment.
表1Table 1
表2Table 2
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为587nm下的纵向球差图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,单位为mm,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Please refer to (A) in FIG. 2 , which shows a longitudinal spherical aberration diagram of the
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为587nm下的像散曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线图中的T表示成像面101在子午方向的弯曲、S表示成像面101在弧矢方向的弯曲,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 2 , which is a graph of astigmatism of the
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为587nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在该波长下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 2 . (C) in FIG. 2 is a distortion curve diagram of the
第二实施例Second Embodiment
本申请的第二实施例公开的光学镜头100的结构示意图如图3所示,光学镜头100包括沿光轴O由物侧至像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外带通滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of the
进一步地,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Further, the first lens L1 has negative refractive power, the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has positive refractive power.
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凹面和凸面;第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。Further, the
第一透镜L1的物侧面11、像侧面12于圆周处分别为凹面和凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凹面和凸面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。The
具体地,以光学镜头100的有效焦距f=2.35mm、光学镜头100的光圈数FNO=1.03,光学镜头100的视场角FOV=79.06deg,光学镜头100的总长TTL=4.19mm为例。Specifically, the effective focal length of the
该第二实施例中的其他参数由下表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm,且表3中的折射率、阿贝数在参考波长587nm下得到,而焦距则在参考波长920nm下得到。Other parameters in the second embodiment are given in Table 3 below, and the definitions of the parameters can be obtained from the descriptions of the foregoing embodiments, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 3 are all mm, and the refractive index and Abbe number in Table 3 are obtained at a reference wavelength of 587 nm, and the focal length is obtained at a reference wavelength of 920 nm.
表4中的k为圆锥常数,表4给出了可用于第二实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。k in Table 4 is the conic constant, and Table 4 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspherical mirror surface in the second embodiment.
表3table 3
表4Table 4
请参阅图4,由图4中的(A)纵向球差图,图4中的(B)像散曲线图以及图4中的(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图4中的(A)、图4中的(B)以及图4中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Referring to FIG. 4, it can be seen from (A) longitudinal spherical aberration diagram in FIG. 4, (B) astigmatism curve diagram in FIG. 4 and (C) distortion curve diagram in FIG. Both astigmatism and distortion are well controlled, so that the
第三实施例Third Embodiment
本申请的第三实施例公开的光学镜头100的结构示意图如图5所示,光学镜头100包括沿光轴O由物侧至像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外带通滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of the
进一步地,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Further, the first lens L1 has negative refractive power, the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has positive refractive power.
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面31、像侧面32于近光轴O处均为凹面;第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。Further, the
第一透镜L1的物侧面11、像侧面12于圆周处分别为凹面和凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凹面和凸面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。The
具体地,以光学镜头100的有效焦距f=2.49mm、光学镜头100的光圈数FNO=1.09,光学镜头100的视场角FOV=76.06deg,光学镜头100的总长TTL=4.39mm为例。Specifically, the effective focal length of the
该第三实施例中的其他参数由下表5给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm,且表5中的折射率、阿贝数在参考波长587nm下得到,而焦距则在参考波长920nm下得到。Other parameters in the third embodiment are given in Table 5 below, and the definitions of the parameters can be obtained from the descriptions of the foregoing embodiments, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 5 are mm, and the refractive index and Abbe number in Table 5 are obtained at the reference wavelength of 587 nm, and the focal length is obtained at the reference wavelength of 920 nm.
表6中的k为圆锥常数,表6给出了可用于第三实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。k in Table 6 is the conic constant, and Table 6 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 applicable to each aspherical mirror surface in the third embodiment.
表5table 5
表6Table 6
请参阅图6,由图6中的(A)纵向球差图,图6中的(B)像散曲线图以及图6中的(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图6中的(A)、图6中的(B)以及图6中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Referring to FIG. 6 , it can be seen from (A) longitudinal spherical aberration diagram in FIG. 6 , (B) astigmatism curve diagram in FIG. 6 and (C) distortion curve diagram in FIG. Both astigmatism and distortion are well controlled, so that the
第四实施例Fourth Embodiment
本申请的第四实施例公开的光学镜头100的结构示意图如图7所示,光学镜头100包括沿光轴O由物侧至像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外带通滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of the
进一步地,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Further, the first lens L1 has negative refractive power, the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has positive refractive power.
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面31、像侧面32于近光轴O处均为凹面;第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。Further, the
第一透镜L1的物侧面11、像侧面12于圆周处分别为凹面和凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凹面和凸面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。The
具体地,以光学镜头100的有效焦距f=1.85mm、光学镜头100的光圈数FNO=0.97,光学镜头100的视场角FOV=86.35deg,光学镜头100的总长TTL=3.58mm为例。Specifically, the effective focal length of the
该第四实施例中的其他参数由下表7给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm,且表7中的折射率、阿贝数在参考波长587nm下得到,而焦距则在参考波长920nm下得到。Other parameters in the fourth embodiment are given in Table 7 below, and the definitions of the parameters can be obtained from the descriptions of the foregoing embodiments, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 7 are all mm, and the refractive index and Abbe number in Table 7 are obtained at the reference wavelength of 587 nm, and the focal length is obtained at the reference wavelength of 920 nm.
表8中的k为圆锥常数,表8给出了可用于第四实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。k in Table 8 is the conic constant, and Table 8 shows the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 applicable to each aspherical mirror surface in the fourth embodiment.
表7Table 7
表8Table 8
请参阅图8,由图8中的(A)纵向球差图,图8中的(B)像散曲线图以及图8中的(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图8中的(A)、图8中的(B)以及图8中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Referring to FIG. 8 , it can be seen from (A) longitudinal spherical aberration diagram in FIG. 8 , (B) astigmatism curve diagram in FIG. 8 and (C) distortion curve diagram in FIG. Both astigmatism and distortion are well controlled, so that the
第五实施例Fifth Embodiment
本申请的第五实施例公开的光学镜头100的结构示意图如图9所示,光学镜头100包括沿光轴O由物侧至像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外带通滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of an
进一步地,第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力。Further, the first lens L1 has negative refractive power, the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has positive refractive power.
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凸面和凹面;第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。Further, the
第一透镜L1的物侧面11、像侧面12于圆周处分别为凹面和凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凹面和凸面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。The
具体地,以光学镜头100的有效焦距f=3.65mm、光学镜头100的光圈数FNO=1.28,光学镜头100的视场角FOV=71.14deg,光学镜头100的总长TTL=5.85mm为例。Specifically, the effective focal length of the
该第五实施例中的其他参数由下表9给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm,且表9中的折射率、阿贝数在参考波长587nm下得到,而焦距则在参考波长920nm下得到。Other parameters in the fifth embodiment are given in Table 9 below, and the definitions of the parameters can be obtained from the descriptions of the foregoing embodiments, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 9 are mm, and the refractive index and Abbe number in Table 9 are obtained at the reference wavelength of 587 nm, and the focal length is obtained at the reference wavelength of 920 nm.
表10中的k为圆锥常数,表10给出了可用于第五实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。k in Table 10 is the conic constant, and Table 10 shows the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspherical mirror surface in the fifth embodiment.
表9Table 9
表10Table 10
请参阅图10,由图10中的(A)纵向球差图,图10中的(B)像散曲线图以及图10中的(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图10中的(A)、图10中的(B)以及图10中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Referring to FIG. 10 , it can be seen from (A) longitudinal spherical aberration diagram in FIG. 10 , (B) astigmatism curve diagram in FIG. 10 and (C) distortion curve diagram in FIG. Both astigmatism and distortion are well controlled, so that the
请参阅表11,表11为本申请第一实施例至第五实施例中各关系式的比值汇总。Please refer to Table 11. Table 11 is a summary of the ratios of the relational expressions in the first to fifth embodiments of the present application.
表11Table 11
请参阅图11,本申请还公开了一种摄像模组200,该摄像模组包括图像传感器201以及如上述第一实施例至第五实施例中任一实施例所述的光学镜头100,该图像传感器201设于光学镜头100的像侧。该光学镜头100用于接收被摄物的光信号并投射到图像传感器201,图像传感器201用于将对应于被摄物的光信号转换为图像信号,这里不做赘述。可以理解,具有上述光学镜头100的摄像模组200在确保成像质量的同时,具有大光圈、小型化的特点。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Please refer to FIG. 11 , the present application further discloses a
请参阅图12,本申请还公开了一种电子设备300,该电子设备300包括壳体301和上述的摄像模组200,摄像模组200设于壳体301。其中,该电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器、行车记录仪、倒车影像等。可以理解,具有上述摄像模组200的电子设备300,也具有上述光学镜头的全部技术效果。即,在确保成像质量的同时,具有大光圈、小型化的特点。由于上述技术效果已在光学镜头的实施例中做了详细介绍,此处就不再赘述。Referring to FIG. 12 , the present application further discloses an
以上对本发明实施例公开的光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The optical lenses, camera modules and electronic devices disclosed in the embodiments of the present invention have been described in detail above. The principles and implementations of the present invention are described with specific examples in this paper. The optical lens, camera module and electronic device and the core idea thereof of the invention; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In conclusion, The contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210806529.7A CN115166941B (en) | 2022-07-08 | 2022-07-08 | Optical lens, camera module and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210806529.7A CN115166941B (en) | 2022-07-08 | 2022-07-08 | Optical lens, camera module and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115166941A true CN115166941A (en) | 2022-10-11 |
CN115166941B CN115166941B (en) | 2023-08-08 |
Family
ID=83493615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210806529.7A Active CN115166941B (en) | 2022-07-08 | 2022-07-08 | Optical lens, camera module and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115166941B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001183582A (en) * | 1999-12-27 | 2001-07-06 | Fuji Photo Optical Co Ltd | Light, wide-angle infrared lens |
JP2013536467A (en) * | 2010-08-20 | 2013-09-19 | ヨス・シュナイダー・オプティッシェ・ヴェルケ・ゲー・エム・ベー・ハー | High aperture wide angle lens |
CN103676101A (en) * | 2013-07-10 | 2014-03-26 | 玉晶光电(厦门)有限公司 | Optical imaging lens and electronic device with the application of optical imaging lens |
CN111208630A (en) * | 2020-04-23 | 2020-05-29 | 江西联创电子有限公司 | External lens |
CN114706197A (en) * | 2022-04-28 | 2022-07-05 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
-
2022
- 2022-07-08 CN CN202210806529.7A patent/CN115166941B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001183582A (en) * | 1999-12-27 | 2001-07-06 | Fuji Photo Optical Co Ltd | Light, wide-angle infrared lens |
JP2013536467A (en) * | 2010-08-20 | 2013-09-19 | ヨス・シュナイダー・オプティッシェ・ヴェルケ・ゲー・エム・ベー・ハー | High aperture wide angle lens |
CN103676101A (en) * | 2013-07-10 | 2014-03-26 | 玉晶光电(厦门)有限公司 | Optical imaging lens and electronic device with the application of optical imaging lens |
CN111208630A (en) * | 2020-04-23 | 2020-05-29 | 江西联创电子有限公司 | External lens |
CN114706197A (en) * | 2022-04-28 | 2022-07-05 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN115166941B (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113933968B (en) | Optical lens, camera module and electronic equipment | |
CN114488478B (en) | Optical lens, camera module and electronic equipment | |
CN112987256B (en) | Optical system, camera module and electronic equipment | |
CN112034596A (en) | Optical lens, image capturing module and electronic device | |
CN114578515B (en) | Optical lens, camera module and electronic equipment | |
CN113625425B (en) | Optical lens, camera module and electronic equipment | |
CN115480364A (en) | Optical lens, camera module and electronic equipment | |
CN114706197A (en) | Optical lens, camera module and electronic equipment | |
CN115480371A (en) | Optical lens, camera module and electronic equipment | |
CN114326026A (en) | Optical lens, camera module and electronic equipment | |
CN114578512A (en) | Optical systems, camera modules and electronic equipment | |
CN114296213A (en) | Optical lens, camera module and electronic equipment | |
WO2022061676A1 (en) | Optical lens, image capture module, and electronic apparatus | |
CN114326059B (en) | Optical lens, camera module and electronic equipment | |
CN116027527B (en) | Optical lens, camera module and electronic equipment | |
CN114167582B (en) | Optical lens, camera module and electronic equipment | |
CN114815154B (en) | Optical lens, camera module and electronic equipment | |
CN114721126B (en) | Optical lens, camera module and electronic equipment | |
CN114371547B (en) | Optical lens, camera module and electronic equipment | |
CN114637094B (en) | Optical lens, camera module and electronic equipment | |
CN114545594B (en) | Optical system, camera module and electronic equipment | |
CN113900224B (en) | Optical system, image capturing module and electronic equipment | |
CN113933966B (en) | Optical lens, camera module and electronic equipment | |
CN112904532B (en) | Optical lens, camera module and electronic equipment | |
CN213399033U (en) | Optical system, lens module and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Jiangxi Province Patentee after: Jiangxi Oufei Optics Co.,Ltd. Country or region after: China Address before: No. 699 Tianxiang North Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee before: Jiangxi Jingchao optics Co.,Ltd. Country or region before: China |