CN115134541A - High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode - Google Patents
High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode Download PDFInfo
- Publication number
- CN115134541A CN115134541A CN202210699481.4A CN202210699481A CN115134541A CN 115134541 A CN115134541 A CN 115134541A CN 202210699481 A CN202210699481 A CN 202210699481A CN 115134541 A CN115134541 A CN 115134541A
- Authority
- CN
- China
- Prior art keywords
- transistor
- point
- charge
- voltage
- charge compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体光电方向图像传感器领域,具体为一种同时具有高低增益和对数响应的高动态CMOS图像传感器,以及与其相对应的时序控制方法和读取方式。The invention belongs to the field of semiconductor photoelectric directional image sensors, in particular to a high dynamic CMOS image sensor with both high and low gain and logarithmic response, as well as a timing control method and a reading method corresponding thereto.
背景技术Background technique
动态范围是评价CMOS图像传感器的一项重要指标,表示CMOS图像传感器能够在同一帧图像中同时探测到的最大光强信号和最小光强信号的范围,动态范围越大所获得图像的灰度细节等级就越高。随着集成电路技术的不断发展,CMOS图像传感器已经被广泛应用于图像传感领域。普通的CMOS图像传感器动态范围只能达到60~70dB,然而在汽车影像、安防监控、军事、自动化光学检测等领域中,环境光的范围可达到100dB以上,普通的CMOS图像传感器已经无法满足实际场景成像要求。The dynamic range is an important indicator for evaluating CMOS image sensors, which indicates the range of the maximum light intensity signal and the minimum light intensity signal that the CMOS image sensor can detect simultaneously in the same frame of image. The larger the dynamic range, the grayscale details of the obtained image. The higher the level. With the continuous development of integrated circuit technology, CMOS image sensors have been widely used in the field of image sensing. The dynamic range of ordinary CMOS image sensors can only reach 60-70dB. However, in the fields of automotive imaging, security monitoring, military, and automated optical detection, the range of ambient light can reach more than 100dB, and ordinary CMOS image sensors can no longer meet the actual scene. Imaging requirements.
得到广泛应用的高动态CMOS图像传感器采用的是具有高低增益的像素结构,如图1所示。该像素结构由钳位光电二极管1、电荷转移控制晶体管2、复位晶体管3、高动态范围晶体管4、源极跟随器5、行选晶体管6组成,2-6均为标准NMOS晶体管。工作时序如图2所示,首先进行复位操作,2、3、4晶体管全部导通一次;然后像素进入积分阶段,积分结束之前再对FD点进行一次复位操作,分别读取低增益复位值RST_L和高增益复位值RST_H;接下来,积分结束,电荷转移控制晶体管2导通,将钳位光电二极管1产生的光生电荷转移到FD点,得到高增益信号电压SIG_H;然后电荷转移控制晶体管2和高动态范围晶体管4再同时导通,此时读取低增益信号值SIG_L。在高动态范围晶体管4导通期间,FD点与FDL点相连,相当于增大了FD点的电容,可以容纳更多来自于钳位光电二极管1的光生电荷,从而提高了像素的动态范围。通过两次电荷转移分别获得高低增益的方法可以使得像素的动态范围扩大20~30dB,从而总动态范围接近或达到90dB。The widely used high dynamic CMOS image sensor adopts the pixel structure with high and low gain, as shown in Figure 1. The pixel structure is composed of a
具有高低增益结构的高动态像素,虽然通过两次电荷转移提高了动态范围,但由于像素面积、填充比的限制,钳位光电二极管阱容量有限,当光强过强,或者积分时间较长时,积分时间内钳位光电二极管达到满阱,将不能容纳更多的电荷,从而限制了图像传感器的动态范围。High dynamic pixels with high and low gain structure, although the dynamic range is improved by two charge transfer, but due to the limitation of pixel area and filling ratio, the well capacity of the clamped photodiode is limited, when the light intensity is too strong, or when the integration time is long , the clamped photodiode reaches full well during the integration time and will not be able to hold more charges, thus limiting the dynamic range of the image sensor.
此外,还有采用多级横向溢出栅、双光电二极管、二极管连接的对数模式等扩展动态范围的方式,以上方法存在需要特殊工艺制造大电容、电路结构复杂、像素面积大且不适用于大面阵图像传感器、弱光下暗电流大信噪比差等缺点。In addition, there are also ways to extend the dynamic range, such as multi-level lateral overflow gates, dual photodiodes, and diode-connected logarithmic modes. The above methods require special processes to manufacture large capacitors, complex circuit structures, and large pixel areas, and are not suitable for large Disadvantages of area array image sensor, large dark current under low light, and poor signal-to-noise ratio.
发明内容SUMMARY OF THE INVENTION
本发明涉及一种同时具有高低增益和对数响应的高动态CMOS图像传感器,以及与之相应的时序控制方法和读取方式。本发明的目的在于在传统基于高低增益的高动态像素结构基础上,对复位晶体管和高动态范围晶体管额外进行一次离子注入,调整这两个NMOS管的阈值电压低于正常值,这两个晶体管共同构成了本发明所提出的电荷补偿元件。电荷补偿元件在超强光照下或者超长积分时间时工作在亚阈值区域,可向FD点注入电荷,用以补偿钳位光电二极管溢出到FD点的光生电荷,避免因钳位光电二极管达到满阱而导致的信号饱和,从而实现拓展动态范围。本发明利用了在不同光强下电荷补偿元件分别工作在截止区和亚阈值区的原理:在一定积分时间下(如10ms),在弱光(0.0001lux到0.1lux)和强光(0.1lux~10lux)下电荷补偿元件处于截止区,无导通电流,此时本发明的像素结构与具有高低增益结构的高动态像素技术功能相同,因此在弱光下具有很强的探测能力;在超强光(超过10lux)下电荷补偿元件工作在亚阈值区,利用亚阈值区晶体管电流电压为对数关系的特性实现对光生电荷的补偿,因此可在超高光强下成像。本发明在一次曝光下可以获得多幅相同积分时间的图像,对应弱光、强光和超强光,多幅图像即可合成一幅具有超高动态范围的图像。本发明同样利用了不同积分时间下电荷补偿元件分别工作在截止区和亚阈值区的原理:当像素结构处于一定光强(如10lux)下,当积分时间很短时(如100μs),电荷补偿元件处于截止区,无导通电流,此时本发明的像素结构与前述技术功能相同,因此在一定光强下积分时间较短时仍具有很强的成像能力;当积分时间很长时(如10ms),钳位光电二极管达到满阱,电荷补偿元件工作在亚阈值区,利用亚阈值区晶体管的电流电压为对数关系的特性实现对光生电荷的补偿。此时,输出信号与光强的对数成正比,与积分时间无关。The invention relates to a high dynamic CMOS image sensor with high and low gain and logarithmic response at the same time, and a timing control method and reading method corresponding to it. The purpose of the present invention is to perform an additional ion implantation on the reset transistor and the high dynamic range transistor on the basis of the traditional high and low gain based high dynamic pixel structure to adjust the threshold voltage of the two NMOS transistors to be lower than the normal value. Together they constitute the charge compensation element proposed by the present invention. The charge compensation element works in the sub-threshold region under super strong illumination or super long integration time, and can inject charges into the FD point to compensate for the photo-generated charge overflowing from the clamp photodiode to the FD point to avoid the clamp photodiode reaching full capacity. signal saturation caused by the trap, thus achieving extended dynamic range. The invention utilizes the principle that the charge compensation element works in the cut-off region and the sub-threshold region respectively under different light intensities: under a certain integration time (such as 10ms), under weak light (0.0001lux to 0.1lux) and strong light (0.1lux) ~10lux), the charge compensation element is in the cut-off region, and there is no on-current. At this time, the pixel structure of the present invention has the same function as the high-dynamic pixel technology with high and low gain structure, so it has strong detection ability under weak light; Under strong light (over 10 lux), the charge compensation element works in the sub-threshold region, and the photo-generated charge can be compensated by using the characteristic that the transistor current and voltage in the sub-threshold region have a logarithmic relationship, so imaging can be performed under ultra-high light intensity. The present invention can obtain multiple images with the same integration time under one exposure, corresponding to weak light, strong light and super strong light, and the multiple images can be synthesized into an image with ultra-high dynamic range. The invention also utilizes the principle that the charge compensation elements work in the cut-off region and the sub-threshold region respectively under different integration times: when the pixel structure is under a certain light intensity (such as 10 lux), when the integration time is very short (such as 100 μs), the charge compensation The element is in the cut-off region and has no on-current. At this time, the pixel structure of the present invention has the same function as the aforementioned technology, so it still has a strong imaging ability when the integration time is short under a certain light intensity; when the integration time is very long (such as 10ms), the clamping photodiode reaches full well, the charge compensation element works in the sub-threshold region, and the compensation of the photo-generated charge is realized by using the characteristic that the current and voltage of the transistor in the sub-threshold region are logarithmic. At this time, the output signal is proportional to the logarithm of the light intensity and has nothing to do with the integration time.
本发明的技术方案:Technical scheme of the present invention:
一种同时具有高低增益和对数响应的高动态CMOS图像传感器,结构如图3所示。像素结构包括钳位光电二极管1、电荷转移控制晶体管2、新型复位晶体管7、新型高动态范围晶体管8、源极跟随器5和行选晶体管6。新型复位晶体管7、新型高动态范围晶体管8共同构成本发明所述电荷补偿元件9。A high dynamic CMOS image sensor with both high and low gain and logarithmic response, the structure is shown in Figure 3. The pixel structure includes a
钳位光电二极管1作为光电探测元件,能够把接收的光信号转换为电信号并积累光生电荷,钳位光电二极管1的P端接GND,N端接电荷转移控制晶体管2的源极。电荷转移控制晶体管2用于将钳位光电二极管1中积累的光生电荷转移到FD点,电荷转移控制晶体管2的栅极的控制信号TX来自于图像传感器系统中的行控制模块,漏极连接到FD点。电荷补偿元件9包括新型复位晶体管7、新型高动态范围晶体管8,其中新型复位晶体管7的漏极接Vpix电位,源极连接到新型高动态范围晶体管8的漏极,新型高动态范围晶体管8的源极连接到FD点。新型复位晶体管7和新型高动态范围晶体管8共同构成的电荷补偿元件9的栅极控制信号RST和HDR来自于行控制模块,该元件弱光和强光下工作在截止区,超强光或者超长积分时间时工作在亚阈值区,以此来增加图像传感器的动态范围。源极跟随器5和行选晶体管6用于将像素信号输出到后续读出电路,源极跟随器5的栅极与FD点相连,漏极接至VDD,源极与行选晶体管6的漏极相连。行选晶体管6的栅端的控制信号SEL来自于行控制模块,源极与列总线相连,用于将像素的信号值输出到图像传感器系统的后续读出电路中。The
所述的电荷转移控制晶体管2、源极跟随器5和行选晶体管6均采用标准NMOS晶体管工艺制造而成。The charge
所述的新型复位晶体管7、新型高动态范围晶体管8是在标准工艺基础上进行了一次额外的离子注入,用来调整晶体管的阈值电压,使其阈值电压低于正常值,故二者共同构成了所述的电荷补偿元件9。该元件在超强光下或者长时间积分时工作在亚阈值区域,可以向FD点注入电荷补偿钳位光电二极管1溢出到FD点的光生电荷,避免因钳位光电二极管达到满阱而导致信号饱和。利用亚阈值区晶体管电流电压为对数关系的特性,从而在弱光和强光的线性响应基础上获得对数响应,极大的扩展了图像传感器的动态范围。The new reset transistor 7 and the new high
一种同时具有高低增益和对数响应的高动态CMOS图像传感器的时序控制方法和读取方式如图4所示,具体步骤如下:A timing control method and reading method of a high dynamic CMOS image sensor with both high and low gain and logarithmic response are shown in Figure 4, and the specific steps are as follows:
步骤一,复位操作。
首先像素进入复位状态,电荷转移控制晶体管2、电荷补偿元件9同时导通一次,钳位光电二极管1中的电荷被清空,FD点电压被复位到Vpix。First, the pixel enters the reset state, the charge
步骤二,积分操作。
复位操作结束后,电荷转移控制晶体管2和电荷补偿元件9的栅极控制信号电压分别下降到VTXL和VRL,像素进入积分阶段,钳位光电二极管1内开始积累光生电荷。After the reset operation, the gate control signal voltages of the charge
1)弱光或者强光下曝光时间不够长时,钳位光电二极管1中产生的光生电荷小于等于钳位光电二极管1的满阱容量,光生电荷全部积累在钳位光电二极管1中,不会有多余的光生电荷通过电荷转移控制晶体管2流向FD点,因此积分时间内FD点电压不会发生变化。电荷补偿元件9的栅源电压VGS远远小于阈值电压,因此电荷补偿元件9工作于截止区,没有电流流向FD点。1) When the exposure time is not long enough under weak light or strong light, the photo-generated charge generated in the
2)随着光强的增加或者积分时间的延长,积分过程中钳位光电二极管1中积累的光生电荷会超过自身的满阱容量,多余的光生电荷会通过电荷转移控制晶体管2流到FD点,构成过溢电流IOV,该电流与钳位光电二极管1所生成的光生电流Iph相等,2) With the increase of the light intensity or the extension of the integration time, the photo-generated charges accumulated in the
IOV=Iph=ηRPin I OV =I ph =ηRP in
其中,η、R、Pin分别是钳位光电二极管1的量子效率、响应率和入射光功率;该电流使得FD点的电压下降,电压变化值ΔVFD与积分时间t成正比,Among them, η, R, and P in are the quantum efficiency, responsivity and incident light power of the clamped
ΔVFD=ηRPin·tΔV FD =ηRP in ·t
由于此时光强不够大,因此一定积分时间内,流到FD点的光生电荷有限,FD点的电压不会下降很多,电荷补偿元件9内部两个晶体管都处于关闭状态,工作状态不发生改变。此时体现为FD点电压变化与光强成正比。FD的电压值通过源极跟随器5、行选晶体管6及后续电路读出,作为对数模式的线性信号值LOG_S1。Since the light intensity is not large enough at this time, the photogenerated charge flowing to the FD point is limited within a certain integration time, and the voltage at the FD point will not drop a lot. At this time, it is reflected that the voltage change at the FD point is proportional to the light intensity. The voltage value of the FD is read out through the
3)当光强过强,或者积分时间较长时,钳位光电二极管1中积累的光生电荷远远超过自身的满阱容量,过多的光生电荷会通过电荷转移控制晶体管2流到FD点并且积累在FD点,产生持续的光生过溢电流IOV,导致FD点电压持续下降,使得电荷补偿元件9的VGS持续增高。由于电荷补偿元件9内部晶体管是在标准工艺的基础上进行了一次额外的离子注入,其阈值电压低于正常值,此时VGS值接近该阈值电压,使得电荷补偿元件9从截止区进入到亚阈值工作区域,导致有电流从Vpix流入FD点。该电流可以抵消从钳位光电二极管1流入到FD点的过溢电流IOV,因此被称为电荷补偿电流IC。如果光强足够强或者积分时间足够长时,光生过溢电流IOV与电荷补偿电流IC达到平衡状态,则FD点电压将不再随积分时间变化。此时,电荷补偿元件9工作在亚阈值区,电荷补偿电流IC如下式:3) When the light intensity is too strong or the integration time is long, the photo-generated charge accumulated in the
其中,IS是具有电流量纲的常量、VRST是电荷补偿元件9的栅极电压、VFD是FD点的电压、VTH是电荷补偿元件9的阈值电压、m是亚阈值斜率因子、VT是热电压。where IS is a constant having a current dimension, V RST is the gate voltage of the
在平衡后,电荷补偿电流与光生过溢电流相等,After balancing, the charge compensation current is equal to the photogenerated overflow current,
IOV=IC=ηRPin I OV = I C = ηRP in
可以得到VFD表达式: The VFD expression can be obtained:
根据上式可知,此时FD点的电压值变化与入射光强的对数成正比。该电压可通过源极跟随器5、行选晶体管6及后续电路读出,作为对数模式的信号值LOG_S2。According to the above formula, the change of the voltage value at the FD point at this time is proportional to the logarithm of the incident light intensity. This voltage can be read out by the
积分结束之前,再对FD点进行一次复位操作,电荷补偿元件9内部新型复位晶体管7、新型高动态范围晶体管8分别导通,在新型高动态范围晶体管8的栅极控制信号HDR为高电平VHDRH时,FD点电压作为低增益的复位值RST_L,可通过源极跟随器5、行选晶体管6及后续电路读出;随后HDR信号电压降为VRL,FD点电压作为高增益的复位值RST_H,可通过源极跟随器5、行选晶体管6及后续电路读出。至此像素电路积分阶段结束。Before the integration ends, perform a reset operation on the FD point again, the new reset transistor 7 and the new high
步骤三,第一次电荷转移过程。Step 3, the first charge transfer process.
首先,电荷转移控制晶体管2导通,在电势差的作用下,钳位光电二极管1中积累的光生电荷通过电荷转移控制晶体管2转移到FD点。此时读取FD点的高增益信号值SIG_H,该电压可通过源极跟随器5、行选晶体管6及后续电路读出。First, the charge
步骤四,第二次电荷转移过程。
第一次电荷转移之后将新型高动态范围晶体管8开启,FD和FDL点短接,期间电荷转移控制晶体管2再次导通,钳位光电二极管1中剩余的光生电荷通过电荷转移控制晶体管2继续转移到FD和FDL点。读取FD点电压值为低增益的信号值SIG_L,该电压可通过源极跟随器5、行选晶体管6及后续电路读出。After the first charge transfer, the new high
本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器,其像素的输入光强与输出信号的关系如图5所示。在一定积分时间下,根据入射光强大小,高动态像素可分为4种工作状态:状态1(HG)和状态2(LG)为线性区域,二者的差别在于状态1对应输入光强最弱,这时由于像素的新型高动态范围晶体管8关闭,FD点电容值很小,像素的CVG(电荷-电压转换增益)较大,从而在弱光下可以得到非常高的信噪比。状态2对应强光,此时新型高动态范围晶体管8开启,像素的CVG较小,增大了满阱容量。状态3为状态2和状态4的过渡部分,此时输出信号仍与光强成正比。超强光下像素工作在状态4,电荷补偿元件9工作在亚阈值区,从钳位光电二极管流向FD的电流与电荷补偿元件9形成的补偿电流达到平衡,使输出信号与输入光强的对数成正比,从而扩大了动态范围。在一定积分时间下(如10ms),状态1对应光强范围为0.0001lux量级~0.1lux量级,状态2的光强范围为0.1lux量级~10lux量级,状态3的光强范围仍维持10lux量级,状态4的光强范围为10lux量级~10000lux量级以上。由此可见,采用本发明所述的电荷补偿元件9以及控制时序和信号读取方式,可在一帧成像下输出具有相同曝光时间的4幅图片,分别针对弱光、强光和超强光。与传统采用高低增益提高动态范围的方法相比,本发明除对应弱光和强光的状态1和状态2,还增加了状态3和4,其中状态3是过渡状态,输入光强变化不超过1个数量级,而状态4对应超强光,此时由于本发明所述的电荷补偿元件9工作在亚阈值,使得像素输出信号与光强对数成正比,极大地提高了图像传感器的动态范围,可在传统采用高低增益提高动态范围的基础上,再增加至少60dB的动态范围。For the high dynamic CMOS image sensor with both high and low gain and logarithmic response according to the present invention, the relationship between the input light intensity of the pixel and the output signal is shown in FIG. 5 . Under a certain integration time, according to the intensity of incident light, high dynamic pixels can be divided into four working states: state 1 (HG) and state 2 (LG) are linear regions, the difference between them is that
本发明的有益效果:Beneficial effects of the present invention:
(1)与传统的基于高低增益的高动态图像传感器像素结构相比较,本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器,不改变像素电路结构,通过电荷补偿元件增加一次额外的离子注入,降低构成电荷补偿元件的复位晶体管和高动态范围晶体管的阈值电压,使得在光强过强或积分时间过长时电荷补偿元件工作在亚阈值区域。此时,电荷补偿元件产生的补偿电流,与栅源电压成指数关系,会补偿经电荷转移控制晶体管流到FD点的光生过溢电流。随着光强的加大或积分时间的增加,两个电流会达到平衡,这时FD点电压将不再随积分时间变化,其电压值与入射光强的对数成正比,从而极大地拓展了图像传感器的动态范围。(1) Compared with the traditional high-low gain based high-dynamic image sensor pixel structure, the high-dynamic CMOS image sensor with high and low gain and logarithmic response described in the present invention does not change the pixel circuit structure, and increases through the charge compensation element. An additional ion implantation reduces the threshold voltage of the reset transistor and the high dynamic range transistor that constitute the charge compensation element, so that the charge compensation element operates in the sub-threshold region when the light intensity is too strong or the integration time is too long. At this time, the compensation current generated by the charge compensation element has an exponential relationship with the gate-source voltage, which will compensate the photo-generated overflow current flowing to the FD point through the charge transfer control transistor. With the increase of the light intensity or the increase of the integration time, the two currents will reach a balance. At this time, the voltage at the FD point will no longer change with the integration time, and its voltage value is proportional to the logarithm of the incident light intensity, thus greatly expanding the the dynamic range of the image sensor.
(2)与现有的图像传感器提高动态范围的方式相比,本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器像素结构,电路结构简单,通过阈值调整注入,使电荷补偿元件在超强光下或长时间曝光下工作在亚阈值区域,实现输入光强与输出信号的对数响应。可以在一帧下对具有不同光强照度的物体同时获取对数模式、高增益、低增益等多幅图像,这几幅图像具有相同的曝光时间,实现了基于双光电二极管结合不同积分时间技术的高动态图像传感器所无法探测的LED闪烁效应。(2) Compared with the way of improving the dynamic range of the existing image sensor, the pixel structure of the high dynamic CMOS image sensor with both high and low gain and logarithmic response described in the present invention has a simple circuit structure. The compensation element works in the sub-threshold region under super-intensive light or long-time exposure, and realizes the logarithmic response of the input light intensity and the output signal. Multiple images in logarithmic mode, high gain, low gain, etc. can be simultaneously acquired for objects with different light intensities under one frame. These images have the same exposure time, realizing the technology based on dual photodiodes combined with different integration times. LED flickering effect that cannot be detected by the high dynamic image sensor.
(3)与传统的实现高动态范围的图像传感器像素结构相比,本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器像素结构,在弱光和强光时为线性响应,信噪比与基于钳位光电二极管的传统4T像素结构相同,具有超强的弱光探测能力;同时在超强光时具有对数响应,输出信号不随光强变大而饱和,可将动态范围拓展3~4个数量级。(3) Compared with the traditional image sensor pixel structure that realizes high dynamic range, the high dynamic CMOS image sensor pixel structure with both high and low gain and logarithmic response according to the present invention has a linear response in weak light and strong light , the signal-to-noise ratio is the same as that of the traditional 4T pixel structure based on the clamp photodiode, and it has super weak light detection ability; at the same time, it has a logarithmic response under super strong light, and the output signal does not saturate with the increase of light intensity, which can change the dynamic The range is extended by 3 to 4 orders of magnitude.
(4)与传统的实现高动态范围的图像传感器像素结构相比,本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器像素结构根据入射光强区间可以分为4个工作状态,分别是线性高增益、线性低增益、对数线性和对数响应,分别对应弱光、强光、强光与超强光过渡,以及超强光。经后续读出电路对信号放大和模数转换后,4个状态的数字输出信号都包含了充足的信息量。将这4个状态的输出结果进行融合,可得到同时保留从弱光到超强光下图像所有细节的高动态范围图像。(4) Compared with the traditional image sensor pixel structure that realizes high dynamic range, the high dynamic CMOS image sensor pixel structure with both high and low gain and logarithmic response according to the present invention can be divided into 4 tasks according to the incident light intensity interval The states are linear high gain, linear low gain, log linear and log response, respectively corresponding to weak light, strong light, transition between strong light and super strong light, and super strong light. After signal amplification and analog-to-digital conversion by subsequent readout circuits, the digital output signals of the four states contain sufficient information. The output results of these four states are fused to obtain a high dynamic range image that retains all the details of the image from low light to super bright light.
附图说明Description of drawings
图1是高低增益高动态像素电路结构;Fig. 1 is the circuit structure of high and low gain high dynamic pixel;
图2是高低增益高动态像素工作时序;Figure 2 is the working timing of high and low gain and high dynamic pixels;
图3是同时具有高低增益和对数响应的高动态像素电路结构;Fig. 3 is a high dynamic pixel circuit structure with both high and low gain and logarithmic response;
图4是同时具有高低增益和对数响应的高动态像素工作时序及读取方式;Figure 4 is a high dynamic pixel working sequence and reading method with high and low gain and logarithmic response at the same time;
图5是同时具有高低增益和对数响应的高动态像素输入光强与输出信号关系曲线;Fig. 5 is a high dynamic pixel input light intensity and output signal relationship curve with both high and low gain and logarithmic response;
图6是实施例1工作时序及读取方式;Fig. 6 is working sequence and reading mode of
图7是实施例2工作时序及读取方式;Fig. 7 is working sequence and reading mode of
图8是实施例3同时具有单增益线性响应及对数响应的高动态像素电路结构;8 is a high dynamic pixel circuit structure having both a single-gain linear response and a logarithmic response in Embodiment 3;
图9是实施例3工作时序及读取方式;Fig. 9 is working sequence and reading mode of embodiment 3;
图中:1钳位光电二极管,2电荷转移控制晶体管,3复位晶体管,4高动态范围晶体管,5源极跟随器,6行选晶体管,7新型复位晶体管,8新型高动态范围晶体管,9电荷补偿元件。In the figure: 1 clamp photodiode, 2 charge transfer control transistors, 3 reset transistors, 4 high dynamic range transistors, 5 source followers, 6 row select transistors, 7 new reset transistors, 8 new high dynamic range transistors, 9 charge Compensation element.
具体实施方式Detailed ways
实施例1Example 1
实施例1所述的同时具有高低增益和对数响应的高动态CMOS图像传感器像素电路结构如图3所示。像素结构由钳位光电二极管1、电荷转移控制晶体管2、新型复位晶体管7、新型高动态范围晶体管8、源极跟随器5、行选晶体管6组成,像素中的电荷转移控制晶体管2、源极跟随器5、行选晶体管6均采用标准NMOS晶体管工艺制造而成,新型复位晶体管7、新型高动态范围晶体管8共同构成本发明所述电荷补偿元件9,是在标准工艺基础上进行了一次额外的离子注入,用来调整晶体管的阈值电压,使其阈值电压为-0.3V。电荷补偿元件9在超强光下或者长时间积分时工作在亚阈值区域,向FD点注入电荷,用以补偿钳位光电二极管1阱溢出到FD点的光生电荷,避免因钳位光电二极管达到满阱而导致的信号饱和。其中,钳位光电二极管1作为光电探测元件,可以把接收的光信号转换为电信号,P端接0V,N端接电荷转移控制晶体管2的源极。电荷转移控制晶体管2的栅极的控制信号TX来自于图像传感器系统中的行控制模块,漏极连接到FD点。电荷补偿元件9包括新型复位晶体管7、新型高动态范围晶体管8,其中新型复位晶体管7的漏极接Vpix电位3.3V,栅极控制信号RST来自于行控制模块,源极连接到新型高动态范围晶体管8的漏极,新型高动态范围晶体管8的栅极控制信号HDR来自于行控制模块,源极连接到FD点。源极跟随器5的栅极与FD点相连,漏极接至3.3V,源极与行选晶体管6的漏极相连。行选晶体管6的栅端的控制信号SEL来自于行控制模块,源极与列总线相连用于将像素的信号值输出到图像传感器系统的后续读出电路中。The pixel circuit structure of the high-dynamic CMOS image sensor with both high and low gain and logarithmic response described in
本发明所述的同时具有高低增益和对数响应的高动态CMOS图像传感器的具体时序控制方法和读取方式如图4所示,具体步骤如下:The specific timing control method and reading method of the high dynamic CMOS image sensor with high and low gain and logarithmic response according to the present invention are shown in FIG. 4 , and the specific steps are as follows:
步骤一,复位操作。
首先像素进入复位状态,电荷转移控制晶体管2、电荷补偿元件9同时导通一次,钳位光电二极管1中的电荷被清空,FD点电压被复位到3.3V。First, the pixel enters the reset state, the charge
步骤二,积分操作。
复位操作结束后,电荷转移控制晶体管2和电荷补偿元件9的栅极控制信号电压都下降到0V,像素进入积分阶段,钳位光电二极管1内开始积累光生电荷。After the reset operation, the gate control signal voltages of the charge
1)弱光或者强光下曝光时间不够长时,钳位光电二极管1中产生的光生电荷小于等于钳位光电二极管1的满阱容量,光生电荷全部积累在钳位光电二极管1中,不会有多余的光生电荷通过电荷转移控制晶体管2管流向FD点,因此积分时间内FD点电压不会发生变化。电荷补偿元件9的栅源电压VGS远远小于阈值电压-0.3V,因此电荷补偿元件9工作于截止区,没有电流流向FD点。1) When the exposure time is not long enough under weak light or strong light, the photo-generated charge generated in the
2)随着光强的增加或者积分时间的延长,积分过程中钳位光电二极管1中积累的光生电荷会自身的满阱容量,多余的光生电荷会通过电荷转移控制晶体管2流到FD点,构成过溢电流IOV,该电流与钳位光电二极管1所生成的光生电流Iph相等,该电流使得FD点的电压下降,电压变化值与积分时间成正比。2) With the increase of the light intensity or the extension of the integration time, the photo-generated charges accumulated in the clamping
由于此时光强不够大,因此一定积分时间内,流到FD点的光生电荷有限,FD点的电压不会下降很多,电荷补偿元件内部两个晶体管都处于关闭状态,工作状态不发生改变。此时体现为FD点电压与光强成正比。积分结束前读取一次FD的电压值,作为对数模式的线性信号值LOG_S1。Since the light intensity is not large enough at this time, the photogenerated charge flowing to the FD point is limited within a certain integration time, and the voltage at the FD point will not drop a lot. At this time, it is reflected that the voltage at the FD point is proportional to the light intensity. Before the integration ends, read the voltage value of FD once as the linear signal value LOG_S1 in logarithmic mode.
3)当光强过强,或者积分时间较长时,钳位光电二极管1中积累的光生电荷远远超过自身的满阱容量,过多的光生电荷会通过电荷转移控制晶体管2流到FD点并且积累在FD点,产生持续的光生过溢电流IOV,导致FD点电压持续下降,使得电荷补偿元件的VGS持续增高。由于电荷补偿元件9内部两个晶体管的阈值电压被调整为-0.3V,此时VGS值接近该阈值电压,使得这两个晶体管从截止区进入到亚阈值工作区域,导致有电流从Vpix流入FD点。该电流可以抵消从钳位光电二极管1流入到FD点的光生过溢电流IOV,因此被称为电荷补偿电流IC。如果光强足够强或者积分时间足够长时,光生过溢电流IOV与电荷补偿电流IC达到平衡状态,则FD点电压将不再随积分时间变化。此时,电荷补偿元件9工作在亚阈值区,在平衡后,电荷补偿电流与光生过溢电流相等,可以得到此时FD点的电压值与入射光强的对数成正比。该电压可通过源极跟随器5、行选晶体管6及后续电路读出,作为对数模式的信号值LOG_S2。3) When the light intensity is too strong or the integration time is long, the photo-generated charge accumulated in the
积分结束之前,再对FD点进行一次复位操作,电荷补偿元件内部晶体管7和8分别导通,在新型高动态范围晶体管8的栅极控制信号HDR为高电平4V时,图像传感器读出电路读取低增益的复位值RST_L,随后HDR信号电压降为0V,图像传感器的读出电路读取高增益的复位值RST_H,最后新型高动态范围晶体管8的栅极控制信号HDR降为低电平0V。至此像素电路积分阶段结束。Before the integration ends, perform a reset operation on the FD point again, and the
步骤三,第一次电荷转移过程。Step 3, the first charge transfer process.
首先,电荷转移控制晶体管2导通,在电势差的作用下,钳位光电二极管1中积累的光生电荷通过电荷转移控制晶体管2转移到FD点。此时读取FD点的高增益信号值SIG_H。First, the charge
步骤四,第二次电荷转移过程。
第一次电荷转移之后将新型高动态范围晶体管8开启,FD和FDL点短接,期间电荷转移控制晶体管2再次导通,钳位光电二极管1中剩余的光生电荷通过电荷转移控制晶体管2继续转移到FD和FDL点。读取FD点电压值为低增益的信号值SIG_L。After the first charge transfer, the new high
实施例2Example 2
实施例2所述的高动态范围图像传感器像素电路结构如图3所示。实施例2所述的高动态范围CMOS图像传感器像素结构的时序和读取方式如图7所示。实施例2与实施例1工作过程基本相同,不同点在于在积分过程中电荷补偿元件的栅电压值,不是降低到0V,而是到1V,目的是提高电荷补偿元件源极电压,即FD点的电压,使其更容易被图像传感器中像素之后的读出电路进行信号处理和读出。The pixel circuit structure of the high dynamic range image sensor described in
实施例3Example 3
本发明前述的同时具有高低增益和对数响应的高动态CMOS图像传感器像素中的电荷补偿元件由两个晶体管构成,在本实施例中还可以将电荷补偿元件中的新型复位晶体管和新型高动态范围晶体管合并为一个晶体管,构成同时具有单增益线性响应及对数响应的高动态范围像素,其电路结构如图8所示。The aforementioned charge compensation element in the high-dynamic CMOS image sensor pixel with both high and low gain and logarithmic response of the present invention is composed of two transistors. In this embodiment, the new reset transistor in the charge compensation element and the new high dynamic The range transistors are combined into one transistor to form a high dynamic range pixel with both a single-gain linear response and a logarithmic response. The circuit structure is shown in Figure 8.
实施例3所述像素电路结构的工作时序和读取方式如图9所示。像素电路工作仍然分为复位阶段、积分阶段和电荷转移阶段。复位阶段电荷补偿元件9和电荷转移控制晶体管2同时导通一次,将钳位光电二极管1内电荷清空同时将FD点复位到3.3V,积分结束前读出电路采样一次对数信号LOG_SIG,之后再对FD点进行一次复位操作,读出电路读取线性复位信号值LIN_RST,然后电荷转移控制晶体管2导通一次,将钳位光电二极管1内的光生电荷转移到FD点,读出电路读取线性信号值LIN_SIG。The working timing and reading method of the pixel circuit structure described in Embodiment 3 are shown in FIG. 9 . The pixel circuit work is still divided into a reset phase, an integration phase and a charge transfer phase. In the reset stage, the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210699481.4A CN115134541A (en) | 2022-06-20 | 2022-06-20 | High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210699481.4A CN115134541A (en) | 2022-06-20 | 2022-06-20 | High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115134541A true CN115134541A (en) | 2022-09-30 |
Family
ID=83380797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210699481.4A Pending CN115134541A (en) | 2022-06-20 | 2022-06-20 | High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115134541A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115953338A (en) * | 2022-12-07 | 2023-04-11 | 武汉华中天易星惯科技有限公司 | Method for improving dynamic range of industrial camera |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102752560A (en) * | 2012-06-21 | 2012-10-24 | 吉林大学 | Ultra-wide dynamic range image sensor based on pixel charge compensation technology |
CN114640808A (en) * | 2022-03-09 | 2022-06-17 | 大连理工大学 | High Dynamic Range Image Sensor Based on Reset Transistor Multiplexing Technology |
-
2022
- 2022-06-20 CN CN202210699481.4A patent/CN115134541A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102752560A (en) * | 2012-06-21 | 2012-10-24 | 吉林大学 | Ultra-wide dynamic range image sensor based on pixel charge compensation technology |
CN114640808A (en) * | 2022-03-09 | 2022-06-17 | 大连理工大学 | High Dynamic Range Image Sensor Based on Reset Transistor Multiplexing Technology |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115953338A (en) * | 2022-12-07 | 2023-04-11 | 武汉华中天易星惯科技有限公司 | Method for improving dynamic range of industrial camera |
CN115953338B (en) * | 2022-12-07 | 2024-04-16 | 华中光电技术研究所(中国船舶集团有限公司第七一七研究所) | Method for improving dynamic range of industrial camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107895729B (en) | Image sensor pixel and imaging system with reduced illumination-induced flicker | |
US10791292B1 (en) | Image sensors having high dynamic range imaging pixels | |
CN102547166B (en) | Image sensor having supplemental capacitive coupling node | |
CN109819184B (en) | Image sensor and method for reducing fixed image noise of image sensor | |
US7791657B2 (en) | Dynamic range enhancement scheme for imagers | |
US7026596B2 (en) | High-low sensitivity pixel | |
US8969775B2 (en) | High dynamic range pixel having a plurality of amplifier transistors | |
TWI674004B (en) | Low noise cmos image sensor by stack architecture | |
US20130256510A1 (en) | Imaging device with floating diffusion switch | |
US6777662B2 (en) | System, circuit and method providing a dynamic range pixel cell with blooming protection | |
US8324550B2 (en) | High dynamic range imaging systems | |
US8072524B2 (en) | Solid-state image-sensing device | |
US20060044436A1 (en) | Solid-state imaging device | |
KR102690091B1 (en) | Solid-state image pickup device and driving method therefor, and electronic apparatus | |
CN114640808B (en) | High Dynamic Range Image Sensor Pixel Unit Based on Reset Transistor Multiplexing Technology | |
US20120267695A1 (en) | Solid state imaging device | |
EP3420592B1 (en) | Improved ultra-high dynamic range pixel architecture | |
CN115134541A (en) | High dynamic CMOS image sensor with high and low gains and logarithmic response, time sequence control method and reading mode | |
US9826178B2 (en) | Logarithmic pixels with correlated double sampling | |
JP4300654B2 (en) | Solid-state imaging device | |
US20240098386A1 (en) | Image sensor with stacked pixels having high dynamic range and low noise | |
KR100977834B1 (en) | CMOS image sensor with wide dynamic range | |
US20240357253A1 (en) | Capmid design in vrfd for hdr structure | |
US20240381002A1 (en) | Real gs and ofg timing design for 1-by-2 shared hdr vdgs | |
US20240205562A1 (en) | Image sensors having high dynamic range pixels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |