CN115144103A - Pressure sensor and method for manufacturing pressure sensor - Google Patents
Pressure sensor and method for manufacturing pressure sensor Download PDFInfo
- Publication number
- CN115144103A CN115144103A CN202210742130.7A CN202210742130A CN115144103A CN 115144103 A CN115144103 A CN 115144103A CN 202210742130 A CN202210742130 A CN 202210742130A CN 115144103 A CN115144103 A CN 115144103A
- Authority
- CN
- China
- Prior art keywords
- air cavity
- metal electrode
- capacitor
- sensor body
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title description 3
- 238000000034 method Methods 0.000 title description 2
- 239000003990 capacitor Substances 0.000 claims abstract description 74
- 239000012528 membrane Substances 0.000 claims abstract description 71
- 230000008859 change Effects 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 97
- 239000002184 metal Substances 0.000 claims description 97
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 238000001514 detection method Methods 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003527 tetrahydropyrans Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/14—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
- G01L1/142—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种压力传感器以及压力传感器的制备方法,压力传感器包括传感器本体,传感器本体具有一端敞开的空气腔,空气腔的底壁设有排气孔,排气孔靠近底壁的边缘布置;电容器和振动膜,电容器设于传感器本体且具有与空气腔的敞开端对应设置的变形区;振动膜设于电容器远离传感器本体一侧,振动膜受压力时通过振动膜作用于变形区改变电容器的电容,以根据电容器的电容检测压力。由此,通过传感器本体、电容器和振动膜配合,振动膜受到压力朝向空气腔内弯曲时,空气腔内的气体从排气孔排出空气腔,空气腔内气体不会对振动膜的移动产生阻力,振动膜可以可靠地作用于变形区改变电容器的电容,从而可以提升压力传感器的检测线性度和灵敏度。
The invention discloses a pressure sensor and a preparation method of the pressure sensor. The pressure sensor comprises a sensor body, the sensor body has an air cavity with one end open, the bottom wall of the air cavity is provided with an exhaust hole, and the exhaust hole is arranged near the edge of the bottom wall ; Capacitor and vibrating membrane, the capacitor is set on the sensor body and has a deformation zone corresponding to the open end of the air cavity; the vibrating membrane is set on the side of the capacitor away from the sensor body, and the vibrating membrane acts on the deformation zone to change the capacitor when the vibrating membrane is under pressure. capacitance to detect pressure based on the capacitance of the capacitor. Therefore, through the cooperation of the sensor body, the capacitor and the vibrating membrane, when the vibrating membrane is bent towards the air cavity under pressure, the gas in the air cavity is discharged from the air cavity from the exhaust hole, and the gas in the air cavity will not produce resistance to the movement of the vibrating membrane , the vibrating membrane can reliably act on the deformation area to change the capacitance of the capacitor, so that the detection linearity and sensitivity of the pressure sensor can be improved.
Description
技术领域technical field
本发明涉及压力检测领域,尤其是涉及一种压力传感器以及压力传感器的制备方法。The invention relates to the field of pressure detection, in particular to a pressure sensor and a preparation method of the pressure sensor.
背景技术Background technique
相关技术中,压力是系统正常运行的重要检测指标,压力传感器作为最常用的微机电系统传感器之一,因其高灵敏度、低温灵敏度和低功耗而被开发用于各种需要监测绝对压力或差压的应用。接触式压力传感器抗过载能力强,并且具有比传统的非接触式传感器的灵敏度高出一到两个量级的优势,接触式传感器由于其相对于传统的非接触式传感器的优势而受到越来越多的关注。In related technologies, pressure is an important detection indicator for the normal operation of the system. As one of the most commonly used MEMS sensors, pressure sensors have been developed for various applications that need to monitor absolute pressure or Differential pressure applications. Contact pressure sensors are resistant to overloading and have the advantage of being one to two orders of magnitude more sensitive than traditional non-contact sensors, which are increasingly being used due to their advantages over traditional non-contact sensors. more attention.
现有技术中,压力传感器设置有空气腔和振动膜,空气腔的敞开端备密封,振动膜覆盖空气腔的敞开端,振动膜在朝向空气腔挤压的过程中,振动膜与空气腔的内侧壁间形成高密度气体压缩区域,对振动膜进一步下移产生阻力,会降低压力传感器的线性度和灵敏度。In the prior art, the pressure sensor is provided with an air cavity and a vibrating membrane, the open end of the air cavity is sealed, and the vibrating membrane covers the open end of the air cavity. A high-density gas compression area is formed between the inner walls, which creates resistance to the further downward movement of the vibrating membrane, which reduces the linearity and sensitivity of the pressure sensor.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出了一种压力传感器,振动膜受到压力朝向空气腔内弯曲时,空气腔内的气体从排气孔排出空气腔,空气腔内气体不会对振动膜的移动产生阻力,提升了压力传感器的检测线性度和灵敏度。The present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, an object of the present invention is to provide a pressure sensor. When the vibrating membrane is bent towards the air cavity under pressure, the gas in the air cavity is discharged from the air cavity from the exhaust hole, and the gas in the air cavity will not affect the vibrating membrane. The movement creates resistance, which improves the detection linearity and sensitivity of the pressure sensor.
本发明进一步地提出了一种压力传感器的制备方法。The present invention further provides a preparation method of the pressure sensor.
根据本发明的压力传感器,包括:The pressure sensor according to the present invention includes:
传感器本体,所述传感器本体具有一端敞开的空气腔,所述空气腔的底壁设有排气孔,所述排气孔靠近所述底壁的边缘布置;a sensor body, the sensor body has an air cavity with one end open, the bottom wall of the air cavity is provided with an exhaust hole, and the exhaust hole is arranged close to the edge of the bottom wall;
电容器和振动膜,所述电容器设于所述传感器本体且具有与所述空气腔的敞开端对应设置的变形区;a capacitor and a vibrating membrane, the capacitor is provided on the sensor body and has a deformation area corresponding to the open end of the air cavity;
所述振动膜设于所述电容器远离所述传感器本体一侧,所述振动膜受压力时通过所述振动膜作用于所述变形区改变所述电容器的电容,以根据所述电容器的电容检测压力。The vibrating membrane is arranged on the side of the capacitor away from the sensor body. When the vibrating membrane is under pressure, the vibrating membrane acts on the deformation area to change the capacitance of the capacitor, so as to detect the capacitance according to the capacitance of the capacitor. pressure.
在本发明的一些示例中,所述排气孔与所述底壁的边缘相切。In some examples of the invention, the vent is tangent to the edge of the bottom wall.
在本发明的一些示例中,所述排气孔为圆形孔;In some examples of the present invention, the vent hole is a circular hole;
所述排气孔的直径为R,满足关系式:2μm≤R≤10μm。The diameter of the vent hole is R, which satisfies the relationship: 2 μm≤R≤10 μm.
在本发明的一些示例中,所述排气孔为多个,多个所述排气孔沿所述底壁的周向依次间隔开。In some examples of the present invention, there are a plurality of the exhaust holes, and the plurality of the exhaust holes are sequentially spaced apart along the circumference of the bottom wall.
在本发明的一些示例中,所述排气孔的总体积小于所述空气腔的体积。In some examples of the present invention, the total volume of the vent holes is less than the volume of the air cavity.
在本发明的一些示例中,所述电容器包括:介质层、第一金属电极和第二金属电极,所述第一金属电极设于所述传感器本体靠近所述电容器的表面且设于所述空气腔的内壁面,所述第一金属电极远离所述传感器本体的一侧设有所述介质层,所述第二金属电极设于所述介质层远离所述第一金属电极的一侧且形成有所述变形区,所述振动膜受压力时通过所述振动膜作用于所述第二金属电极使所述第二金属电极伸入所述空气腔内与设于所述内壁面的所述介质层接触,以改变所述电容器的电容。In some examples of the present invention, the capacitor includes: a dielectric layer, a first metal electrode and a second metal electrode, the first metal electrode is provided on the surface of the sensor body close to the capacitor and is provided on the air On the inner wall surface of the cavity, the first metal electrode is provided with the dielectric layer on the side away from the sensor body, and the second metal electrode is provided on the side of the dielectric layer away from the first metal electrode and formed With the deformation zone, when the vibrating membrane is under pressure, the vibrating membrane acts on the second metal electrode so that the second metal electrode extends into the air cavity and the The dielectric layer contacts to change the capacitance of the capacitor.
在本发明的一些示例中,所述介质层具有第一避让孔,所述第一金属电极具有第二避让孔,所述第一避让孔通过所述第二避让孔与所述排气孔连通。In some examples of the present invention, the dielectric layer has a first avoidance hole, the first metal electrode has a second avoidance hole, and the first avoidance hole communicates with the exhaust hole through the second avoidance hole .
在本发明的一些示例中,所述介质层构造为金属氧化物层。In some examples of the present invention, the dielectric layer is configured as a metal oxide layer.
在本发明的一些示例中,所述变形区的形状与所述空气腔的横截面形状适配。In some examples of the present invention, the shape of the deformation zone is adapted to the cross-sectional shape of the air cavity.
根据本发明的压力传感器的制备方法,所述压力传感器包括传感器本体、电容器和振动膜,所述传感器本体具有一端敞开的空气腔,所述空气腔的底壁设有排气孔,所述电容器设于所述传感器本体且具有与所述空气腔的敞开端对应设置的变形区,所述振动膜设于所述电容器远离所述传感器本体一侧,所述电容器包括介质层、第一金属电极和第二金属电极,所述第一金属电极设于所述传感器本体靠近所述电容器的表面且设于所述空气腔的内壁面,所述第一金属电极远离所述传感器本体的一侧设有所述介质层,所述制备方法包括以下步骤:According to the manufacturing method of the pressure sensor of the present invention, the pressure sensor comprises a sensor body, a capacitor and a vibrating membrane, the sensor body has an air cavity with one end open, the bottom wall of the air cavity is provided with an exhaust hole, and the capacitor It is arranged on the sensor body and has a deformation area corresponding to the open end of the air cavity. The vibrating membrane is arranged on the side of the capacitor away from the sensor body. The capacitor includes a dielectric layer and a first metal electrode. and a second metal electrode, the first metal electrode is arranged on the surface of the sensor body close to the capacitor and on the inner wall surface of the air cavity, and the first metal electrode is arranged on the side away from the sensor body With the dielectric layer, the preparation method includes the following steps:
选取衬底基体作为所述传感器本体,在所述传感器本体上刻蚀形成所述空气腔;Selecting a substrate base as the sensor body, and etching the air cavity on the sensor body;
在所述空气腔的底壁刻蚀所述排气孔;Etch the exhaust hole on the bottom wall of the air cavity;
在所述空气腔的内壁面通过磁控溅射生成所述第一金属电极;The first metal electrode is formed on the inner wall of the air cavity by magnetron sputtering;
在所述第一金属电极远离所述传感器本体的一侧表面通过原子层沉积生成所述介质层;The dielectric layer is formed on a surface of the first metal electrode away from the sensor body by atomic layer deposition;
在所述振动膜靠近所述电容器的表面通过磁控溅射生成所述第二金属电极;The second metal electrode is formed on the surface of the vibrating film close to the capacitor by magnetron sputtering;
将所述第二金属电极贴设于所述空气腔且键合于所述传感器本体。The second metal electrode is attached to the air cavity and bonded to the sensor body.
本发明的有益效果是,根据本发明的压力传感器,通过传感器本体、电容器和振动膜配合,振动膜受到压力朝向空气腔内弯曲时,空气腔内的气体从排气孔排出空气腔,空气腔内气体不会对振动膜的移动产生阻力,振动膜可以可靠地作用于变形区改变电容器的电容,从而可以提升压力传感器的检测线性度和灵敏度。The beneficial effect of the present invention is that, according to the pressure sensor of the present invention, through the cooperation of the sensor body, the capacitor and the vibrating membrane, when the vibrating membrane is bent toward the air cavity under pressure, the gas in the air cavity is discharged from the exhaust hole to the air cavity, and the air cavity is The inner gas does not produce resistance to the movement of the vibrating membrane, and the vibrating membrane can reliably act on the deformation area to change the capacitance of the capacitor, thereby improving the detection linearity and sensitivity of the pressure sensor.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是根据本发明实施例的压力传感器的截面图;1 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention;
图2是根据本发明实施例的压力传感器的俯视图;2 is a top view of a pressure sensor according to an embodiment of the present invention;
图3是根据本发明实施例的制备方法流程图;3 is a flow chart of a preparation method according to an embodiment of the present invention;
图4是现有压力传感器和本申请压力传感器电容变化趋势对照图。FIG. 4 is a comparison diagram of the variation trend of the capacitance of the existing pressure sensor and the pressure sensor of the present application.
附图标记:Reference number:
压力传感器100;
传感器本体10;空气腔11;底壁12;排气孔13;
电容器20;变形区21;介质层22;第一金属电极23;第二金属电极24;第一避让孔25;第二避让孔26;capacitor 20;
振动膜30。
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
下面参考图1-图4描述根据本发明实施例的压力传感器100,压力传感器100为电容式压力传感器100。The
如图1、图2、图4所示,根据本发明实施例的压力传感器100包括:传感器本体10、电容器20和振动膜30。传感器本体10具有一端敞开的空气腔11,当压力传感器100以图1中方向放置时,空气腔11的上端敞开,空气腔11的底壁12设置有排气孔13,排气孔13贯穿空气腔11的底壁12,排气孔13连通空气腔11和大气环境,排气孔13靠近底壁12的边缘布置。电容器20设置于传感器本体10,且电容器20具有与空气腔11的敞开端对应设置的变形区21,变形区21发生形变时可以改变电容器20的电容。振动膜30设置于电容器20远离传感器本体10一侧,本申请以压力传感器100以图1中方向放置为例进行说明,振动膜30设置在电容器20的上侧。振动膜30受压力时通过振动膜30作用于变形区21改变电容器20的电容,以根据电容器20的电容检测压力。As shown in FIG. 1 , FIG. 2 , and FIG. 4 , the
压力传感器100检测压力过程中,振动膜30受到压力的作用朝向空气腔11内弯曲,振动膜30弯曲时驱动变形区21变形以改变电容器20的电容,通过测试电容器20的电容变化检测出压力大小,电容器20的每个电容值对应一个压力值。其中,振动膜30受到不同压力时,振动膜30弯曲程度不同,不同弯曲程度的振动膜30作用于变形区21时使电容器20的变形区21变形弯曲程度不同,从而使电容器20具有不同的电容,不同的压力作用下,电容器20具有不同的电容。当振动膜30受到压力的作用朝向空气腔11内弯曲时,空气腔11内的气体从排气孔13排出空气腔11,空气腔11内气体不会对振动膜30的移动产生阻力,空气腔11内气体对振动膜30的振动弯曲挠度没有局限性,在振动膜30受到不同压力作用下时,均可保证振动膜30顺利朝向空气腔11内弯曲作用于变形区21,改变电容器20的电容,从而可以提升压力传感器100的检测线性度和灵敏度。When the
由此,通过传感器本体10、电容器20和振动膜30配合,振动膜30受到压力朝向空气腔11内弯曲时,空气腔11内的气体从排气孔13排出空气腔11,空气腔11内气体不会对振动膜30的移动产生阻力,振动膜30可以可靠地作用于变形区21改变电容器20的电容,从而可以提升压力传感器100的检测线性度和灵敏度。Therefore, through the cooperation of the
在本发明的一些实施例中,如图1所示,电容器20可以包括:介质层22、第一金属电极23和第二金属电极24,第一金属电极23设于传感器本体10靠近电容器20的表面,且第一金属电极23设于空气腔11的内壁面,需要说明的是,空气腔11的内壁面包括空气腔11的底壁12内壁面和空气腔11的侧壁内壁面,空气腔11的底壁12内壁面设置有第一金属电极23,进一步地,空气腔11的侧壁内壁面也可以设置有第一金属电极23,传感器本体10靠近电容器20的端面也可以设置有第一金属电极23,第一金属电极23贴设于传感器本体10靠近电容器20的端部、空气腔11的底壁12内壁面和空气腔11的侧壁内壁面。第一金属电极23远离传感器本体10的一侧设有介质层22,介质层22贴设于第一金属电极23的远离传感器本体10的表面。第二金属电极24设于介质层22远离第一金属电极23的一侧,且第二金属电极24形成有变形区21,如图1所示,第二金属电极24设于传感器本体10上端,第二金属电极24在传感器本体10径向方向延伸设置,振动膜30设置在第二金属电极24远离传感器本体10的一侧,振动膜30可以贴设于第二金属电极24远离传感器本体10的表面。振动膜30受压力时通过振动膜30作用于第二金属电极24使第二金属电极24伸入空气腔11内与设于内壁面的介质层22接触,以改变电容器20的电容。In some embodiments of the present invention, as shown in FIG. 1 , the capacitor 20 may include: a dielectric layer 22 , a
具体地,压力传感器100检测压力过程中,振动膜30受到压力的作用朝向空气腔11内弯曲,空气腔11内的气体从排气孔13排出空气腔11,振动膜30朝向空气腔11内弯曲时驱动第二金属电极24的变形区21朝向空气腔11内弯曲,第二金属电极24的变形区21朝向空气腔11内弯曲后与介质层22接触,随着压力的增大,第二金属电极24与空气腔11的底壁12内壁面的介质层22接触面积增加引起电容器20电容的变化,从而通过测试电容器20的电容变化检测出压力大小,如此设置能够准确检测出压力大小,可以提升压力传感器100检测灵敏度以及线性度。并且,由于空气腔11与大气环境连通,空气腔11内气体对振动膜30的振动弯曲挠度没有局限性,有利于第一金属电极23和第二金属电极24更好地接触,进一步提升压力传感器100检测线性度和灵敏度,使压力传感器100能够进行高精度的压力检测。Specifically, when the
在本发明的一些实施例中,如图1所示,介质层22具有第一避让孔25,第一金属电极23具有第二避让孔26,第一避让孔25通过第二避让孔26与排气孔13连通。进一步地,设于空气腔11的底壁12内壁面的介质层22设置有第一避让孔25,设于空气腔11的底壁12内壁面的第一金属电极23设置有第二避让孔26。其中,第一避让孔25连通空气腔11和第二避让孔26,第二避让孔26连通第一避让孔25和排气孔13,排气孔13连通第二避让孔26和大气环境。如此设置能够实现连通空气腔11和和大气环境的效果,可以简化压力传感器100结构。In some embodiments of the present invention, as shown in FIG. 1 , the dielectric layer 22 has a
在本发明的一些实施例中,介质层22构造可以设置为金属氧化物层,例如:金属氧化物层由银、铝、钛等金属的氧化物制成。进一步地,介质层22的厚度为1nm-1μm。如此设置能够保证介质层22的工作性能,可以保证电容器20的功能性。In some embodiments of the present invention, the dielectric layer 22 may be configured as a metal oxide layer, for example, the metal oxide layer is made of oxides of metals such as silver, aluminum, and titanium. Further, the thickness of the dielectric layer 22 is 1 nm-1 μm. This arrangement can ensure the working performance of the dielectric layer 22 and the functionality of the capacitor 20 .
在本发明的一些实施例中,第一金属电极23和第二金属电极24均为厚度是100nm-1μm的导电性能良好的金属材料,优选的,金属电极材料为银、铝、钛、金等金属。如此设置能够保证电容器20的工作性能,也可以保证第一金属电极23和第二金属电极24的使用寿命。振动膜30为厚度1μm-10μm的弹性薄膜,优选的,该弹性薄膜的材料为聚二甲基硅氧烷,但本发明不限于此,弹性薄膜的材料也可以设置为与聚二甲基硅氧烷起到相同作用的材料,例如:硅。In some embodiments of the present invention, the
在本发明的一些实施例中,排气孔13与底壁12的边缘相切,也可以理解为,排气孔13与空气腔11的侧壁内壁面相切。需要说明的是,在压力传感器100的径向方向上,排气孔13与空气腔11的侧壁内壁面相对的位置与空气腔11的侧壁内壁面相切。进一步地,排气孔13设置为圆形孔。如此设置能够使排气孔13布置在空气腔11的底壁12边缘处,有效避免振动膜30与空气腔11的内侧壁间形成高密度气体压缩区域,保证空气腔11内气体对振动膜30的振动弯曲挠度没有局限性,更有利于第一金属电极23和第二金属电极24更好地接触,进一步提升压力传感器100检测线性度和灵敏度。In some embodiments of the present invention, the
在本发明的一些实施例中,排气孔13的直径为R,满足关系式:2μm≤R≤10μm,例如:排气孔13的直径为2μm、4μm、5μm、10μm等数值,排气孔13的直径尺寸可以根据实际需要合理选择布置。振动膜30受力变形时,通过设置2μm≤R≤10μm,能够保证空气腔11内的气体及时从排气孔13排出,可以保证空气腔11内气体对振动膜30的振动弯曲挠度没有局限性,更有利于第一金属电极23和第二金属电极24更好地接触,进一步提升压力传感器100检测线性度和灵敏度,从而使排气孔13的直径尺寸适宜。In some embodiments of the present invention, the diameter of the
在本发明的一些实施例中,排气孔13可以设置为多个,多个排气孔13沿底壁12的周向依次间隔开设置,进一步地,多个排气孔13沿底壁12的周向依次均匀间隔开设置。其中,空气腔11柱形腔体,进一步地,空气腔11为圆柱形腔体,通过将多个排气孔13沿底壁12的周向间隔开设置,振动膜30受力变形时,在空气腔11的整个周向上,可以保证振动膜30与空气腔11的内侧壁间气体及时从多个排气孔13排出,避免振动膜30与空气腔11的内侧壁间局部压力过大,防止由于气体排出不及时导致对振动膜30的振动弯曲挠度产生限制的情况发生。In some embodiments of the present invention, a plurality of exhaust holes 13 may be provided, and the plurality of exhaust holes 13 are arranged at intervals along the circumferential direction of the
在本发明的一些实施例中,排气孔13的总体积小于空气腔11的体积。其中,如果空气腔11不与大气环境连通,空气腔11易受外界温度影响,温度漂移相对较大。通过使排气孔13的总体积小于空气腔11的体积,在降低压力传感器100温度漂移的同时,可以保证第一金属电极23和第二金属电极24接触后有足够的电容数值。In some embodiments of the present invention, the total volume of the vent holes 13 is less than the volume of the
在本发明的一些实施例中,变形区21的形状与空气腔11的横截面形状适配,变形区21的横截面形状与空气腔11的横截面形状相同,进一步地,变形区21的横截面形状与空气腔11的横截面形状均为圆形,振动膜30受力变形时,通过变形区21的形状与空气腔11的横截面形状适配,能够保证变形区21顺利朝向空气腔11内变形弯曲,可以保证振动膜30作用于变形区21时改变电容器20的电容,从而保证压力传感器100工作可靠性。In some embodiments of the present invention, the shape of the
需要说明的是,如图1所示,第二金属电极24位于振动膜30下方,压力传感器100接触模式工作时,第一金属电极23和第二金属电极24间隔一层高介电常数的金属氧化物层(即介质层22),可以具备更高的电容数值,显著提高压力传感器100检测的灵敏度。It should be noted that, as shown in FIG. 1 , the
如图4所示,是现有压力传感器和本申请压力传感器100电容变化趋势对照图,图4中位于上方曲线表示本申请压力传感器100电容随压强变化关系,图4中位于下方曲线表示现有压力传感器电容随压强变化关系。由图中可知,本申请压力传感器100的线性度和灵敏度均有显著提升。As shown in FIG. 4 , it is a comparison chart of the capacitance change trend of the existing pressure sensor and the
在本发明的一些实施例中,压力传感器100可以包括发光部,发光部可以设置于传感器本体10,发光部可以设置为灯等具有发光功能的零部件,通过设置发光部,能够使压力传感器100具有照明功能,光照不足情况下,便于用户找到压力传感器100。In some embodiments of the present invention, the
在本发明的一些实施例中,排气孔13内设置有过滤网,过滤网具有过滤作用,可以防止外界颗粒物物体进入空气腔11内,避免颗粒物物体堆积在空气腔11内。In some embodiments of the present invention, a filter screen is provided in the
如图3所示,根据本发明实施例的压力传感器100的制备方法,压力传感器100为上述实施例中的压力传感器100。压力传感器100包括传感器本体10、电容器20和振动膜30,传感器本体10具有一端敞开的空气腔11,空气腔11的底壁12设有排气孔13,电容器20设于传感器本体10且具有与空气腔11的敞开端对应设置的变形区21,振动膜30设于电容器20远离传感器本体10一侧,电容器20包括介质层22、第一金属电极23和第二金属电极24,第一金属电极23设于传感器本体10靠近电容器20的表面且设于空气腔11的内壁面,第一金属电极23远离传感器本体10的一侧设有介质层22,制备方法包括以下步骤:As shown in FIG. 3 , according to the manufacturing method of the
S10、选取衬底基体作为传感器本体10,在传感器本体10上刻蚀形成空气腔11。S10 , the substrate base is selected as the
需要说明的是,选取硅衬底作为传感器本体10,在传感器本体10表面旋涂光刻胶并进行光刻形成图形化的掩膜层,通过各向异性干法在传感器本体10上刻蚀形成空气腔11。It should be noted that a silicon substrate is selected as the
S20、在空气腔11的底壁12刻蚀排气孔13。S20 , etching the
需要说明的是,在空气腔11的底壁12靠近边缘处通过各项异性干法刻蚀排气孔13。It should be noted that the
S30、在空气腔11的内壁面通过磁控溅射生成第一金属电极23。S30, the
需要说明的是,在空气腔11的底壁12内壁面、空气腔11的侧壁内壁面、传感器本体10靠近电容器20的端面均通过磁控溅射生长金属薄膜形成第一金属电极23,以将第一金属电极23设置在传感器本体10上。It should be noted that, on the inner wall surface of the
S40、在第一金属电极23远离传感器本体10的一侧表面通过原子层沉积生成介质层22。S40 , the medium layer 22 is generated by atomic layer deposition on the surface of the
需要说明的是,在第一金属电极23远离传感器本体10的一侧表面通过原子层沉积形成对应第一金属电极23材料的金属氧化物,构成介质层22。It should be noted that, a metal oxide corresponding to the material of the
S50、在振动膜30靠近电容器20的表面通过磁控溅射生成第二金属电极24。S50, the
需要说明的是,在振动膜30靠近电容器20的表面磁控溅射金属薄膜构成第二金属电极24。It should be noted that the
S60、将第二金属电极24贴设于空气腔11且键合于传感器本体10。S60 , attaching the
需要说明的是,如图1所示,将第二金属电极24贴设于传感器本体10远离电容器20的端部且覆盖空气腔11的敞开端,且第二金属电极24键合于传感器本体10。It should be noted that, as shown in FIG. 1 , the
其中,通过上述的压力传感器100的制备方法,能够制备出满足需求的压力传感器100,可以提高压力传感器100对压力检测灵敏度,也能够提高压力传感器100的线性度。Wherein, the
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples", etc., is meant to incorporate the embodiments A particular feature, structure, material, or characteristic described by an example or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210742130.7A CN115144103A (en) | 2022-06-27 | 2022-06-27 | Pressure sensor and method for manufacturing pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210742130.7A CN115144103A (en) | 2022-06-27 | 2022-06-27 | Pressure sensor and method for manufacturing pressure sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115144103A true CN115144103A (en) | 2022-10-04 |
Family
ID=83411098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210742130.7A Pending CN115144103A (en) | 2022-06-27 | 2022-06-27 | Pressure sensor and method for manufacturing pressure sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115144103A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1334451A (en) * | 2000-07-15 | 2002-02-06 | 山东省硅酸盐研究设计院 | Ceramic pressure sensor and differential pressure sensor |
US7181975B1 (en) * | 2005-09-13 | 2007-02-27 | Honeywell International | Wireless capacitance pressure sensor |
US20090115430A1 (en) * | 2007-11-05 | 2009-05-07 | Industrial Technology Research Institute | Sensor |
CN101586999A (en) * | 2009-06-17 | 2009-11-25 | 珠海晶富电子科技有限公司 | Pressure/capacitance type pressure sensor |
CN103698060A (en) * | 2013-12-25 | 2014-04-02 | 中北大学 | Wireless passive high-temperature pressure sensor with temperature compensation and temperature compensation algorithm thereof |
CN104515640A (en) * | 2013-10-08 | 2015-04-15 | 无锡华润上华半导体有限公司 | Capacitive MEMS (micro-electromechanical system) pressure sensor |
CN105136351A (en) * | 2015-08-19 | 2015-12-09 | 东南大学 | Capacitive pressure sensor and preparation method thereof |
CN205102961U (en) * | 2015-09-09 | 2016-03-23 | 南京工业大学 | Capacitive pressure sensor |
CN107478359A (en) * | 2017-07-28 | 2017-12-15 | 佛山市川东磁电股份有限公司 | A kind of double membrane capacitance formula pressure sensors and preparation method |
CN206891622U (en) * | 2017-07-17 | 2018-01-16 | 合肥皖科智能技术有限公司 | A kind of ceramic capacitive pressure sensors |
CN112075672A (en) * | 2020-09-30 | 2020-12-15 | 苏州敏芯微电子技术股份有限公司 | Sensing Devices and Electronic Cigarettes |
-
2022
- 2022-06-27 CN CN202210742130.7A patent/CN115144103A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1334451A (en) * | 2000-07-15 | 2002-02-06 | 山东省硅酸盐研究设计院 | Ceramic pressure sensor and differential pressure sensor |
US7181975B1 (en) * | 2005-09-13 | 2007-02-27 | Honeywell International | Wireless capacitance pressure sensor |
US20090115430A1 (en) * | 2007-11-05 | 2009-05-07 | Industrial Technology Research Institute | Sensor |
CN101586999A (en) * | 2009-06-17 | 2009-11-25 | 珠海晶富电子科技有限公司 | Pressure/capacitance type pressure sensor |
CN104515640A (en) * | 2013-10-08 | 2015-04-15 | 无锡华润上华半导体有限公司 | Capacitive MEMS (micro-electromechanical system) pressure sensor |
CN103698060A (en) * | 2013-12-25 | 2014-04-02 | 中北大学 | Wireless passive high-temperature pressure sensor with temperature compensation and temperature compensation algorithm thereof |
CN105136351A (en) * | 2015-08-19 | 2015-12-09 | 东南大学 | Capacitive pressure sensor and preparation method thereof |
CN205102961U (en) * | 2015-09-09 | 2016-03-23 | 南京工业大学 | Capacitive pressure sensor |
CN206891622U (en) * | 2017-07-17 | 2018-01-16 | 合肥皖科智能技术有限公司 | A kind of ceramic capacitive pressure sensors |
CN107478359A (en) * | 2017-07-28 | 2017-12-15 | 佛山市川东磁电股份有限公司 | A kind of double membrane capacitance formula pressure sensors and preparation method |
CN112075672A (en) * | 2020-09-30 | 2020-12-15 | 苏州敏芯微电子技术股份有限公司 | Sensing Devices and Electronic Cigarettes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7563692B2 (en) | Microelectromechanical system pressure sensor and method for making and using | |
JP5737148B2 (en) | Capacitive pressure sensor, method for manufacturing the same, and input device | |
CN104568243B (en) | Composite range pressure sensor | |
US7555956B2 (en) | Micromechanical device having two sensor patterns | |
US7571651B2 (en) | Capacitive pressure sensor and method for fabricating the same | |
EP1522521A1 (en) | Capacitive sensor | |
CN114323363B (en) | Capacitance type vacuum pressure sensor | |
CN107478359B (en) | A double-film capacitive pressure sensor and method of making the same | |
CN104848982A (en) | Quasi-differential-capacitor type MEMS pressure sensor and manufacturing method thereof | |
CN206164826U (en) | Sensitive membrane and MEMS microphone | |
CN108426658B (en) | Ring Contact High Range Capacitive Micro Pressure Sensor | |
US10807860B2 (en) | Micromechanical component for a pressure sensor device | |
CN104422549B (en) | Capacitance pressure transducer and forming method thereof | |
CN110411615B (en) | A high-sensitivity MEMS tactile sensor structure | |
JP6311341B2 (en) | Capacitance type pressure sensor and input device | |
CN113979405B (en) | MEMS vacuum gauge and preparation method thereof | |
CN105067178A (en) | Differential-capacitive MEMS pressure sensor and manufacturing method thereof | |
CN209897272U (en) | MEMS microphone | |
CN113670485A (en) | High-performance MEMS pressure sensor and manufacturing method thereof | |
JP4586239B2 (en) | Capacitive semiconductor sensor and method for manufacturing the same | |
JP2007225344A (en) | Pressure sensor | |
US11689863B2 (en) | MEMS microphone and method of manufacturing the same | |
CN111855066A (en) | Sensor Assemblies with Multi-Range Construction | |
CN115144103A (en) | Pressure sensor and method for manufacturing pressure sensor | |
JP2005321257A (en) | Capacitance type pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |