CN115134851A - 针对新空口未许可操作的无线电链路监测和失败 - Google Patents
针对新空口未许可操作的无线电链路监测和失败 Download PDFInfo
- Publication number
- CN115134851A CN115134851A CN202210773632.6A CN202210773632A CN115134851A CN 115134851 A CN115134851 A CN 115134851A CN 202210773632 A CN202210773632 A CN 202210773632A CN 115134851 A CN115134851 A CN 115134851A
- Authority
- CN
- China
- Prior art keywords
- rlm
- resource
- missing
- radio link
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000005259 measurement Methods 0.000 claims description 61
- 238000011156 evaluation Methods 0.000 claims description 55
- 238000004891 communication Methods 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 5
- 230000011664 signaling Effects 0.000 claims description 2
- 235000019527 sweetened beverage Nutrition 0.000 description 35
- 230000005540 biological transmission Effects 0.000 description 30
- 230000006870 function Effects 0.000 description 15
- 238000001228 spectrum Methods 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 10
- 230000000737 periodic effect Effects 0.000 description 9
- 238000007726 management method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101150069124 RAN1 gene Proteins 0.000 description 1
- 101100355633 Salmo salar ran gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及针对新空口未许可操作的无线电链路监测和失败。描述了在未许可频带中确定同步/不同步(IS/OOS)的系统和方法。在未许可频带上测量参考信号。如果UE确定该参考信号中的至少一个参考信号缺失,则在该基础上评估IS/OOS状态。如果在确定IS/OOS状态时忽略该缺失的信号,并且IS/OOS状态不能评估,则L1向RRC层发送指示。如果该指示的数量超过阈值,则UE执行重建或向基站发送报告以调整参考信号资源。如果对该缺失的信号进行计数,则基于与本底噪声的接近度或缺失的相邻信号的数量对该缺失的信号进行加权。
Description
本申请是申请日为2019年9月16日、申请号为201980060911.4、发明名称为“针对新空口未许可操作的无线电链路监测和失败”的中国专利申请的分案申请。
本申请要求2018年9月27日提交的美国临时专利申请序列号62/737,480的优先权的权益,该申请全文以引用方式并入本文。
技术领域
实施方案涉及无线电接入网络(RAN)。一些实施方案涉及蜂窝网络,包括第三代合作伙伴项目(3GPP)长期演进(LTE)、第4代(4G)和第5代(5G)新空口(NR)(或下一代(NG))网络。一些实施方案涉及5G系统中的未许可频带使用。
背景技术
由于使用网络资源的用户装备(UE)的数量和类型以及在这些UE上操作的各种应用诸如视频流所使用的数据量和带宽两者的增加,各种类型的系统的使用已经增加。带宽、延迟和数据速率提升可释放出对网络资源的不断增加的需求。下一代无线通信系统5G或NR将提供由各种用户和应用程序进行的无处不在的连接和对信息的访问,以及共享数据的能力。期望NR成为一个统一的框架,旨在满足截然不同的有时是相互矛盾的性能标准和服务。一般来讲,NR将基于3GPP LTE高级技术,利用附加的增强型无线电接入技术(RAT)来演进,以实现无缝的无线连接解决方案。这些解决方案越来越多地涉及使用中的UE数量大量增加的问题。具体地讲,许多开发集中于使用未许可频谱来提供eNB/gNB和UE与之通信的附加通信信道。
发明内容
根据本公开的一方面,涉及一种用于无线通信的方法,包括:在评估周期期间,在未许可频带上在多个无线电链路监测参考信号RLM-RS资源中的每个RLM-RS资源处测量来自基站的RLM-RS资源样本;确定在所述评估周期期间缺失的RLM-RS资源样本的数量;评估同步状态;以及基于在所述评估周期期间缺失的RLM-RS资源样本的数量,确定是否由层1提供同步指示。
根据本公开的一方面,涉及一种用于无线通信的装置,包括:存储器,和与所述存储器通信的处理电路,其中所述处理电路被配置为执行根据本公开所述的方法。
根据本公开的一方面,涉及一种非暂态计算机可读存储介质,存储由用户设备UE的一个或多个处理器执行的指令,所述一个或多个处理器在所述指令被执行时将所述UE配置为执行根据本公开所述的方法。
附图说明
在未必按比例绘制的附图中,类似的数字可描述不同视图中相似的部件。具有不同字母后缀的类似数字可表示类似部件的不同实例。附图以举例的方式而不是限制的方式大体示出本文档中所述的各个方面。
图1示出了根据一些实施方案的组合通信系统。
图2示出了根据一些实施方案的通信设备的框图。
图3示出了根据一些实施方案的参考信号评估的流程图的示例。
具体实施方式
以下描述和附图充分示出了具体方面,使得本领域的技术人员能够实践这些方面。其他方面可结合结构变化、逻辑变化、电气变化、过程变化和其他变化。一些方面的部分和特征可包括在另一些方面的部分和特征中,或替代另一些方面的部分和特征。权利要求书中阐述的方面涵盖这些权利要求中的所有可用等同物。
图1示出了根据一些实施方案的组合通信系统。系统100包括3GPP LTE/4G和NG网络功能。网络功能可被实现为专用硬件上的分立网络元件,被实现为在专用硬件上运行的软件实例,或被实现为在适当平台(例如,专用硬件或云基础结构)上实例化的虚拟化功能。
LTE/4G网络的演进分组核心(EPC)包含为每个实体定义的协议和基准点。这些核心网络(CN)实体可以包括移动性管理实体(MME)122、服务网关(S-GW)124和寻呼网关(P-GW)126。
在NG网络中,控制平面和用户平面可以是分开的,这可以允许每个平面的资源的独立改变大小和分配。UE 102可连接到无线电接入网络(RAN)110和/或可连接到NG-RAN130(gNB)或接入和移动性功能(AMF)142。RAN 110可以是eNB或一般非3GPP接入点,诸如用于Wi-Fi的eNB或一般非3GPP接入点。NG核心网络可包含除AMF 112之外的多个网络功能。UE102可生成、编码并可能加密到RAN 110和/或gNB 130的上行链路传输,并且解码(和解密)来自RAN 110和/或gNB130的下行链路传输(其中RAN 110/gNB 130的情况相反)。
该网络功能可包括用户平面功能(UPF)146、会话管理功能(SMF)144、策略控制功能(PCF)132、应用功能(AF)148、认证服务器功能(AUSF)152和用户数据管理(UDM)128。该各种元件通过图1所示的NG基准点连接。
AMF 142可提供基于UE的认证、授权、移动性管理等。AMF 142可独立于接入技术。SMF 144可负责对UE 102的会话管理和IP地址分配。SMF 144还可选择和控制用于数据传输的UPF 146。SMF 144可与UE 102的单个会话或UE 102的多个会话相关联。也就是说,UE 102可具有多个5G会话。可将不同的SMF分配给每个会话。使用不同的SMF可允许单独管理每个会话。因此,每个会话的功能可彼此独立。UPF 126可与数据网络连接,并且UE 102可与该数据网络通信,UE 102将上行链路数据传输到数据网络或从数据网络接收下行链路数据。
AF 148可将关于分组流的信息提供给PCF 132,该PCF 132负责策略控制以支持期望的QoS。PCF 132可为UE 102设置移动性和会话管理策略。为此,PCF 132可使用该分组流信息来确定用于AMF 142和SMF 144的正确操作的适当策略。AUSF 152可存储用于UE认证的数据。UDM 128可以类似地存储UE订阅数据。
gNB 130可以是独立的gNB或非独立的gNB,例如,作为由eNB 110通过X2或Xn接口控制的升压器以双连接(DC)模式操作。EPC和NG CN的功能中的至少一些可以共享(或者,单独的部件可以用于所示的组合部件中的每一个)。eNB 110可通过S1接口与EPC的MME 122连接,并且通过S1-U接口与EPC 120的SGW 124连接。MME 122可通过S6a接口与HSS 128连接,而UDM通过N8接口连接到AMF 142。SGW 124可通过S5接口与PGW 126(通过S5-C与控制平面PGW-C,并且通过S5-U与用户平面PGW-U)连接。PGW 126可以用作通过互联网的数据的IP锚。
除了别的以外,如上所述的NG CN可以包含AMF 142、SMF 144和UPF 146。eNB 110和gNB 130可以与EPC 120的SGW 124和NG CN的UPF 146传送数据。如果N26接口由EPC 120支持,则MME 122和AMF 142可经由N26接口连接以在MME 122和AMF 142之间提供控制信息。在一些实施方案中,当gNB 130是独立gNB时,5G CN和EPC 120可经由N26接口连接。
图2示出了根据一些实施方案的通信设备的框图。在一些实施方案中,通信设备可以是UE(包括IoT设备和NB-IoT设备)、eNB、gNB或网络环境中使用的其他装备。例如,通信设备200可以是专用计算机、个人或膝上型计算机(PC)、平板电脑、移动电话、智能电话、网络路由器、交换机或网桥,或能够(顺序地或以其他方式)执行指定该机器要采取的动作的指令的任何机器。在一些实施方案中,通信设备200可嵌入其他基于非通信的设备诸如车辆和器具内。
如本文所述的示例可包括逻辑部件或多个部件、模块或机构,或可在逻辑部件或多个部件、模块或机构上操作。模块和部件是能够执行指定操作并且可以某种方式进行配置或布置的有形实体(例如,硬件)。在一个示例中,电路可按指定方式(例如,在内部或相对于外部实体诸如其他电路)被布置为模块。在一个示例中,一个或多个计算机系统(例如,独立计算机系统、客户端计算机系统或服务器计算机系统)或一个或多个硬件处理器的全部或部分可由固件或软件(例如,指令、应用部分或应用)配置为操作以执行指定操作的模块。在一个示例中,软件可驻留在机器可读介质上。在一个示例中,软件在由模块的底层硬件执行时,使得硬件执行指定的操作。
因此,术语“模块”(和“部件”)应被理解为涵盖有形实体,即物理构造、具体构型(例如,硬连线)或暂时(例如,短暂)配置(例如,编程)为以指定方式操作或执行本文所述的任何操作的一部分或全部的实体。考虑模块被暂时配置的示例,每个模块在任何一个时刻都不需要实例化。例如,如果模块包括使用软件配置的通用硬件处理器,则通用硬件处理器可在不同时间被配置作为相应的不同模块。软件可相应地配置硬件处理器,例如以在一个时间实例处构成特定模块并在不同的时间实例处构成不同的模块。
计算设备200可包括硬件处理器202(例如,中央处理单元(CPU)、GPU、硬件处理器内核或它们的任何组合)、主存储器204和静态存储器206,其中的一些或全部可经由互连链路(例如,总线)208彼此通信。主存储器204可包含可移除存储装置和不可移除存储装置、易失性存储器或非易失性存储器中的任一者或全部。通信设备200还可包括显示单元210(诸如视频显示器)、数字字母混合输入设备212(例如,键盘)和用户界面(UI)导航设备214(例如,鼠标)。在一个示例中,显示单元210、输入设备212和UI导航设备214可为触摸屏显示器。通信设备200可另外包括存储设备(例如,驱动单元)216、信号生成设备218(例如,扬声器)、网络接口设备220以及一个或多个传感器221,诸如全球定位系统(GPS)传感器、罗盘、加速度计或其它传感器。通信设备200还可包括输出控制器,诸如串行(例如通用串行总线(USB))连接、并行连接、或者其他有线或无线(例如,红外(IR)、近场通信(NFC)等)连接,以与一个或多个外围设备(例如,打印机、读卡器等)通信或控制该一个或多个外围设备。
存储设备216可包括非暂态机器可读介质222(以下简称为机器可读介质),在该介质上存储由本文所述的技术或功能中的任何一者或多者所体现或利用的一组或多组数据结构或指令224(例如,软件)。在通信设备200执行指令224期间,指令224还可以成功地或至少部分地驻留在主存储器204内、静态存储器206内和/或硬件处理器202内。虽然机器可读介质222被示出为单个介质,但术语“机器可读介质”可包括被配置为存储一个或多个指令224的单个介质或多个介质(例如,集中或分布式数据库,和/或相关联的高速缓存和服务器)。
术语“机器可读介质”可包括能够存储、编码或承载指令以供通信设备200执行,并且使得通信设备200执行本公开的任何一种或多种技术,或者能够存储、编码或承载由此类指令使用或与此类指令相关联的数据结构的任何介质。非限制性机器可读介质示例可包括固态存储器,以及光学和磁性介质。机器可读介质的具体示例可包括:非易失性存储器,诸如半导体存储器设备(例如,电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))和闪存存储器设备;磁盘,诸如内部硬盘和可移动磁盘;磁光盘;随机存取存储器(RAM);以及CD-ROM和DVD-ROM盘。
指令224还可使用传输介质226经由网络接口设备220在通信网络中传输或接收,该传输或接收使用多个传输协议(例如,帧中继、互联网协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)、超文本传输协议(HTTP)等)中的任一者进行。示例性通信网络可包括局域网(LAN)、广域网(WAN)、分组数据网络(例如,互联网)、移动电话网络(例如,蜂窝网络)、简易老式电话(POTS)网络和无线数据网络。通过网络的通信可包括一个或多个不同的协议,诸如电气和电子工程师协会(IEEE)802.11系列标准(称为Wi-Fi)、IEEE 802.16系列标准(称为WiMax)、IEEE 802.15.4系列标准、长期演进(LTE)系列标准、通用移动电信系统(UMTS)系列标准、对等(P2P)网络、NG/NR标准等等。在一个示例中,网络接口设备220可包括一个或多个物理插孔(例如,以太网、同轴或电话插孔)或者一个或多个天线以连接到传输介质226。
通信设备200可以是IoT设备(也称为“机器型通信设备”或“MTC设备”)、窄带IoT(NB-IoT)设备或非IoT设备(例如,智能电话、车辆UE),其任一者可以经由图1所示的eNB或gNB与核心网络进行通信。通信设备200可以是自主的或半自主的设备,其与其他通信设备和更广的网络(例如,互联网)通信来执行诸如感测或控制等功能。如果通信设备200是IoT设备,则在一些实施方案中,通信设备200可能受到存储器、尺寸或功能的限制,从而允许以与较小数量的较大设备相似的成本来部署较大数量的设备。在一些实施方案中,通信设备200可以是虚拟设备,诸如智能电话或其他计算设备上的应用程序。
如上所述,UE通常可在许可频谱中操作。然而,LTE和NR频带中许可频谱的缺乏可导致不足以为所有UE提供用于通信的带宽,从而导致数据吞吐量的降低。为了进一步增加系统吞吐量,NR和LTE系统在未许可频谱中操作。在未许可频谱中的潜在NR和LTE操作包括但不限于基于许可辅助接入(LAA)/增强型LAA(eLAA)系统的载波聚合(CA)、经由双连接(DC)在未许可频谱中的NR和LTE操作,以及在未许可频谱中的独立NR和LTE系统。
当使用未许可频带时,通信设备诸如基站(eNB/gNB)和UE可在信道上传输数据之前经由能量检测确定信道可用性。例如,通信设备可通过信道中存在的预定量的能量或通过接收信号强度指示(RSSI)的变化来确定信道被占用。通信设备可检测指示信道的使用的特定序列(诸如在数据传输之前传输的前导码)的存在。可以使用预留信号来预留未许可的信道,以防止WiFi信号在下一个帧边界事件之前发起传输。因此,通信设备可通过执行空闲信道评估(CCA)过程并随后在传输机会(TxOP)期间进行传输来竞争对未许可频带的接入。
具体地讲,UE还可测量许可频带和未许可频带两者的信道上的无线电链路质量。无线电链路监测(RLM)是指由UE使用来监测主小区(Pcell)的下行链路(DL)无线电链路质量以向更高层指示同步(IS)/不同步(OSS)状态的机制。虽然UE可监测Pcell上的活动DL带宽部分(BWP),但在一些情况下,UE可避免监测Pcell上的活动DL BWP之外的DL BWP中的DL无线电链路质量。
类似地,如果UE配置有辅助小区组(SCG),并且参数rlf-TimersAndConstants由更高层提供且未被设置为释放,则由UE监测SCG的主辅小区(PSCell)的DL无线电链路质量,以便向更高层指示IS/OOS状态。类似于PCell,UE可避免监测除PSCell上的活动DL BWP之外的DL BWP中的下行链路无线电链路质量。
UE可通过对应的一组更高层参数RadioLinkMonitoringRS而针对SpCell的每个DLBWP配置有一组资源索引,以便由更高层参数failureDetectionResources进行无线电链路监测。UE可由更高层参数RadioLinkMonitoringRS提供有信道状态信息参考信号(CSI-RS)资源配置索引(由更高层参数csi-RS-Index提供)或同步信号(SS)/物理广播信道(PBCH)块索引(由更高层参数ssbIndex提供)。UE可配置有至多达NLR-RLM个RadioLinkMonitoringRS以用于链路恢复过程和无线电链路监测。在NLR-RLM个RadioLinkMonitoringRS中,可使用至多达数量NLR-RLM个RadioLinkMonitoringRS进行无线电链路监测(这取决于每半帧的候选SS/PBCH块的最大数量L),并且可使用至多达两个RadioLinkMonitoringRS用于链路恢复过程。
如果UE未被提供更高层参数RadioLinkMonitoringRS,并且UE被提供针对物理下行链路控制信道(PDCCH)的包括CSI-RS和/或SS/PBCH块中的一者或多者的一个或多个RS的更高层参数TCI-state,则UE可参与若干活动。如果PDCCH的活动传输配置指示符(TCI)状态仅包括一个RS,则UE可使用针对PDCCH的活动TCI状态提供的RS来进行无线电链路监测。如果PDCCH的活动TCI状态包括两个RS,则UE可期望一个RS具有准共址(QCL)-TypeD并且UE可使用该RS进行无线电链路监测;UE可不期望两个RS都具有QCL-TypeD。UE可不使用非周期性RS进行无线电链路监测。当UE未被提供更高层参数RadioLinkMonitoringRS时,不期望UE使用多于NRLM个RadioLinkMonitoringRS进行无线电链路监测。
在表RLM-1中给出了针对不同L值的NLR-RLM和NRLM的值。
L | N<sub>LR-RLM</sub> | N<sub>RLM</sub> |
4 | 2 | 2 |
8 | 6 | 4 |
64 | 8 | 8 |
表RLM-1:NLR-RLM和NRLM作为每半帧SS/PBCH块的最大数量L的函数
对于CSI-RS资源配置,更高层参数powerControlOffsetSS可能不适用,并且UE相反期望被提供:来自更高层参数cdm-Type的仅“No CDM”;来自更高层参数密度的仅“1”和“3”;来自更高层参数nrofPorts的仅“1个端口”。
在非DRX模式操作中,UE中的物理层可每个指示周期评估一次无线电链路质量。可针对由较高层参数rlmInSyncOutOfSyncThreshold配置的阈值(Qout和Qin)在先前周期内评估该无线电链路质量。UE可将指示周期确定为无线电链路监测资源的最短周期性与10毫秒之间的最大值。
在DRX模式操作中,类似上文所述,UE中的物理层可每个指示周期评估一次无线电链路质量。可针对由较高层参数rlmInSyncOutOfSyncThreshold配置的阈值(Qout和Qin)在先前周期内评估该无线电链路质量。UE可将指示周期确定为无线电链路监测资源的最短周期性与DRX周期之间的最大值。
当无线电链路质量比用于无线电链路监测的资源集中的所有资源的阈值Qout差时,UE中的物理层可在无线电链路质量得到评估的帧中指示与更高层不同步。当无线电链路质量比用于无线电链路监测的资源集中的任何资源的阈值Qin高时,UE中的物理层可在无线电链路质量得到评估的帧中指示与更高层同步。
UE可基于经配置的RLM-RS资源中的参考信号来监测下行链路质量,以检测PCell和PSCell的下行链路无线电链路质量。该经配置的RLM-RS资源可为所有SSB、所有CSI-RS或SSB和CSI-RS的混合。UE在活动DL BWP之外可能或可能不执行RLM。该RLM的RS(RLM-RS)资源是由更高层参数RLM-RS-List针对RLM配置的资源集中的一个资源。
在每个RLM-RS资源上,UE可估计下行链路无线电链路质量并将该估计与阈值Qout和Qin进行比较以监测小区的下行链路无线电链路质量。阈值Qout被定义为不能可靠地接收下行链路无线电链路的级别,并且对应于如表RLM.1-1中所定义的不同步误块率(BLERout)。对于基于SSB的无线电链路监测,基于表RLM.2-1中列出的假设的PDCCH传输参数导出Qout_SSB。对于基于CSI-RS的无线电链路监测,基于表RLM.3-1中列出的假设的PDCCH传输参数来导出Qout_CSI-RS。阈值Qin被定义为与Qout相比可以显著更可靠地接收下行链路无线电链路质量的级别,并且对应于表RLM.1-1中所定义的同步误块率(BLERin)。对于基于SSB的无线电链路监测,基于表RLM.2-2中列出的假设的PDCCH传输参数来导出Qin_SSB。对于基于CSI-RS的无线电链路监测,基于表RLM.3-2中列出的假设的PDCCH传输参数来导出Qin_CSI-RS。
可经由更高层发信号通知的参数RLM-IS-OOS-thresholdConfig根据网络配置来确定不同步误块率(BLERout)和同步误块率(BLERin)。该网络可配置表RLM.1-1中示出的两对不同步误块率和同步误块率中的一对。当UE未配置有来自网络的RLM-IS-OOS-thresholdConfig时,UE可确定来自表RLM.1-1中的配置#0的不同步误块率和同步误块率作为默认值。
配置 | BLER<sub>out</sub> | BLER<sub>in</sub> |
0 | 10% | 2% |
1 | TBD | TBD |
表RLM.1-1:不同步误块率和同步误块率
UE能够在每个对应的载波频率范围内监测相同或不同类型的至多达XRLM-RS个SRLM-RS资源,其中在如下表RLM.1-2中指定XRLM-RS。
RLM-RS资源的最大数量X<sub>RLM-RS</sub> | PCell/PSCell的载波频率范围 |
2 | FR1,≤3GHz |
4 | FR1,>3GHz |
8 | FR2 |
表RLM.1-2:RLM-RS资源的最大数量XRLM-RS
基于SSB的无线电链路监测
每个基于SSB的RLM-RS资源可被配置用于PCell和/或PSCell,前提条件是被配置用于RLM的SSB实际上在下文指定的整个评估周期期间在UE活动DL BWP内传输。
表RLM.2-1:用于不同步的PDCCH传输参数
表RLM.2-2:用于同步的PDCCH传输参数
该UE能够评估在最后一个TEvaluate_out_SSB[ms]周期内估计的经配置的RLM-RS资源上的下行链路无线电链路质量是否变得比TEvaluate_out_SSB[ms]评估周期内的阈值Qout_SSB差。类似地,该UE可能能够评估在最后一个TEvaluate_in_SSB[ms]周期内估计的经配置的RLM-RS资源上的下行链路无线电链路质量是否变得比TEvaluate_in_SSB[ms]评估周期内的阈值Qin_SSB好。
在表RLM.2-3中针对FR1来定义TEvaluate_out_SSB和TEvaluate_in_SSB。如果被配置用于RLM的SSB在空间上被准共址(QCL)和时分多址(TDM)到被配置用于BM的CSI-RS资源,并且该QCL关联是UE已知的,则在表RLM.2-4中针对FR2来定义TEvaluate_out_SSB和TEvaluate_in_SSB,其中N=1。
对于FR1,P=1/(1-TSSB/MGRP),(其中MGRP为测量间隙重复周期)此时在所监测的小区中,存在被配置用于频内测量、频间测量或RAT间测量的测量间隙,这些测量间隙与SSB的一些而非所有时机重叠;并且P=1,此时在所监测的小区中,不存在与SSB的任何时机重叠的测量间隙。对于FR2,P=1/(1-TSSB/TSMTCperiod),此时RLM-RS不与测量间隙重叠并且RLM-RS与SMTC时机部分地重叠(TSSB<TSMTCperiod)。P为Psharing factor,此时RLM-RS不与测量间隙重叠并且RLM-RS与SMTC周期完全重叠(TSSB=TSMTCperiod)。P为1/(1-TSSB/MGRP-TSSB/TSMTCperiod),此时RLM-RS与测量间隙部分重叠,并且RLM-RS与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机不与测量间隙重叠,并且TSMTCperiod≠MGRP或者TSMTCperiod=MGRP且TSSB<0.5*TSMTCperiod。P为1/(1-TSSB/MGRP)*Psharing factor,此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机不与测量间隙重叠并且TSMTCperiod=MGRP且TSSB=0.5*TSMTCperiod。P为1/{1-TSSB/min(TSMTCperiod,MGRP)},此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机与测量间隙部分重叠(TSMTCperiod<MGRP)。P为1/(1-TSSB/MGRP)*Psharing factor,此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机完全重叠(TSSB=TsMTCperiod)并且SMTC时机与测量间隙部分重叠(TsMTCperiod<MGRP)。
如果RLM-RS、SMTC时机和测量间隙配置的组合不满足先前条件,则可预期更长的评估周期。
表RLM.2-3:FR1的评估周期TEvaluate_out和TEvaluate_in
表RLM.2-4:FR2的评估周期TEvaluate_out和TEvaluate_in
基于CSI-RS的无线电链路监测
每个基于CSI-RS的RLM-RS资源被配置用于PCell和/或PSCell,前提条件是被配置用于RLM的CSI-RS实际上在下文指定的整个评估周期间在UE活动DL BWP内传输。
表RLM.3-1:用于不同步的PDCCH传输参数
表RLM.3-2:用于同步的PDCCH传输参数
UE可能能够评估在最后一个TEvaluate_out_CSI-RS[ms]周期内估计的经配置的RLM-RS资源上的下行链路无线电链路质量是否变得比TEvaluate_out_CSI-RS[ms]评估周期内的阈值Qout_CSI-RS差。类似地,该UE可能能够评估在最后一个TEvaluate_in_CSI-RS[ms]周期内估计的经配置的RLM-RS资源上的下行链路无线电链路质量是否变得比TEvaluate_in_CSI-RS[ms]评估周期内的阈值Qin_CSI-RS好。TEvaluate_out_CSI-RS和TEvaluate_in_CSI-RS在表RLM.3-3中针对FR1来定义。如果被配置用于RLM的CSI-RS在空间上被准共址和时分多址到被配置用于BM的CSI-RS资源或被配置用于BM的SSB,并且该QCL关联是UE已知的,则在表RLM.3-4中针对FR2来定义TEvaluate_out_CSI-RS和TEvaluate_in_CSI-RS,其中N=1。
对于FR1,P=1/(1-TCSI-RS/MGRP),此时在所监测的小区中,存在被配置用于频内测量、频间测量或RAT间测量的测量间隙,这些测量间隙与CSI-RS的一些而非所有时机重叠;以及P=1,此时在所监测的小区中,不存在与CSI-RS的任何时机重叠的测量间隙。
对于FR2,P=1,此时RLM-RS不与测量间隙重叠,也不与SMTC时机重叠。P=1/(1-TCSI-RS/MGRP),此时RLM-RS与测量间隙部分重叠并且RLM-RS不与SMTC时机重叠(TCSI-RS<MGRP)P=1/(1-TCSI-RS/TSMTCperiod),此时RLM-RS不与测量间隙重叠并且RLM-RS与SMTC时机部分重叠(TCSI-RS<TSMTCperiod)。P为Psharing factor,此时RLM-RS不与测量间隙重叠并且RLM-RS与SMTC时机完全重叠(TCSI-RS=TSMTCperiod)。P为1/(1-TCSI-RS/MGRP-TCSI-RS/TSMTCperiod),此时RLM-RS与测量间隙部分重叠,并且RLM-RS与SMTC时机部分重叠(TCSI-RS<TSMTCperiod),并且SMTC时机不与测量间隙重叠,并且TSMTCperiod≠MGRP或者TSMTCperiod=MGRP且TCSI-RS<0.5*TSMTCperiod。P为1/(1-TCSI-RS/MGRP)*Psharing factor,此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机部分重叠(TCSI-RS<TSMTCperiod)并且SMTC时机不与测量间隙重叠并且TSMTCperiod=MGRP且TCSI-RS=0.5*TSMTCperiod。P为1/{1-TCSI-RS/min(TSMTCperiod,MGRP)},此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机部分重叠(TCSI-RS<TSMTCperiod)且SMTC时机与测量间隙部分重叠(TSMTCperiod<MGRP)。P为1/(1-TCSI-RS/MGRP)*Psharing factor,此时RLM-RS与测量间隙部分重叠并且RLM-RS与SMTC时机完全重叠(TCSI-RS=TSMTCperiod)并且SMTC时机与测量间隙部分重叠(TSMTCperiod<MGRP)。如上所述,如果RLM-RS、SMTC时机和测量间隙配置的组合不满足先前条件,则将会预期更长的评估周期。如果被配置用于RLM的CSI-RS资源以密度=3传输,则表RLM.3-3和表RLM.3-4中所用的Mout和Min的值被定义为Mout=20且Min=10。
表RLM.3-3:FR1的评估周期TEvaluate_out和TEvaluate_in
表RLM.3-4:FR2的评估周期TEvaluate_out和TEvaluate_in
L1指示
对于FR1,P=1/(1-TCSI-RS/MGRP),此时在所监测的小区中,测量间隙中可被配置用于频内测量、频间测量或RAT间测量,该测量间隙可能与CSI-RS的一些而非所有时机重叠;以及P=1,此时在所监测的小区中,不存在与CSI-RS的任何时机重叠的测量间隙。
当所有经配置的RLM-RS资源上的下行链路无线电链路质量比Qout差时,UE的层1可将小区的不同步指示发送至更高层。层3滤波器可被应用于不同步指示。当经配置的RLM-RS资源中的至少一个资源上的下行链路无线电链路质量比Qin好时,UE的层1可将小区的同步指示发送至更高层。层3滤波器将被应用于同步指示。可执行针对经配置的RLM-RS资源的不同步评估和同步评估。来自层1的两个连续指示将至少分隔Tindication_interval。当未使用DRX时,Tindication_interval可为max(10ms,TRLM-RS,M),其中TRLM,M为被监测小区的所有经配置的RLM-RS资源的最短周期性,如果RLM-RS资源是SSB,则其对应于TSSB,或者如果RLM-RS资源是CSI-RS,则其对应于TCSI-RS。如果使用DRX,在T310定时器起动时,UE可使用评估周期和对应于非DRX模式的层1指示间隔来监测经配置的RLM-RS资源以用于恢复,直到T310定时器到时或停止。
在无线电链路监测期间调度UE的可用性
当要针对RLM测量的参考信号具有与PDSCH/PDCCH不同的子载波间隔并且在频率范围FR2上时,可能存在对调度可用性的限制,如下所述。
由于以与FR1上的PDSCH/PDCCH相同的子载波间隔执行无线电链路监测,因此可能不存在调度限制。对于支持simultaneousRxDataSSB-DiffNumerology的UE,由于基于将SSB用作为RLM-RS的无线电链路监测,可能不存在对调度可用性的限制。对于不支持simultaneousRxDataSSB-DiffNumerology的UE,可能不期望UE在要被测量用于无线电链路监测的SSB符号上传输PUCCH/PUSCH或接收PDCCH/PDSCH。
当执行带内载波聚合时,由于在FR1服务PCell或PSCell上在相同频带中执行的无线电链路监测,该调度限制可适用于频带上的所有服务小区。当执行FR1内的带间载波聚合时,由于在FR1服务PCell或PSCell上在不同频带中执行的无线电链路监测,因此可能不存在在频带中对FR1服务小区的调度限制。
除了可能或可能不被RRC_CONNECTED模式UE接收的RMSI PDCCH/PDSCH和PDCCH/PDSCH之外,可能不期望UE在要被测量用于无线电链路监测的RLM-RS符号上传输PUCCH/PUSCH或接收PDCCH/PDSCH。
由于在FR2服务PCell和/或PSCell上执行的无线电链路监测,在FR1服务小区上可能不存在调度限制。类似地,由于在FR1服务PCell和/或PSCell上执行的无线电链路监测,在FR2服务小区上可能不存在调度限制。
链路恢复过程
对于服务小区,可通过更高层参数failureDetectionResources为UE提供周期性CSI-RS资源配置索引的集以及通过服务小区上的无线电链路质量测量的更高层参数candidateBeamRSList为UE提供周期性CSI-RS资源配置索引和/或SS/PBCH块索引的集如果UE未被提供更高层参数failureDetectionResources,则UE可确定集包括SS/PBCH块索引和周期性CSI-RS资源配置索引,这些周期性CSI-RS资源配置索引具有与UE使用来监测PDCCH的相应控制资源集的由TCI状态指示的RS集中的RS索引相同的值。UE可期望集包括至多达两个RS索引,并且如果存在两个RS索引,则集可仅包括具有用于对应TCI状态的QCL-TypeD配置的RS索引。UE可期望在集中具有单个端口RS。
阈值Qout,LR可分别对应于更高层参数rlmInSyncOutOfSyncThreshold的默认值和由更高层参数rsrp-ThresholdSSB提供的值。UE中的物理层可据针对阈值Qout,LR的资源配置集来评估无线电链路质量。对于集UE可仅根据周期性CSI-RS资源配置或SS/PBCH块来评估无线电链路质量,这些周期性CSI-RS资源配置或SS/PBCH块与由UE监测的PDCCH接收的DM-RS为准共定位。UE可将Qin,LR阈值应用于从SS/PBCH块获得的L1-RSRP测量。在利用由更高层参数powerControlOffsetSS提供的值来缩放相应CSI-RS接收功率之后,UE可将Qin,LR阈值应用于针对CSI-RS资源获得的L1-RSRP测量。
当UE用于评估无线电链路质量的集中所有对应资源配置的无线电链路质量比阈值Qout,LR差时,UE中的物理层可向更高层提供指示。当无线电链路质量比阈值Qout,LR差时,该物理层可以通知该更高层由UE使用来评估无线电链路质量的集中的周期性CSI-RS配置或SS/PBCH块的最短周期与2msec之间的最大值来确定周期性。
根据更高层的请求,UE可向更高层提供来自集的周期性CSI-RS配置索引和/或SS/PBCH块索引以及大于或等于对应阈值的对应L1-RSRP测量。可通过到由更高层参数recoverySearchSpaceId提供的搜索空间集的链路向UE提供控制资源集以用于监测控制资源集中的PDCCH。如果UE被提供更高层参数recoverySearchSpaceId,则UE可不期望被提供另一搜索空间集以用于监测与由recoverySearchSpaceId提供的搜索空间集相关联的控制资源集中的PDCCH。
该UE可通过更高层参数PRACH-ResourceDedicatedBFR接收用于PRACH传输的配置。对于时隙n中的PRACH传输并且根据与具有由更高层提供的索引qnew的周期性CSI-RS配置或SS/PBCH块相关联的天线端口准共址参数,UE可在由更高层参数recoverySearchSpaceId提供的搜索空间中监测PDCCH,以用于从由更高层参数BeamFailureRecoveryConfig配置的窗口内的时隙n+4开始检测具有由C-RNTI加扰的循环冗余校验(CRC)的DCI格式。对于PDCCH监测和对应的PDSCH接收,UE可假定具有索引qnew的天线端口准共址参数相同,直到UE通过更高层接收到对TCI状态或参数TCI-StatesPDCCH-ToAddlist和/或TCI-StatesPDCCH-ToReleaseList中的任一者的激活。在UE在由recoverySearchSpaceId提供的搜索空间中检测到具有由C-RNTI加扰的CRC的DCI格式之后,UE可监测由recoverySearchSpaceId提供的搜索空间中的PDCCH候选,直到UE接收到针对TCI状态的MAC CE激活命令或更高层参数TCI-StatesPDCCH-ToAddlist和/或TCI-StatesPDCCH-ToReleaseList。如果UE未被提供针对由recoverySearchSpaceId提供的搜索空间集的控制资源集,或者如果UE未被提供recoverySearchSpaceId,则UE可不期望接收到触发PRACH传输的PDCCH命令。
一般来讲,gNB可将UE配置有至多(2、4或8)个无线电链路监测参考信号资源(取决于特殊小区(spCell)的载波频率范围)以测量无线电链路质量。如上所述,RLM-RS资源可以是CSI-RS资源、SSB资源或CSI-RS资源和SSB资源的混合。对于L1评估(此后,UE提供同步(IS)或不同步(OOS)指示),该假设的BLER可用于确定UE是处于同步状态还是不同步状态。如果所配置的RLM-RS资源中的至少一个资源被估计为具有低于可配置阈值的假设BLER,则UE可假定其处于同步状态。另一方面,仅在所有经配置的RLM-RS资源被估计为具有高于另一可配置阈值的假设BLER的情况下,UE才可假定其处于不同步状态。对于非连续接收(DRX)模式,同步评估和不同步评估可以是周期性的,其中该评估为RLM-RS资源配置的10毫秒(ms)或最短周期性中的每个最大值。当UE处于DRX模式时,可按照与在DRX循环数方面的LTE评估类似的方式来执行评估。
无线电接入网络组4(RAN4)规范还定义了其中UE能够评估RLM-RS资源的同步和不同步状态的评估周期。在3GPP版本16(Rel-16)中开始了对未许可频谱的基于NR的接入。然而,3GPP版本15(Rel-15)NR系统被设计为在许可频谱上操作。NR-未许可,对未许可频谱的基于NR的接入的简短表示,是一种使得NR系统能够在未许可频谱上操作的技术。同步和不同步确定的操作具有
在Rel-16中,可针对每个RLM-RS资源评估假设的BLER估计,以检查在评估周期期间每个RLM-RS资源测量是否满足同步或不同步BLER阈值。然而,该基站可遵守先听后说(LBT)或其他基于争用的机制以在未许可频带上提供RLM-RS传输,并允许在未许可频带的信道上进行信道评估。与经许可频带传输不同,如果未许可频带信道被认为繁忙,例如噪声水平高于预先确定的阈值,则可能不会发生基站对RLM-RS资源上的RLM-RS资源样本的传输。在一些情况下,在评估周期期间,由于LBT,基站可能错过未许可频带上一个或多个RLM-RS资源样本的传输。这可能导致UE对RLM-RS资源的假定BLER估计的准确性降低,因为这种估计可能受缺失RLM-RS资源样本的影响。即,由于较少的样本或者由于缺失的样本破坏测量,因此准确度可能受到影响。这可能导致不正确的评估,诸如不同步指示,即使当UE可能处于该RLM-RS资源的覆盖范围内时。另一方面,如果UE L1在评估周期期间不能检测到RLM-RS资源的任何经配置的RLM-RS资源样本时不指示同步或不同步,则不考虑缺失的RLM-RS资源可导致在宣告不同步或从不同步回缩方面的不可接受的延迟。因此,各种无线电链路监测(RLM)和无线电链路失败(RLF)机制可用于补偿由于LBT过程引起的缺失的RLM-RS资源样本。
图3示出了根据一些实施方案的参考信号评估的流程图的示例。当在未许可频带上检测到RLM-RS资源时,UE L1可调整评估以减少缺失的RLM-RS资源样本的性能劣化。在其他实施方案中,当基站使用许可频带来传输RLM-RS资源样本时,可避免该调整。在一些实施方案中,在操作302处,UE L1可在评估周期期间检测RLM-RS资源的RLM-RS资源样本。
在操作304处,UE L1可执行RLM-RS资源的同步和不同步评估。为了执行同步评估和不同步评估,UE L1可确定RLM-RS资源的一个或多个RLM-RS资源样本是否缺失。
如果UE L1确定RLM-RS资源样本未缺失,则UE可在操作308处继续。在操作308中,UE L1可以测量RLM-RS资源样本并确定UE是处于同步还是不同步。UE L1可将该信息提供给较高层,诸如UE RRC层。
如果UE L1确定RLM-RS资源样本缺失,则在操作306处,UE L1可采取多个动作过程中的一个动作。例如,UE L1可考虑缺失的RLM-RS资源样本。具体地讲,如果UE L1可检测到缺失的RLM-RS资源样本已缺失,则在操作306处,对经配置的RLM-RS资源的评估可跳过(不考虑)评估中的那些样本。UE L1可通过能量检测和/或针对缺失的RLM-RS资源样本使用新的BLER阈值来确定RLM-RS资源样本缺失,该新的BLER阈值指示信号水平接近或处于本底噪声。与本底噪声的接近度可例如由3GPP标准设定或由UE实现来决定,例如在本底噪声的5%或10%内。RLM-RS检测可基于检测操作的阈值来执行,该阈值在3GPP规范中是固定的或由网络经由例如专用无线电资源控制(RRC)信令或在系统信息块(SIB)中发信号通知。
在一些情况下,UE可能无法确定RLM-RS传输是缺失还是由于检测不良而未检测到RLM-RS资源样本。因此,代替跳过RLM-RS资源的同步评估和不同步评估,该评估可能仍考虑缺失的RLM-RS资源样本,但提供缺失的RLM-RS资源样本的加权。该加权可取决于例如缺失的RLM-RS资源样本的置信水平(例如,测量结果与本底噪声的接近度)和/或检测周期期间其他RLM-RS资源样本测量的测量结果(以及可能的置信水平)以及其他因素。
另选地或除此之外,在操作306处,在同步和不同步评估期间,如果可以检测到一个或多个缺失的RLM-RS资源样本,则L1可能不考虑在同步和不同步评估中缺失样本的RLM-RS资源。这意味着如果L1不能检测到所有样本,则其可能不提供同步或不同步指示。这可增加UE用于确定UE是否不同步的时间长度。
在一些实施方案中,可基于缺失的RLM-RS资源样本引入新的评估标准,而不忽略缺失的RLM-RS资源样本。新评估标准可包括评估受缺失的RLM-RS资源样本影响的经配置的RLM-RS资源的数量。如果该数量高于某个数量(配置的阈值),则UE L1还可向RRC层发送缺失RS指示。新评估标准可包括较高层(例如RRC或MAC层)对此类缺失RS指示中的连续RS指示的数量进行计数,并且可在考虑或不考虑同步指示和不同步指示的数量的情况下使用该数量来宣告Pcell和/或PSCell的RLF。如果RLF在PCell上,则RRC层可作为响应执行重新建立,或者如果RLF在PSCell或SCell上,则向基站(例如,gNB)发起报告。该报告可由网络用于改变PCell/PSCell的BWP或甚至改变Pcell/PSCell。
另选地或除此之外,与许可频带RLM-RS资源相比,gNB可增加经配置的RLM-RS资源的周期性。因此,在操作306处,UE可在gNB调整该参数之前向gNB传输关于缺失样本的反馈。这可在同步/不同步评估周期内提供数量增加的RLM-RS资源样本。
另选地或除此之外,在操作306处,与许可频带RLM-RS资源相比,gNB可增加经配置的RLM资源的数量。因此,在操作306处,UE可在gNB调整该参数之前向gNB传输关于缺失样本的反馈。这可降低声明不同步的概率,因为不同步声明取决于所有经配置的RLM-RS资源都高于经配置的BLER阈值。
另选地或除此之外,RLM-RS可由gNB配置作为小区发现参考信号(DRS)的一部分。因此,在操作306处,UE可在gNB调整该参数之前向gNB传输关于缺失样本的反馈。该DRS可限于仅在SSB测量定时配置(SMTC)或DRS测量定时配置(DMTC)内传输。也就是说,RLM-RS资源样本不是在RLM-RS检测期内以预定(固定)RLM-RS资源传输的,而是发生在RLM-RS评估周期内的任何时间点。虽然这可增加UE在RLM-RS评估周期期间监听RLM-RS资源样本的时间量,但其可减少缺失的RLM-RS资源样本的数量。
关于NR-U的RLM-RS资源配置的当前讨论持续进行中。增加可用于同步/不同步评估的RLM-RS资源可有助于确保检测同步/不同步状态的准确性。RAN1已同意关于RLM-RS资源的配置的以下内容:配置UE可在其中执行测量的DMTC(DRS测量时间配置)被认为是有益的;此外,用于未许可的SpCell的基于DRS的RLM在DMTC内执行。在这种情况下,RLM DMTC可与DRS传输窗口重合,并且可在DMTC之外执行基于CSI-RS的RLM。
另外,基于DRS中的SSB的针对服务小区RLM测量的RLM测量窗口支持同步和不同步评估。然而,尚未确定:该RLM测量窗口被指示或确定以及与DRS传输窗口的关系的方式;SSB是否可以落在该测量窗口之外,并且如果落在该测量窗口之外,其是否可以用于同步评估和不同步评估;以及基于CSI-RS的RLM测量与测量窗口的关系。如果RLM DMTC本质上是周期性的,则经配置的RLM-RS资源的周期性可随DMTC的周期性而增加。在DMTC之外,这可取决于基于CSI-RS的RLM的配置可如何被配置为允许更多RLM-RS资源。
尽管已参考具体示例性方面描述了一个方面,但显而易见的是,在不脱离本公开的更广泛范围的情况下,可对这些方面作出各种修改和改变。相应地,说明书和附图应被视为具有例示性而非限制性的意义。形成本文一部分的附图以例示性而非限制性的方式示出了可实践主题的具体方面。充分详细地描述了所示的方面,以使本领域的技术人员能够实践本文所公开的教导内容。可从本公开利用和得出其他方面,使得可在不脱离本公开的范围的情况下进行结构替代和逻辑替代及改变。因此,该具体实施方式并没有限制性意义,并且各方面的范围仅由所附权利要求以及此类权利要求被授权的等同物的全部范围来限定。
提供本公开的说明书摘要以符合37C.F.R.§1.72(b),其要求提供将允许读者快速确定技术公开内容的实质的说明书摘要。提供该说明书摘要所依据的认识是该技术公开将不用于解释或限制权利要求的范围或含义。此外,在上述具体实施方式中,可以看到出于简化本公开的目的,将各种特征集中于单个方面中。公开的本方法不应被解释为反映所要求保护的方面需要比每个权利要求中明确记载的特征更多的特征的意图。相反,如以下权利要求所反映的,发明主题在于少于单个公开的方面的所有特征。因此,据此将以下权利要求并入到具体实施方式中,其中每项权利要求如单独的方面那样独立存在。
Claims (20)
1.一种用于无线通信的方法,包括:
在评估周期期间,在未许可频带上在多个无线电链路监测参考信号RLM-RS资源中的每个RLM-RS资源处测量来自基站的RLM-RS资源样本;
确定在所述评估周期期间缺失的RLM-RS资源样本的数量;
评估同步状态;以及
基于在所述评估周期期间缺失的RLM-RS资源样本的数量,确定是否由层1提供同步指示。
2.根据权利要求1所述的方法,
其中,所述RLM-RS资源样本包括同步信号块SSB资源。
3.根据权利要求1所述的方法,
其中,所述RLM-RS资源样本包括信道状态参考信号CSI-RS资源。
4.根据权利要求1所述的方法,
其中,所述RLM-RS资源样本是小区发现参考信号。
5.根据权利要求4所述的方法,
其中,所述小区发现参考信号是在同步信号块测量定时配置内接收的。
6.根据权利要求1-5中任一项所述的方法,
其中,确定在所述评估周期期间缺失的所述RLM-RS资源样本的数量包括:
通过对接近本底噪声的所述RLM-RS资源的能量检测来确定缺失的RLM-RS资源样本的数量。
7.根据权利要求6所述的方法,
其中,所述本底噪声的接近度是在所述本底噪声的5%以内。
8.根据权利要求6所述的方法,
其中,所述本底噪声的接近度是在所述本底噪声的10%以内。
9.根据权利要求1-5中任一项所述的方法,
其中,确定在所述评估周期期间缺失的RLM-RS资源样本的数量包括:
通过能量检测确定缺失的RLM-RS资源样本的数量。
10.根据权利要求9所述的方法,
其中,所述能量检测是基于所述能量检测的阈值的。
11.根据权利要求10所述的方法,
其中,所述阈值由网络发信号通知。
12.根据权利要求10-11中任一项所述的方法,
其中,所述阈值包括在专用无线电资源控制信令中。
13.根据权利要求10-11中任一项所述的方法,
其中所述阈值包括在系统信息块中。
14.根据权利要求1-13中任一项所述的方法,
其中,所述同步指示通过层1提供给更高层。
15.根据权利要求14所述的方法,
其中,所述更高层至少包括无线电资源控制RRC层。
16.根据权利要求1-15中任一项所述的方法,
其中,与许可频带RLM-RS资源样本相比,所述RLM-RS资源样本具有增加的周期性。
17.根据权利要求1-16中任一项所述的方法,
其中,与许可频带RLM-RS资源样本相比,所述RLM-RS资源样本在所述评估周期期间具有更大的数量。
18.根据权利要求1-17中任一项所述的方法,还包括:
确定缺失的RLM-RS资源样本的数量大于预定数量;
将缺失的参考信号指示从层1发送到无线电资源控制RRC层;和
由所述RRC层基于来自层1的连续缺失的RS指示的数量,确定是否宣告主小区或主辅小区的无线电链路失败。
19.一种用于无线通信的装置,包括:
存储器,和
与所述存储器通信的处理电路,其中所述处理电路被配置为执行根据权利要求1-18中任一项所述的方法。
20.一种非暂态计算机可读存储介质,存储由用户设备UE的一个或多个处理器执行的指令,所述一个或多个处理器在所述指令被执行时将所述UE配置为执行根据权利要求1-18中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862737480P | 2018-09-27 | 2018-09-27 | |
US62/737,480 | 2018-09-27 | ||
CN201980060911.4A CN112740577B (zh) | 2018-09-27 | 2019-09-16 | 针对新空口未许可操作的无线电链路监测和失败 |
PCT/US2019/051321 WO2020068472A1 (en) | 2018-09-27 | 2019-09-16 | Radio link monitoring and failure for new radio-unlicensed operation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980060911.4A Division CN112740577B (zh) | 2018-09-27 | 2019-09-16 | 针对新空口未许可操作的无线电链路监测和失败 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115134851A true CN115134851A (zh) | 2022-09-30 |
Family
ID=69949783
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210773632.6A Pending CN115134851A (zh) | 2018-09-27 | 2019-09-16 | 针对新空口未许可操作的无线电链路监测和失败 |
CN201980060911.4A Active CN112740577B (zh) | 2018-09-27 | 2019-09-16 | 针对新空口未许可操作的无线电链路监测和失败 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980060911.4A Active CN112740577B (zh) | 2018-09-27 | 2019-09-16 | 针对新空口未许可操作的无线电链路监测和失败 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220061116A1 (zh) |
EP (2) | EP3827530B1 (zh) |
CN (2) | CN115134851A (zh) |
WO (1) | WO2020068472A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10538487B2 (en) | 2015-02-16 | 2020-01-21 | The University Of Queensland | Sulfonylureas and related compounds and use of same |
US20200107337A1 (en) * | 2018-09-28 | 2020-04-02 | Mediatek Inc. | Measurement for Layer-1 Reference Signal Received Power (L1-RSRP) |
WO2020092363A1 (en) * | 2018-11-02 | 2020-05-07 | Intel Corporation | Rlm enhancements for 5g networks |
US11457376B2 (en) * | 2019-02-01 | 2022-09-27 | Qualcomm Incorporated | Robust radio link monitoring framework for unlicensed spectrum |
US12192926B2 (en) * | 2019-08-15 | 2025-01-07 | Lenovo (Singapore) Pte. Ltd. | Method and apparatus for reference signals in a measurement window |
US11764851B2 (en) * | 2019-08-16 | 2023-09-19 | Qualcomm Incorporated | Evaluation period for beam failure detection and candidate beam detection in multi-beam NR-U |
US11979904B2 (en) * | 2019-10-04 | 2024-05-07 | Intel Corporation | Detection of listen before talk failure during radio link monitoring |
CN113518370B (zh) * | 2020-04-10 | 2024-11-15 | 华为技术有限公司 | 一种移动性测量方法、装置及通信设备 |
WO2021217591A1 (en) * | 2020-04-30 | 2021-11-04 | Qualcomm Incorporated | Management of unstable standalone communications |
WO2022080362A2 (en) * | 2020-10-12 | 2022-04-21 | Toyota Jidosha Kabushiki Kaisha | Feedback enhancement for multicast broadcast services |
WO2023014566A1 (en) * | 2021-08-02 | 2023-02-09 | Idac Holdings, Inc. | Enabling positioning in unlicensed spectrum |
CN118249934B (zh) * | 2024-05-29 | 2024-08-30 | 南京创芯慧联技术有限公司 | 无线链路质量监测方法、装置、通信设备和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104509018A (zh) * | 2012-08-09 | 2015-04-08 | 高通股份有限公司 | 用于在长期演进(lte)系统中的新载波类型(nct)中进行无线电链路监视的方法和装置 |
CN105814928A (zh) * | 2013-12-11 | 2016-07-27 | 高通股份有限公司 | 无执照频谱中的载波侦听自适应传输(csat)通信方案检测和缓解 |
WO2018084798A1 (en) * | 2016-11-04 | 2018-05-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Reuse of mobility reference signals to perform radio link monitoring in a beam-based system |
WO2018102650A1 (en) * | 2016-12-01 | 2018-06-07 | Qualcomm Incorporated | Access terminal radio link monitoring (rlm) on a shared communication medium |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8712401B2 (en) * | 2010-04-16 | 2014-04-29 | Qualcomm Incorporated | Radio link monitoring (RLM) and reference signal received power (RSRP) measurement for heterogeneous networks |
GB2507570A (en) * | 2012-11-05 | 2014-05-07 | Broadcom Corp | Providing enhanced Radio Link Monitoring |
EP2963989A1 (en) * | 2014-07-04 | 2016-01-06 | Sequans Communications S.A. | LTE transmission in unlicensed bands |
US10009925B2 (en) * | 2014-10-03 | 2018-06-26 | Qualcomm Incorporated | Physical layer procedures for LTE in unlicensed spectrum |
US10624090B2 (en) * | 2015-03-09 | 2020-04-14 | Lg Electronics Inc. | Method and apparatus for communication through subframe occupied by unlicensed frequency |
US20160302230A1 (en) * | 2015-04-10 | 2016-10-13 | Samsung Electronics Co., Ltd | Methods and apparatus for rrm measurement on unlicensed spectrum |
WO2016186406A1 (ko) * | 2015-05-16 | 2016-11-24 | 주식회사 윌러스표준기술연구소 | 비인가 대역에서 신호 전송 방법, 장치 및 시스템 |
WO2017092810A1 (en) * | 2015-12-03 | 2017-06-08 | Nokia Solutions And Networks Oy | Radio link quality estimation |
US10212619B2 (en) * | 2016-06-30 | 2019-02-19 | Qualcomm Incorporated | Managing secondary cell connections in unlicensed spectrum |
US10278088B2 (en) * | 2016-07-22 | 2019-04-30 | Qualcomm Incorporated | Channel estimation enhancement |
JP2018026662A (ja) * | 2016-08-09 | 2018-02-15 | ソニー株式会社 | 通信装置、通信方法、及びプログラム |
JP6804649B2 (ja) * | 2017-02-06 | 2020-12-23 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて端末の無線リンクモニタリングを行う方法及びそれをサポートする装置 |
US10506659B2 (en) * | 2017-03-23 | 2019-12-10 | Kt Corporation | Method for processing radio link failure and apparatus therefor |
US11469945B2 (en) * | 2017-04-03 | 2022-10-11 | Qualcomm Incorporated | Dynamic bandwidth configuration in narrowband communication |
US10455457B2 (en) * | 2017-05-24 | 2019-10-22 | Qualcomm Incorporated | NR-SS unified operation mode in coordinated and uncoordinated bands |
US11064424B2 (en) * | 2017-07-25 | 2021-07-13 | Qualcomm Incorporated | Shared spectrum synchronization design |
WO2019139254A1 (ko) * | 2018-01-12 | 2019-07-18 | 엘지전자 주식회사 | 복수의 수신 빔을 사용하여 측정을 수행하는 방법 및 사용자 장치 |
CN111742516B (zh) * | 2018-02-16 | 2024-04-23 | 联想(新加坡)私人有限公司 | 与带宽部分相对应的资源 |
CN110611933B (zh) * | 2018-06-15 | 2021-06-01 | 维沃移动通信有限公司 | 一种链路质量监测方法及终端 |
JP7454550B2 (ja) * | 2018-08-08 | 2024-03-22 | インターデイジタル パテント ホールディングス インコーポレイテッド | Nr-u用の無線リンク監視および無線リソース管理測定プロシージャ |
-
2019
- 2019-09-16 US US17/275,404 patent/US20220061116A1/en active Pending
- 2019-09-16 EP EP19864471.8A patent/EP3827530B1/en active Active
- 2019-09-16 CN CN202210773632.6A patent/CN115134851A/zh active Pending
- 2019-09-16 EP EP23172311.5A patent/EP4246859B1/en active Active
- 2019-09-16 CN CN201980060911.4A patent/CN112740577B/zh active Active
- 2019-09-16 WO PCT/US2019/051321 patent/WO2020068472A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104509018A (zh) * | 2012-08-09 | 2015-04-08 | 高通股份有限公司 | 用于在长期演进(lte)系统中的新载波类型(nct)中进行无线电链路监视的方法和装置 |
CN105814928A (zh) * | 2013-12-11 | 2016-07-27 | 高通股份有限公司 | 无执照频谱中的载波侦听自适应传输(csat)通信方案检测和缓解 |
WO2018084798A1 (en) * | 2016-11-04 | 2018-05-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Reuse of mobility reference signals to perform radio link monitoring in a beam-based system |
WO2018102650A1 (en) * | 2016-12-01 | 2018-06-07 | Qualcomm Incorporated | Access terminal radio link monitoring (rlm) on a shared communication medium |
Also Published As
Publication number | Publication date |
---|---|
CN112740577A (zh) | 2021-04-30 |
CN112740577B (zh) | 2022-07-12 |
WO2020068472A1 (en) | 2020-04-02 |
EP4246859B1 (en) | 2025-04-09 |
EP4246859A2 (en) | 2023-09-20 |
EP3827530B1 (en) | 2023-05-10 |
EP3827530A4 (en) | 2021-11-17 |
US20220061116A1 (en) | 2022-02-24 |
EP3827530A1 (en) | 2021-06-02 |
EP4246859A3 (en) | 2024-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112740577B (zh) | 针对新空口未许可操作的无线电链路监测和失败 | |
US20240397422A1 (en) | Methods and apparatus for rrm measurement and paging reliability using low power wake-up receiver for wireless systems | |
CN110476442B (zh) | 用于无线通信的覆盖增强模式切换 | |
US20240129841A1 (en) | Cell detection, identification, and measurements for small cell deployments | |
CN112075120B (zh) | 用于处理非许可频带中的信道接入故障的方法和设备 | |
CN110089187B (zh) | 共享通信介质上的自主上行链路传输 | |
AU2017253938B2 (en) | Enhanced discontinuous reception design for a shared frequency band | |
US10993151B2 (en) | Cell switching for discontinuous transmission (DTX) in shared spectrum | |
CN109923924B (zh) | 用于共享或非授权频谱中的延迟减小的方法和装置 | |
EP3846573B1 (en) | Method and device for processing channel access failure in unlicensed band | |
JP2022501874A (ja) | ワイヤレス送信/受信ユニット(wtru)の電力制御のための方法および装置 | |
EP3216289B1 (en) | Transmission of discovery reference signals on unlicensed carrier in a wireless network | |
JP2021523632A (ja) | チャネル化および帯域幅パート(bwp) | |
EP3837914B1 (en) | Flexible synchronous and asynchronous access procedure | |
CN112956255B (zh) | 新无线电未许可频谱中的寻呼用户装备 | |
JP2023512676A (ja) | より高い周波数における電力の効率的な測定 | |
CN112703789B (zh) | Nr非许可频谱中的ue寻呼 | |
CN112005589A (zh) | 移动终端的位置测量系统 | |
CN108141740A (zh) | 用于eMTC设计方案考量的D2D通信 | |
US20220030455A1 (en) | Event-based adaption of ue measurements | |
CN114175749A (zh) | 断续接收唤醒技术 | |
JP7648851B2 (ja) | 無線システムにおける無線リンク監視要件を緩和する方法 | |
CN113938942A (zh) | 侧行链路监测的方法和设备 | |
EP4030835A1 (en) | User equipment and base station involved in paging | |
JP2025507330A (ja) | サイドリンク未認可チャネルアクセスのための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |